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Thomas-Fermi scaling in the energy spectra of atomic ions
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The energy spectra of atomic ions are re-examined from the point of view of Thomas-Fermi scaling rela-
tions. For the first ionization potential, which sets the energy scale for the true discrete spectrum, Thomas-
Fermi theory predicts the following relation: Ej,,;.=Z*N>3g(N/Z), where Z is the nuclear charge, N is the
number of electrons, and g is a function of N/Z. This relation does not hold for neutral atoms, but works
extremely well in the cationic domain, Z>N. We provide an analytic expression for g, with two adjustable
parameters, which fits the available experimental data for more than 380 ions. In addition, we show that a
rough fit to the integrated density of states with a single exponential: Ny,,,=exp(AE/®), where AE is the
excitation energy, leads to a parameter, ®, exhibiting a universal scaling a la Thomas-Fermi: ©

=7>N"%3n(N/Z), where h is approximately linear near N/Z=1.
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Energy levels of atoms and ions have been measured
since the earliest times of quantum mechanics. At present,
there is a huge amount of very precise measurements, which
can be found, for example, in the critical compilation by the
NIST [1]. In these big volumes of data, sometimes universal
relations remain hidden. In order to find them, you need a
simple theory in which universality or scaling naturally ap-
pears.

Thomas-Fermi theory [2] was the first mean-field theory
of atoms, the predecessor of more elaborated approaches,
such as density functional theory [3]. It is based on a simple
estimation of the kinetic energy, with the help of Pauli ex-
clusion principle, and the introduction of self-consistency
with the Poisson equation in order to take account of Cou-
lomb interactions. Thomas-Fermi theory has proven to be a
valuable tool for the qualitative and semiquantitative under-
standing of real [4—6] and artificial [7] atoms.

A very interesting aspect of Thomas-Fermi theory is the
scaled form of physical magnitudes, which are very often
respected by the exact quantum mechanical magnitudes. This
aspect has not been completely exploited so far. Recently, we
showed, for example, that the density of low-lying excited
states of artificial (quantum dot) atoms can be parametrized
in a universal (scaled) way [8], suggested by Thomas-Fermi
theory. No similar parametrization for neutral atoms or ions
is available yet.

In the present Brief Report, we focus on the energy spec-
tra of atomic ions, and show that, in some sense, the excita-
tion spectrum is “universal,” that is, may be described by
scaled functions. In order to support the theoretical state-
ments, we make extensive use of the NIST detailed compi-
lation on atomic energy levels.

Let us start considering the first ionization potential of
ions, which sets the energy scale for the true discrete spec-
trum. In atomic units, where atomic ions are characterized by
only two free parameters: the nuclear charge, Z, and the
number of electrons, N, the ground-state energy in the
Thomas-Fermi approximation may be shown to satisfy the
following scaled relation [5],
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E(N,Z)=Z*N'"*f(N/Z), (1)

where f is a universal function of the variable N/Z. The
ionization potential can be obtained from Eq. (1). Indeed,

Eioniz(sz) = Egs(N_ 1’Z) - ng(N’Z)

J
~-—-—F,(N,Z

~ 7*N3g(N/Z), (2)

where g is also a universal function of its argument. It may
be easily verified for free electrons in a Coulomb field that,
in the N—o0,N/Z—0 limit, g(0)=(3/2)"3/3~0.3816 [9].

The law given by Eq. (2) does not hold for neutral atoms.
The ionization potential of neutral atoms, apart from shell
effects, has a very smooth dependence on Z, and is close to
that of hydrogen, 0.5, in accordance to the fact that at long
distances every singly ionized atom looks like a proton.

However, the scaling law, Eq. (2), is quickly reestablished
in the cationic domain, Z>N. We show in Fig. 1 the ioniza-
tion potential of more than 380 atomic ions, taken from the
NIST compilation [1]. All of the systems with N> 10 are
considered, for which the scaled behavior is apparent. The
nuclear charge, Z, spans the range from 12 (Mg) to 80 (Hg),
although, as it can be seen from the table of available levels
[10], most of the data correspond to the interval 12<Z
<37.

The function g(x) should go to zero in the x— 1 limit, in
accordance to the fact that, in the leading approximation, the
anionic instability border is located at N/Z=1 [11]. We fitted
the experimental data with a two-point Padé approximant
[12] interpolating between the x—0 and x— 1 limits,

_(po+pix)(1-x)
1+qgx

g(x) 3)
where p,=g(0), and the fitting parameters are: p;=2.6555,
q,1=11.4399. The fit gives a very good qualitative description
of the data. The three points at N/Z=0.5, lying a little far-
ther, correspond to the Xe XXVII, Xe XXVIII, and Xe
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FIG. 1. (Color online) Scaling in the ionization potential of ions
with more than ten electrons. The curve (N/Z)~*3g, where g is
given by Eq. (3), is also drawn (dashed line).

XXIX ions, for which it seems that there is an overestimation
in the reported values [13].

We stress that the fit given by the function g captures the
general behavior of E;,,;, as a function of N and Z. Effects
not included in Thomas-Fermi theory, such as shell or sub-
shell filling, spin-orbit interactions, etc., could lead to rela-
tively large (of the order of 10% or even larger) deviations
from the universal behavior, as seen in Fig. 1.

Next, we attempt a global universal description of the
excitation spectrum. Excitation energies, AE, cover the range
(0,E;y,;.). In the spectrum, we shall distinguish between
intrashell and intershell excitations, which exhibit different
behaviors.

In quality of example, we show in Fig. 2 the Ar-like se-
ries, from the Ar I atom (N=Z=18) to the Mn VIII ion (N
=18,Z=25). The y axis represents the total (accumulative)
number of states for excitation energies below AE. The de-
generacy of multiplets is explicitly taken into account. In the
x axis, the excitation energy is scaled by Z2.

First, we notice that from Ar I to Ca III the spectrum is
restructured. This corresponds to reestablishing the Z—
sequence of Hartree-Fock orbitals: 1s, 2s, 2p, 3s, 3p, 3d,...,
in place of the neutral atom sequence [14].

From Ca III on, it is evident that the low-lying spectrum
goes to a definite limit as Z increases. These are intrashell
excitations (in the N=18 system, the n=3 shell is open). This
means that intrashell excitation energies scale as AE~ Z2,
independently of the degree of ionization, N/Z. We notice
that from Z—cc perturbation theory one would expect in-
trashell excitations to be of the order of Z, thus the observed
behavior is stressing that the lowest excitations have a non-
perturbative character.

Larger excitation energies correspond to intershell transi-
tions, which are of the same order of E;,,;. and, thus, exhibit
the characteristic dependence on Z, N, and N/Z.

Let us stress that for both the intra- and the intershell
regimes, locally the number of states increases exponentially
with energy differences. This behavior is quite general [8]. Tt
was first observed in nuclear systems, where it is known as
the “constant-temperature approximation” [15]. In Fig. 2,
dashed lines represent fits to the intra- and intershell excita-
tions in the Mn VIII ion. The discontinuity of the slopes
signals that the mechanisms of formation of these states are
different [16].
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FIG. 2. (Color online) The excitation spectra of Ar-like ions
showing the Z? dependence of intrashell excitations, and the expo-

nential increase of Ny, with AE.

A rough characterization of the spectrum can be given in
terms of a single exponential,

Nyjares = exp(AE/O), (4)

where we expect the temperature parameter, ® ~ Z2. The de-
pendence of ® on N can be extracted from the Z— o0 asymp-
tote. In this limit and for closed shell ions, the gap and the
number of electrons are expressed in terms of the principal
quantum number of the last occupied shell as: AE, =~ Z%/n?,
and N~2n?/3, respectively. The available number of levels
at energies AE| is Ny~ [2(n+1)2]1/{[2n*]'[2(2n+1)]"}
~exp(an+bn In n) ~exp(cn), where a, b, and ¢ are numeri-
cal coefficients. The last expression comes from the fact that
Inn is a slowly varying function. Comparison with Eq. (4)
leads to @ ~Z2N~43,

In the spirit of Thomas-Fermi scaling, we assume for @
the relation,

0 =72>N"*3h(NiZ), (35)

where & is a universal function. We fit the excitation spectra
of ions with N> 10 with a function given by Eq. (4). We
study all of the ions with at least 100 measured lines, and use
the first 100 lines to perform the fit. The results are shown in
Fig. 3.

Although Eq. (4) gives a rough global characterization
(the exponential dependence holds locally, with different
slopes in different sectors of the spectrum), and there could
be experimental problems such as missing lines, etc., the
data show scaling, with a function 4 approximately linear,

h=0.165(1 = N/Z). (6)

Due to the reasons mentioned above, the observed dispersion
of points is natural.

Similarly to the ionization potential, the parameter ® for
neutral atoms takes in mean a constant value, ® =0.045,
with strong fluctuations related to shell effects. The reason
for such a behavior is also the proximity of the anionic in-
stability border.

In conclusion, we verified that Thomas-Fermi theory of-
fers a fresh view to the energy spectra of atomic ions. The
energy spectrum can be described in a “universal” way in
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FIG. 3. (Color online) Scaling of the temperature parameter, .
Tons with N> 10 and at least 100 measured lines are included in the
plot.

terms of scaling functions. One of these functions describes
the first ionization potential, which is the natural scale for the
excitation spectrum. On the other hand, if the excitation
spectrum is fitted by a single exponential, the temperature
parameter is shown to approximately exhibit also a scaling
relation a la Thomas-Fermi.
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For neutral atoms, the scaling is broken because of the
proximity of the anionic instability border. We shall further
study this border seeking for positive uses of its presence.

There are still many interesting points requiring further
investigation. Intra- and intershell excitations could be more
detailed described by means of constant-temperature ap-
proximations. Alternative characterizations of the spectrum
could also be employed. We have in mind, for example, the
first moment, which is a magnitude with dimensions of en-
ergy. The energy region closer to the ionization potential
could also be studied. In this region, we expect the depen-
dence Ny~ (Ejppi.— AE)™2, coming from the existence of
Rydberg states. A very interesting possibility is to write
down an interpolation formula to spectroscopic accuracy for
the ionization potential, which takes our g function as the
starting point, but includes also shell-filling effects, spin-
orbit interactions, etc. Research along these lines is in
progress.
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