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We show that some composite pulses widely employed in NMR experiments are regarded as nonadiabatic
geometric quantum gates with Aharanov-Anandan phases. Thus, we reveal the presence of a fundamental issue
on quantum mechanics behind a traditional technique. To examine the robustness of such composite pulses
against fluctuations, we present a simple noise model in a two-level system. Then, we find that the composite
pulses possesses purely geometrical nature even under a certain type of fluctuations.
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Geometric phases have been attracting a lot of attention
from the view point of the foundation of quantum mechanics
and mathematical physics �1–4�. Recently, their application
to quantum information processing is spotlighted �5,6�, be-
cause they are expected to be robust against noise. However,
the robustness of a geometric quantum gate �GQG�, which is
a quantum gate only using geometric phases, is not com-
pletely verified. Various examinations on this issue have
been reported �7–12�. Blais and Tremblay �7� claimed that no
advantage of the GQGs exists compared to the correspond-
ing quantum gates with dynamical phases, while Zhu and
Zanardi �8� showed that their nonadiabatic GQGs are robust
against fluctuations in control parameters.

In this Brief Report, we show that some composite pulses
widely employed in nuclear magnetic resonance �NMR�
�13,14� to accomplish reliable operations is regarded as
nonadiabatic GQGs based on an Aharonov-Anandan �AA�
phase �15�, and propose a simple noise model in a two-level
system. Then, we classify fluctuations in terms of the robust-
ness of the GQGs.

An AA phase appears under nonadiabatic cyclic time evo-
lution of a quantum system �15�. We note that the generali-
zation to the noncyclic case is given in Ref. �3,16�. Let us
write the Bloch vector at t�0� t�1� as n�t���R3�. We de-
note a state vector given n�t� as �n�t����C2�. Namely,
n�t�= �n�t����n�t��, where �= t��x ,�y ,�z�. The symbol t

means the transposition of a vector. Time evolution is de-
scribed by the Schrödinger equation with the Hamiltonian
H�t�. Note that �n�t��=1. Hereafter, we denote n�0� as n. We
take the natural unit system in which �=1. Suppose that
�n�1��=ei��n� ���R�: n�1�=n. The AA phase �g is defined
as �15�

�g = � − �d, �1�

where

�d = − �
0

1

�n�t��H�t��n�t��dt �2�

is a dynamical phase.
Next, suppose n+ and n− are two Bloch vectors satisfying

�a� n+ ·n−=−1 �i.e., �n+ �n−�=0� and �b� n��1�=n� �i.e.,
there exist ���R such that �n��1��=ei���n��. An arbitrary
quantum state �n� is expressed by �n�=a+�n+�+a−�n−�, where
a�= �n� �n�. We call n� basis Bloch vector corresponding to
H�t�. The initial state �n� is transformed into the final state
�n�1��=a+ei�+�n+�+a−ei�−�n−�. Thus, the time evolution op-
erator U at t=1 generated by H�t� �t� �0,1�� is rewritten as

U = ei�+�n+��n+� + ei�−�n−��n−� . �3�

Equation �3� becomes a quantum gate with a geometric
phase, when the dynamical component of �� is vanishing.

Let us focus on the Hamiltonian for a one-qubit system,

H�t� =
1

2
��t�m�t� · � �0 � t � 1� , �4�

which is inspired by a NMR Hamiltonian. In the case of
NMR, ��t� and m�t� are the amplitude of and the unit vector
parallel to a magnetic field, respectively. The dynamical
phase vanishes when m�t� ·n�t�=0 �17�. We note that the
integrand in Eq. �2� is rewritten as �n�t��H�t��n�t��
= ���t� /4�tr��m�t� ·���n�t� ·���= ���t� /2�m�t� ·n�t�, where
we use tr�H�t��=0 and tr��i� j�=2�ij. This condition has
been widely used in the experiments on nonadiabatic GQGs
�6�.

A series of pulses, 90x180y90x has been widely employed
in the field of NMR for wide band decoupling �13,14�, where
�k denotes a spin rotation by the angle � in degree around k
axis. This is called composite pulse and corresponds to the
unitary operator e−i	�x/4e−i	�y/2e−i	�x/4, which is equal to
e−i	�y/2. This is generated by the Hamiltonian

H�t� = 	m�t� · � �0 � t � 1� , �5�

where
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m�t� = 	
t�1,0,0� �0 � t � 1/4�
t�0,1,0� �1/4 � t � 3/4�
t�1,0,0� �3/4 � t � 1�


 .

Hereafter, we will denote t0=0, t1=1 /4, t2=3 /4, and t3=1.
Various types of composite pulses have been proposed
�13,14�, and their usages have been also discussed in the
context of NMR quantum computing �18�.

Let us examine the time evolution generated by Hamil-
tonian �5� from the view point of nonadiabatic GQGs. We
choose n�= t�0, �1,0�, where n+ ·n−=−1. Then, we have
the explicit formula

n��t� = � � sin 
�t�sin ��t�
− sin 
�t�cos ��t�

cos 
�t�
� , �6�

where


�t� = 2	t −
	

2
, ��t� = 	/2 �t1 � t � t2�

0 �otherwise� � .

The temporal behavior of n+ on the Bloch sphere is shown in
Fig. 1�a�. The trajectory n+ is closed. It means that
�n+�1��=ei�+�n+�. We find that �n��1��=e�i	/2�n�� via solv-
ing the Schrödinger equation. We note that 	 is a solid angle
surrounded by the trajectory n+�t�. We also find that
m�t� ·n��t�=0 at any t� �0,1�, and thus the dynamical com-
ponent is vanishing. Accordingly, we obtain the nonadiabatic
GQG, U=e−i	/2�n+��n+�+ei	/2�n−��n−�=e−i	�y/2. One of the
most commonly employed composite pulses turns out a
nonadiabatic GQG �19�.

We will classify fluctuations in terms of robustness of the
composite pulse 90x180y90x. A noise model will be proposed
based on a fluctuated closed curve on the Bloch sphere. We
examine the situation in which the radio-frequency �rf� am-
plitude and phase, and the resonance off-set are temporary
fluctuated around their aimed values. The fluctuated curve is
given by

ñ��t� = � � sin�
�t� + f�t��sin���t� + g�t��
− sin�
�t� + f�t��cos���t� + g�t��

cos�
�t� + f�t��
� , �7�

where we assume that f�t� and g�t� are continuous and
smooth in �0,1� �20� and satisfy

f�t0� = g�t0� = 0, f�t3� = g�t3� = 0. �8�

We will discuss the relevance of f�t� and g�t� to fluctuations
below. The trajectory ñ��t� is closed under the assumption
�8�, as shown in Fig. 1�b�. Thus, we have

�ñ��1�� = ei�̃��ñ�� , �9�

with a phase �̃�. Generally, �̃� includes both the dynamical
and the geometric components. We employ this noise model
in order to ensure the existence of a definite AA phase, al-
though we aware of its artificiality. An analysis based on a
noncyclic geometric phase �12,16� may be needed for more
comprehensive discussions.

We derive the Hamiltonian generating the time evolution
corresponding to Eq. �7�. By differentiating Eq. �7� with re-
spect to t� �ti−1 , ti��i=1,2 ,3�, we obtain the Bloch equation.
Then, we find the Hamiltonian in this time interval. Hence,
the Hamiltonian at t� �0,1� is given by

H̃�t� =
1

2
�̃�t�m̃�t� · � +

1

2

dg�t�
dt

�z, �10�

where

�̃�t� = 2	 +
df�t�

dt
, m̃�t� = �cos���t� + g�t��

sin���t� + g�t��
0

� .

We find that

m̃�t� · ñ�t� = 0. �11�

at any t� �0,1�. The derivative of f�t� is a fluctuation of the
rf amplitude, while that of g�t� is that of the resonance off-
set. A fluctuation of the rf phase is described by g�t�. From
Eq. �2�, the dynamical component �̃d� of �̃� is given by

�̃d� = �
1

2
�

t0

t3 dg�t�
dt

cos�
�t� + f�t��dt . �12�

We show that the following two cases exactly lead to
�̃d�=0. Namely, �i� g�t�=0 and �ii� f�t� and g�t� have a cer-
tain symmetric property under time translation. The validity
of the case �i� is obvious from Eq. �12�. We focus on the case
�ii�. We note that 90x180y90x has several interesting
properties under time translation: 
�t+1 /2�=
�t�+	, for
example. We divide the total time interval Iall= �t� �t0 , t3��
into the four intervals, I1= �t� �t0 , t1��, I2= �t� �t1 ,1 /2��,
I3= �t� �1 /2, t2��, and I4= �t� �t2 , t3��. Let us consider a case
when the conditions

f�t + 1/2� = f�t�,
dg

dt
�t + 1/2� =

dg

dt
�t� , �13�

are satisfied. The contribution from I1�I2� to �̃d� is canceled
out by that from I3�I4�. Thus, this case leads to �̃d�=0. Let
us consider another case, in which the conditions

f�1 − t� = − f�t�,
dg

dt
�1 − t� =

dg

dt
�t� , �14�

are satisfied. We note that f�1 /2�=0 is imposed in Eq. �14�.
In this case, the contribution from I1�I2� is canceled out by
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FIG. 1. Temporal behavior of the basis Bloch vector t�0,1 ,0�
during the composite pulse 90x180y90x. �a� without and �b� with
fluctuations in the control parameters. The fluctuations are given by
Eq. �15�, where f0=g0=0.1 and =�=5.
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I4�I3�. This cancellation is related to the symmetry

�1− t�=−
�t�+	. When f�t� and g�t� have a certain sym-
metric property compatible with the pulse sequence, the dy-
namical phase is vanishing. In addition, a case �iii� f�t� and
g�t� rapidly oscillate with no correlation, leads to �̃d��0.
We can confirm the validity of the case �iii� by numerically
solving the Schrödinger equation with Eq. �10�. The case �i�
often happens in experiments. From Eq. �10�, one can find
f�t� is associated only with the amplitude of an external con-
trolled field. This quantity often shows an overshoot or an
undershoot before settling a desired strength. One can also
encounter the case �ii� in experiments. A typical example for
Eq. �13� may be an oscillating function, as shown in Eq.
�16�. A linear combination of such oscillating functions leads
to �̃d�=0. Thus, we expect that a lot of rapid oscillating
fluctuations approximately satisfy Eqs. �13� and �14�, and
then �̃d��0. The case �iii� is natural when the origins of f�t�
and g�t� are independent. These three conditions lead to
�̃d�=0. Thus, the quantum gate under them is still regarded
as a GQG. It is necessary to examine about more realistic
control processes �21,22�. Nevertheless, the present discus-
sion is meaningful to understand nature of robustness of a
geometric phase.

We directly solve the Schrödinger equation with Eq. �10�
in order to calculate the geometric component of �̃�. First,
we choose

f�t� = f0 sin�2	ui�t��, g�t� = g0 sin�2	�ui�t�� , �15�

at t� �ti−1 , ti�, where ui�t�= �t− ti−1� / �ti− ti−1� and  ,��N.
The above functions are piecewise smooth in �t0 , t3� �20�. We
show that the temporal evolution of the basis Bloch vector
t�0,1 ,0� during the composite pulse 90x180y90x with the
fluctuations in Fig. 1�b�. This example corresponds to the
case �ii�, since Eq. �14� is satisfied. We display the temporal
behaviors of �n+�t�� and �ñ+�t�� in Fig. 2. The state vector

�ñ+�t�� is fluctuated around �n+�t��, but �ñ+�t3��= �n+�t3��. We
find that �̃�= �	 /2. Thus, �̃g�= �	 /2 is confirmed. Let us
discuss another example,

f�t� = f0 sin�8	t�, g�t� = g0 sin�8	�t� , �16�

where f0�g0� is a positive real number and ��� is an integer
�t0� t� t3�. The above functions also satisfy Eq. �8�. Solving
the Schrödinger equation numerically leads to �̃�= �̃g�

= �	 /2. The above results mean that the solid angle sur-
rounded by ñ��t� is always 	. We conjecture that, as long as
the fluctuations are introduced by Eqs. �7� and �8�, no dy-
namical phase should exactly lead to �̃g�=�g�.

It is interesting to study the case in which m�t� ·n�t��0.
Let us consider a simple operation on the Bloch sphere:
t�0,0 ,1�→ t�1,0 ,0�. This process is realized by using
either e−iHAt or e−iHBt�0� t�1�, where HA=	�y /4 and
HB=	��x+�z� /2�2. The former satisfies the condition
m�t� ·n�t�=0, but the latter does not. We describe fluctua-
tions in the two models such as Eq. �10�,

H̃A�t� = �	

2
+

df

dt
� m̃A�t� · �

2
+

dg

dt

�z

2
,

H̃B�t� = � 	

�2
+

df

dt � m̃B�t� · �

2
+ � 	

�2
+

dg

dt ��z

2
,

where m̃A�t�= t(cos�	 /2+g�t�� , sin�	 /2+g�t�� ,0) and
m̃B�t�= t(cos g�t� , sin g�t� ,0). Since f�0�= f�1�=g�0�=g�1�
=0, which corresponds to Eq. �8�, the unitary operator gen-

erated by H̃A�t� maps t�0,0 ,1�→ t�1,0 ,0� even in the pres-
ence of f�t� and g�t�. On the other hand, the numerical cal-

culation reveals that the one generated by H̃B�t� maps
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FIG. 2. Temporal behavior of the state vector corresponding to
the basis Bloch vector t�0,1 ,0� during 90x180y90x. The initial state
vectors are chosen as �n+�=ei	/4��0�+ i�1�� /�2. The solid line is the
model with the fluctuations. The fluctuations are described by Eq.
�15�, where f0=g0=0.1 and =�=5. The dashed line is the ideal
case. �a� Re�0 �n+�t��. �b� Im�0 �n+�t��. �c� Re�1 �n+�t��. �d�
Im�1 �n+�t��.
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FIG. 3. Temporal behavior of the Bloch vector starting from
t�0,0 ,1� under the Hamiltonian HB is shown in �a� and its trajectory
projected on nxny-plane is shown in �c�. The final point is t�1,0 ,0�.
Temporal behavior of the Bloch vector starting from t�0,0 ,1� under

the fluctuating Hamiltonian H̃B �f0=g0=1.0 and =�=10 in Eq.
�16�� is show in �b� and its trajectory projected on nxny plane is
shown in �d�. The final point is t�0.95,−0.26,−0.16�.
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t�0,0 ,1�→ t�0.95,−0.26,−0.16� �Fig. 3�. The results mean
that Eq. �8� does not always ensure robustness in the present-
model. We can find an additional term appears in Eq. �6�
when m�t� ·n�t��0. Thus, it may cause a large error in op-
eration. We guess that m�t� ·n�t�=0 plays an important role
for stable time evolution in the present model.

In conclusion, we showed that the composite pulse
90x180y90x is regarded as a nonadiabatic GQG. In addition,
we proposed a simple noise model based on a fluctuated
curve on the Bloch sphere, and then classified fluctuations in
terms of robustness of 90x180y90x. Although the present
analysis is artificial, it is suitable for evaluating errors in
nonadiabatic GQGs since a definite geometric phase exists
even in the presence of fluctuations. It is important to im-
prove the present method in order to examine a more realis-

tic control process or a stochastic process. The fluctuations
that we discussed should be called regular fluctuations, be-
cause the fluctuations are expressed by the two smooth func-
tions f�t� and g�t�. On the other hand, when fluctuations are
given by uniform random variables, even a cyclic evolution
may not be guaranteed �23� and thus the robustness is not
expected as discussed in Ref. �7�. We emphasize that it is
important to specify fluctuations in order to evaluate robust-
ness of a gate.
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