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Experimental test of a two-dimensional approximation for dielectric microcavities
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Open dielectric resonators of different shapes are widely used for the manufacture of microlasers. A precise
determination of their resonance frequencies and widths is crucial for their design. Most microlasers have a flat
cylindrical geometry, and a two-dimensional approximation, the so-called method of the effective index of
refraction, is commonly employed for numerical calculations. Our aim has been an experimental test of the
precision and applicability of a model based on this approximation. We performed very thorough and accurate
measurements of the resonance frequencies and widths of two passive circular dielectric microwave resonators
and found significant deviations from the model predictions. From this we conclude that the model generally
fails in the quantitative description of three-dimensional dielectric resonators.
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I. INTRODUCTION

Open dielectric resonators are used in a large variety of
applications, ranging from radio frequency and millimeter-
wave applications [1,2] to microlasers [3-5]. Therefore, ac-
curate model predictions for their spectra and field distribu-
tions are of great interest. Especially microlasers have
received much attention lately in optical telecommunication,
as sensors or as billiard models [2,5-7]. These devices typi-
cally consist of a flat cylindrical dielectric resonator with a
cross section of arbitrary shape which contains the active
medium. The resonators are usually made of semiconductor
[4,8,9] or organic materials [10-12] and are sandwiched be-
tween two media of lower index of refraction like air or a
substrate. The exact shape of the resonator is important in
view of the applications because it determines the emission
properties such as the directionality of radiation and the qual-
ity factors of the resonances [13-15].

In general, even simple geometries such as a flat dielectric
disk with a height much smaller than the planar extension
cannot be solved analytically. Since the numerical solution of
the three-dimensional (3D) vectorial Maxwell equations de-
scribing such resonators is complicated and computationally
demanding, suitable approximations are favorable. One
widely used approximation is the reduction of the full 3D
Maxwell equations to a two-dimensional (2D), scalar Helm-
holtz equation by introducing a so-called effective index of
refraction n.; (see, e.g., [16-19]). This 2D approximation
seems natural due to the flat shape with large extension in the
plane of the microlasers, but to our knowledge its validity
and precision has never been rigorously tested. The aim of
the work presented here is thus the comparison of the experi-
mentally measured resonance frequencies and widths with
those calculated using this 2D approximation, called the ng
model in the following.

Although motivated by microlasers working in the infra-
red to the optical spectrum, our experimental setup consists
of a flat cylindrical microwave resonator made of Teflon
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(from the company Griinberg Kunststoffe GmbH). Micro-
wave experiments have distinct experimental advantages,
and therefore are commonly used for the investigation of 2D
quantum billiards [20,21] and also 2D dielectric resonators
[22]. The results from the microwave resonators can, how-
ever, be directly applied to microcavities by scaling. The
plan of the present article is the following. In Sec. II, the
concept of an effective index of refraction is discussed and
Sec. III explains how dielectric resonators are modeled with
it. The experimental setup is detailed in Sec. IV, and the
experimental data are compared to the model calculations for
two disks of different thickness in Secs. V and VI. Finally,
the results are discussed in Sec. VIL

II. EFFECTIVE INDEX OF REFRACTION

The basic idea for the 2D approximation is to treat the
bulk of the resonator as a dielectric slab waveguide [23]. In
this section we will consider an infinite dielectric slab wave-
guide, which is an infinite dielectric plate of thickness b with
index of refraction n surrounded by media with lower indices
of refraction n; , (see Fig. 1), and treat the cylindrical side-
walls of the resonator in the next section. The surrounding
media are assumed to be air (n;,=1) in the following. The
waveguide is described by the vectorial Helmholtz equation,

(A +n*(r)k?) i =0, (1)

where k=w/c is the vacuum wave number, w the angular
frequency and c the speed of light. The Helmholtz Eq. (1)
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b{ n T,y

n2

FIG. 1. Geometry and notations for the infinite dielectric slab
waveguide. The dielectric slab with index of refraction n and thick-
ness b is extended indefinitely in the x-y plane and surrounded by
media with index of refraction n; and n,, respectively.
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can be simplified by separation of the variable parallel to the
cylinder axis, z, from the x and y variables. Different modes
in the slab waveguide can be distinguished by their polariza-
tion and their excitation perpendicular to the plane of the
slab. Due to the slab geometry all field modes are either
related to E, (TM-polarization) or to B, (TE-polarization)
[24]. The general ansatz for E, respectively B. is

7 =b2
az exp(—q,|z)):|z| = b/2,

ot a,e™*7 + a,e k5
W(x,y)e™ (2)
and the constants a; are determined from the boundary con-
ditions. The wave function W satisfies the scalar, two-
dimensional Helmholtz equation

A+ ¥ =0, 3)

with 7y being the horizontal component of the wave vector.
The vacuum wave numbers k and its vertical components k,
inside the dielectric medium and ¢, outside are related by the
dispersion relation

»’ Y+ K

:k2: = = — 2, 4
2 2 72 q, (4)

It should be noted that ¢, is real for all solutions which

correspond to modes confined inside the dielectric slab by

total internal reflection with evanescent fields outside. The
. . .. 2 8 .

continuity condition for n*(r)E, and —= at the interfaces at

z=*b/2 for TM-modes and B, and % for TE-modes yields

the condition [16]

n*q.:for TM
k, tan(k,b/2) = (5)
q,:for TE.

Expressing the horizontal component y of the wave vector in
terms of the effective index of refraction n.g, defined as

Negr = y/ k» (6)
in Egs. (4) and (5) leads to the dispersion relation

1 ni—1
kb/2:=2 arctan| v 5 + {2 (),
\n — Negt n- = Nege
, n* for TM,
with v= (7)
1 for TE,

for n.; with {=0,1,2,... denoting the order of excitation in
z direction. Since in the following only TM,, and TE; modes
are considered, we skip the index. Obviously, n.; depends
only on the index of refraction n and on kbxb/\, which
means on the ratio of the slab’s thickness b to the wavelength
\. A plot of ng s with respect to kb is shown in Fig. 2. The
effective index of refraction is always | =n.=n. Modes
with z-excitation { emerge at the cutoff kb={_m/ Vn2-1.

II1. APPLICATION TO DIELECTRIC RESONATORS

The solution of ng is now inserted into Eq. (3), leading to
the two-dimensional scalar Helmholtz equation
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FIG. 2. Effective index of refraction n.g; with respect to kb for
n=1.434. The solid lines are the TE-modes, the dashed lines the
TM-modes of various z excitations. The dotted lines are the indices
of refraction of Teflon and air, respectively.

(A +n2k®) W =0 ()

with W corresponding to E,(B,) for TM(TE)-modes. This
equation correctly describes the propagation of electromag-
netic waves inside an infinite dielectric slab. The next step is
to incorporate the cylindrical sidewalls of the dielectric reso-
nator in a plane perpendicular to the cylinder axis. In the 2D
approximation this is achieved by considering the vertical
walls as a part of an infinite dielectric cylinder with n=ngg
and imposing the corresponding boundary conditions [24],
i.e., that fields inside and outside the resonator obey the
Helmholtz equation

A 1 ngdWr € S ©)
mOUT | _ g2y e S,

Here S is the domain of the resonator in a plane perpendicu-
lar to the cylinder axis, and the conditions along the bound-
ary dS of §

Vi,
and wu —(?
n

Onpout

q’in' s = \Ilout|z9S (10)

as J as

are imposed, with u equal to 1(1/ ngff) for TM(TE)-modes
and nr being the unit vector normal to the surface. The set of
Egs. (9) and (10) constitutes the quintessence of the ng
model. It correctly describes a two-dimensional dielectric
resonator, i.e., the electromagnetic field is homogeneous in
the z direction, with index of refraction equal to n.y, how-
ever, not a flat but three-dimensional resonator. Indeed the
full 3D Maxwell equations lead to additional boundary con-
ditions if the electromagnetic fields depend on z [19,25],
which couple the TM and TE-polarizations. Analytical cal-
culations incorporating these have to our knowledge not yet
been performed. As has already been stated above, the aim of
the present work is to test experimentally the applicability of
the n.y model and to understand the order of magnitude of
deviations from the experiment.

The solutions of Egs. (9) and (10) for a circular resonator
with radius R are given in cylindrical coordinates r and ¢ as
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suspensions

RF cable

!

antenna Teflon disk

FIG. 3. Schematic side view of the experimental setup. The
Teflon disk is hanging on three metal suspensions. Two dipole an-
tennas protruding from an RF cable are placed close to the rim of
the disk on opposite sides.

Wi (r, @) = W, (negikr)e =™ (11)
inside the disk and as

V(@) = VOHD (kr)e™m¢ (12)

Ul m

outside. Here, J,,(x) is a Bessel-function of the first kind,
H'Y(x) a Hankel-function of the first kind and m the azi-
muthal quantum number. All modes with m>0 are doubly
degenerate. Applying the boundary conditions [Eq. (10)]
leads to the quantization condition [26]

i (nekR) — H,"(kR)
Jm(neffkR) - H,(;)(kR) |

Mg (13)

1,(x) and Hr’n(l)(x) are the derivatives with respect to
x. For each azimuthal quantum number m, there is an infinite
series of complex solutions km,nr; n.=1,2,... is the radial
quantum number. Since a dielectric resonator described by
Egs. (9) and (10) is an open system, its modes have losses
due to radiation. These are determined by the imaginary part
of k,, , , and the quality factor Q of a mode is defined as

where J/

Re(k,,, )
0= ik, 1

Because of these losses, the solutions of Eq. (9) are called
quasibound modes. They are identified as the poles of the
scattering matrix S describing the measurement process
[3]—microwave power is coupled into the resonator via an
antenna, thereby exciting modes, and coupled out via the
same or another antenna—in the form of resonances in the
frequency spectrum.

The quantization condition Eq. (13) is solved numerically,
taking into account the dependence of n.; on (the real part
of) k.

IV. EXPERIMENTAL TECHNIQUE

The experimental setup is sketched in Fig. 3: The Teflon
disk is hanging on three metal suspensions attached to the
disk at the corners of an equilateral triangle, but otherwise
surrounded only by air. Two antennas are put on opposite
sides of the disk. The whole setup is placed in a thermostat to
keep it at a fixed temperature. It should be noted that the
perturbation of the resonator due to the attached suspensions
leads to negligible changes of the resonance frequencies by
less than 2% of the mean resonance spacing. The perturba-
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FIG. 4. Sketches of the two antenna types. A dipole antenna is
shown on the left, a curved antenna on the right. The cylindrical
sidewall of the Teflon disk is shown in gray in the background. Both
types of antennas are placed directly alongside the sidewall of the
disk to obtain good coupling to the resonator.

tions due to the bending of the resonator under its own
weight and the antennas are of the same order of magnitude.
Two different types of antennas (see Fig. 4) were used: ver-
tical dipole antennas, which excite mainly TM-modes, and
so-called curved antennas, which excite mainly TE-modes.
The antennas may slightly lift the degeneracy of the modes.
A vectorial network analyzer (PNA N5230A by Agilent
Technologies) is used to measure the scattering matrix ele-
ment S,,(f), where the modulus squared of S,;(f) is the ratio

POH[

|521(f)|2= P, (15)

between the power P;, coupled in by antenna 1 and the
power P, coupled out by antenna 2 for a given frequency
f=w/2m.

Two circular disks of different thickness » made of Teflon
were used in the experiments to investigate the dependence
of the resonance frequencies on the thickness. Disk A has a
radius of R=274.8 mm and a thickness of b=16.7 mm, and
disk B of R=274.9 mm and of »=5.0 mm. A frequency of
10 GHz corresponds to kR =57.6, and kb=3.5 (disk A) and
kb=1.0 (disk B), respectively. The index of refraction was
measured using a split-cylinder resonator [27,28] and is n
=1.434+0.01 for disk A and n=1.439*0.01 for disk B. An
example of a measured frequency spectrum of disk A (with
dipole antennas) is shown in Fig. 5. It displays a superposi-
tion of several series of almost equidistant resonances, each
corresponding to modes with a fixed polarization and radial
quantum number 7, and ascending azimuthal quantum num-
ber m. The resonance spacing for each of these subspectra is
typically 120-130 MHz. This is illustrated in the lower part
of Fig. 5. Within each subspectrum, the width of the reso-
nances decreases with increasing azimuthal quantum num-
ber. This can be explained within the ray picture [26]: a
higher azimuthal quantum number corresponds to a higher
angular momentum, and this to rays with a larger angle of
incidence at the boundary, implying lower radiation losses.
As a consequence, different subspectra are distinguishable
only above a certain frequency and contribute below only to
the background. The dependence of the amplitude of a reso-
nance on the type of antenna used gives a hint at the polar-
ization of the mode. It was determined in addition with a
perturbation technique: a metal plate was introduced parallel
to the Teflon disk (with varying distance) leading to a shift of

023825-3



BITTNER et al.

PHYSICAL REVIEW A 80, 023825 (2009)

0.06

0.04 -

[S12]

0.02 |

(=2}
\i
o]

Frequency (GHz)

10 11

0.04
0.03

TM (47, 1)

TM (49, 1)
TM (50, 1)
TE (54, 1)

[S1z]

0.02

TE (50, 1)
TM (48, 1)

TE (51, 1)

TE (52, 1)
TE (53, 1)

0.01

TM (52, 1)

TM (53, 1)
T™ (57, 1)

TE (55, 1)
TE (56, 1)
TE (59, 1)

7.5 8

8.5 9

Frequency (GHz)

FIG. 5. Frequency spectrum of disk A measured with dipole antennas. The transmission amplitude, i.e., the modulus |,

, 1s shown with

respect to the frequency. In the magnified part of the spectrum, the resonances are labeled with TM or TE (m,n,) to indicate their polarization
as well as their azimuthal and radial quantum numbers m and n,, respectively. Two series of resonances can be seen here: the broader and
larger resonances correspond to modes with TM-polarization and radial quantum number n,=1, the sharper and smaller resonances to modes
with TE-polarization and n,=1. Resonances with n,>1 can also be seen at higher frequencies.

the resonance frequencies. Due to the different boundary
conditions for TE-(Dirichlet for B.) and TM-(Neumann for
E.) modes at the metal plate the former are shifted to lower,
the latter to higher frequencies with decreasing distance be-
tween the metal plate and the disk. The quantum numbers
were determined from the intensity distributions, which were
measured with the perturbation body method [29]. A cylinder
made of magnetic rubber [30] was used as perturbation body
and moved along the surface of the disk, its height of 8 mm
and diameter of 4 mm being small compared to a vacuum-
wavelength of 30 mm at 10 GHz. Then the positioning of the
perturbation body on the disk leads to a shift of the reso-
nance frequency which is proportional to the electric field
intensity at its position. Three examples are shown in Fig. 6.
All the measured modes are of whispering gallery mode
type. As a result the resonances are only slightly perturbed
by the suspensions, since they are located well inside the
caustic of the whispering gallery modes. Accordingly, the
intensities were measured only in the outer part of the disk.
With the knowledge of the polarization and the quantum
numbers, the measured resonance frequencies can be com-
pared with those computed based on the n.-model [solu-
tions of Eq. (13)].

(@)

V. COMPARISON OF MODEL AND EXPERIMENT
FOR DISK A

Figure 7 shows the difference between the measured reso-
nance frequencies f.y, of disk A (b=16.7 mm thick) and
those calculated with Eq. (13), feq.. In Fig. 7(a) (TE-modes),
there are two series of data points for each radial quantum
number 71, because the degeneracy of the modes is lifted by
the curved antennas used in the measurement. The scattering
of the data points of about =5 MHz in both graphs stems
from problems with the determination of the resonance fre-
quencies, either because the resonances are badly shaped (at
lower frequencies) or because of overlapping resonances (at
higher frequencies). Some resonances are not detectable due
to the overlap with others. The deviation between the mea-
sured and computed resonance frequencies is generally less
than 1%. Still, these deviations of the model calculations
from the experimental data must be considered significant: A
deviation of 60 MHz is about half the resonance spacing
between resonances with the same 7,, and thus it is impos-
sible to correctly identify the different resonances just by a
comparison with the model calculations. The difference be-
tween the calculated and the measured resonance frequencies

FIG. 6. (Color online) Measured intensity distributions of three TM-modes with quantum numbers (m,7,). A mode with azimuthal
quantum number m and radial quantum number 7, has 2m maxima in azimuthal direction and 7, rings. Shown are modes of whispering
gallery type, as are all other identifiable modes. Therefore, intensities were measured only in the outer ring of the resonator.
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FIG. 7. Difference between measured (fex,) and calculated
(feare) Tesonance frequencies with respect to fe,y for disk A. The
different symbols correspond to the different radial quantum num-
bers (X, n,=1; °, n,=2; +, n,=3). (a) TE-modes: the range of
azimuthal quantum numbers for n,=1 is m=37-148. For each n,,
there are two series of data points due to the break up of the degen-
erate modes by the curved antenna used in the measurement. The
frequencies of the unperturbed system are approximately in be-
tween. (b) TM-modes: the range of azimuthal quantum numbers for
n,=1is m=39-150. The measurement was done with dipole anten-
nas, and no break up of degenerate modes was observed.

decreases with increasing frequency for both polarizations
and seems to reach a finite value in both cases. Interestingly,
this value is different for TE and TM-modes. Furthermore,
the magnitude of the deviations slightly depends on the ra-
dial quantum number, especially for the TE-modes. All this
hints at a systematic failure of the model, even in the semi-
classical, i.e., high frequency limit, although the decrease of
the deviations with increasing frequency indicates that the
ner model is more accurate in the semiclassical regime. It
should be noted that the magnitude of deviations between
model and experiment is extremely sensitive to the exact
value of the index of refraction, which has been determined
with an uncertainty An=*=0.01. In order to illustrate that
this accuracy is insufficient for an exact determination of the
deviations, fop—feaic is plotted in Fig. 8 for calculations with
three values of n, which differ by even less than An. Only
data points with n,=1 are shown, the data points for reso-
nances with n,>1 go along with them. The three calcula-
tions have a very different behavior in the semiclassical
limit, but roughly agree for low frequencies.

In a next step we considered the index of refraction n as a
fit parameter—Ilet us call it 7—in Eq. (13), where 77 enters

PHYSICAL REVIEW A 80, 023825 (2009)
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FIG. 8. Difference between measured (fexpt) and calculated
(feare) resonance frequencies with respect to f.,, for the TE-modes
of disk A. Results from three different calculations with three dif-
ferent indices of refraction n=1.432 (o), 1.434 (X), and 1.436 (+)
are shown only for resonances with n,=1 for the sake of clarity. The
difference foyp—fcalc depends strongly on n in the semiclassic limit,
i.e., for high frequencies, but only very slightly for low frequencies.

implicitly via n.gy, and varied it such that Eq. (13) yields the
measured resonance frequencies. If the n.; model provides a
good description, the resulting values of 7 should scatter
around the actual value of n. The results are shown in Fig. 9.
Almost all data points (except the ones at low frequencies)
lie inside the error band n—An, but they form three distinct
curves for the three values of the radial quantum number n,.
This provides further evidence for the failure of the
neg-model: if the model were correct, the values of 77 would
form a single line along the actual index of refraction n of
the disk for both polarizations and all three values of n,. It is
known from literature (and was confirmed experimentally)
that Teflon has negligible dispersion in this frequency range.
In conclusion the observed deviations between the model
and the experiment cannot be attributed to a badly deter-
mined index of refraction, as it is impossible to achieve
agreement between f., and f.,. in the whole frequency
range by choosing a fixed value of n. This is also true for the
other two parameters, the radius R and the thickness b, or
combinations thereof. Thus we can exclude the possibility of
badly determined parameters and inaccuracies in the mea-
surement of the resonance frequencies and state our main
result: the n. model does not correctly describe the mea-
sured resonance frequencies.

Finally, the measured and calculated resonance widths
[full width at half maximum (FWHM)] are compared. The
experimental resonance widths I, are obtained by fitting
Lorentzians to the measured spectrum. They consist of three
terms,

1—‘expl = 1—‘rad + 1-‘abs + 1-‘anv (16)

where T',,4 describes the losses due to radiation, I',,, the
losses due to absorption in the Teflon and I, the loss of
power due to the coupling to the antennas. The calculated
resonance widths

I eaie == 2¢ Im(k)/(2) (17)

include only the losses due to radiation (I',,q). The measured
and calculated widths of the TM-modes for disk A are shown
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FIG. 9. Values of the index of refraction 7 for which Eq. (13)
yields the measured resonance frequencies fey, with respect to the
measured resonance frequency for disk A. The upper graph (a)
shows the result for the TE-modes, the lower one (b) that for the
TM-modes. The different symbols denote the different radial quan-
tum numbers (X, n,=1; o, n,=2; +, n,=3). The solid line is the
real index of refraction n of the disk, the dashed line n—An. The
systematic deviation of the data points from the measured n shows
the failure of the n.4 model.

in Fig. 10. For low frequencies (up to 8 GHz for n,=1 and up
to 10.5 GHz for n,=2), the calculated widths are up to twice
as large as the measured widths. Since I, does not account
for absorption and antenna losses, the actual difference is
even larger. For higher frequencies, the measured widths are
larger than the calculated ones and saturate at a value of
about 4 MHz. This saturation is due to absorption in the
Teflon material and coupling to the antennas, and is approxi-
mately independent of the frequency. A precise comparison
with the calculated widths is generally not possible because
the radiation losses I',,4 cannot be extracted from the mea-
sured widths I'c,,. Nonetheless it can be stated that the
widths I' . predicted by the n. model are too large at least
in some frequency ranges within the range of accuracy of the
index of refraction n. It should also be noted that I' . does
not depend as sensitively on n as the resonance frequencies.
For TE-modes, the same general trend for I'e, and Iy is
found, although the difference between I, and Iy is not
as pronounced as for the TM-modes.

VI. COMPARISON OF MODEL AND EXPERIMENT
FOR DISK B

Next, we will compare the data of the second, thinner disk
B (b=5.0 mm) with the calculations based on the n. model.
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FIG. 10. Measured (I'ex,) and calculated (I'cyc) resonance
widths for TM-modes of disk A. Both I'¢, and I’y are plotted as
function of the measured resonance frequency fe,. The different
symbols denote the measured widths for different radial quantum
numbers (+, n,=1; X, n,=2). The calculated widths are plotted
as curves (solid line for n,=1, dashed for n,=2) instead of data
points to guide the eyes.

The discrepancy between experiment and model becomes
apparent when comparing measured and calculated reso-
nance frequencies in Fig. 11 (like in Fig. 7 for disk A). The
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FIG. 11. Difference between measured (fe,) and calculated
(fealc) Tesonance frequencies with respect to Jexpt for disk B. The
different symbols correspond to the different radial quantum num-
bers (X, n,=1; o, n,=2; +, n,=3). The TE-modes measured
with curved antennas are plotted in graph (a) and have a range of
azimuthal quantum numbers m=64-188 for resonances with n,
=1. The TM-modes shown in graph (b) were measured with dipole
antennas and have azimuthal quantum numbers m=97-204 for n,
=1. The frequency range of identifiable TE and TM-modes differs
due to the different quality factors and types of antennas used.
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FIG. 12. Index of refraction 7 required to reproduce the mea-
sured resonance frequencies with Eq. (13) as a function of the reso-
nance frequency fe., for disk B. Each symbol corresponds to a
radial quantum number (X, n,=1; °, n,=2; +, n,=3), the solid
line denotes the index of refraction n=1.439 of the disk and the
dashed line n—An the range of accuracy of its determination. Part
(a) shows the data points for the TE-modes and part (b) those for
the TM-modes. The trend of the curves is comparable to Fig. 9, but
the deviations from n are even larger.

differences foyp—fcalc S€€m to be larger for disk B, but are of
the same order of magnitude. However, in contrast to those
for disk A, they increase with increasing excitation fre-
quency. In fact, this behavior depends sensitively on n;
changing the value of n within the range of accuracy leads to
differences increasing, decreasing or reaching a finite value
with increasing fey (see also Fig. 8). In any case the devia-
tions are larger than for disk A at least for frequencies up to
20 GHz.

Like in Fig. 9, the index of refraction 7 needed to repro-
duce the measured resonance frequencies with Eq. (13) is
shown for n,=1,2,3 in Fig. 12 with respect to the resonance
frequency f.yp,. Qualitatively, the curves are similar to those
in Fig. 9: 77 grows with increasing frequency and seems to
converge to some value depending on the polarization, and 77
has a weak dependence on the radial quantum number 7, of
the modes. Compared to the results for disk A shown in Fig.
9 the deviation of 7 from n seems to be even larger for the
thinner disk B, and those between the curves for different r,
are more pronounced. Again, the systematic failure of the n.g
model is clearly visible, and the discrepancies seem to be
even larger.

The comparison of calculated and measured resonance
widths for disk B is plotted in Fig. 13. Like in Fig. 10, the
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FIG. 13. Measured (I'ey,) and calculated (I'cy) resonance
widths for the TE-modes of disk B. Both 'y, and Iy are plotted
with respect to the measured resonance frequency fe,. The differ-
ent symbols denote the measured widths for different radial quan-
tum numbers (X, n,=1; °, n,=2; +, n,=3). The calculated
widths are plotted as curves (solid line for n,=1, dashed for n,=2
and dot-dashed for n,=3) instead of data points to guide the eyes.

measured widths I'q,, are significantly smaller than the cal-
culated widths I' ;. for the resonances with lower azimuthal
quantum numbers, although the difference is not quite as
large as for the case of disk A. With increasing frequency, the
measured widths saturate at a value of about 7 MHz, and a
comparison with the calculated widths is not possible be-
cause of the additional losses due to absorption and the an-
tennas. The difference between ey, and 'y is smaller in
the case of TM-modes, and gets smaller for both cases if a
larger index of refraction n is assumed in the calculations.
Still, it is definite that the calculated widths are too large at
least for some resonances.

VII. CONCLUSIONS

We have measured the resonance frequencies and widths
of two different flat cylindrical dielectric microwave resona-
tors. The quantum numbers and the polarization of the cor-
responding modes were identified. These data were used to
test the n. model, a two-dimensional approximation for flat
dielectric resonators with large planar extension normally
used for the modeling of, e.g., microlasers. A microwave
resonator was chosen as test bed for several reasons: it is
easy to handle due to its macroscopic dimensions which are
known with high precision, the measurement of intensity dis-
tributions enables a detailed understanding of the spectrum
and the identification of individual resonances, and it is a
passive system which means that additional shifts of reso-
nance frequencies and widths due to the lasing process in an
active medium [31,32] can be excluded.

It was shown that the n.-model fails to correctly predict
the resonance frequencies in a systematic way, and it has
been checked carefully that the deviations between experi-
ment and calculations are not due to experimental inaccura-
cies caused by e.g., the antennas or the suspensions. Also, the
resonance widths are clearly overestimated at least in the
lower frequency range. This is important because the widths
(of the passive cavity) determine the lasing threshold in mi-
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crolasers and play a crucial role with regard to mode com-
petition [31,32]. Although the calculations based on the ng
model yield at least the correct order of magnitude for both
resonance frequencies and widths, a detailed understanding
of the spectrum with help of these calculations is impossible.
Furthermore, the accuracy of the model is not under control:
the magnitude of the deviations between model and experi-
ment cannot be precisely determined due to the uncertainty
in the index of refraction, and depends on the dimensions of
the cavity and the frequency in a nontrivial way. It seems that
deviations are larger for smaller values of kb, i.e., thinner
resonators. We believe that the main reason for the failure of
the n.; model is the incorrect formulation of the boundary
conditions [as in Eq. (10)]. In the rigorous treatment of the
3D Maxwell equations the z components of the electric and
magnetic fields are connected by the boundary conditions
and cannot be considered separately as done in the n.¢ model
[19,25].

The large deviations between model and experiment ob-
served for the circular disk are not due to the localization of
the (whispering gallery) modes close to the boundary, and
not expected to be smaller if modes supported by the whole
area of the disk were considered. In fact the modes with
lower n, are localized closer to the boundary (see Fig. 6), but
the deviations are smaller than for modes with higher n,.
Even though the circular resonator is a special case and the
test of the n.; model with a noncircular geometry remains an
open problem, it is still worthwhile to consider it: the quasi-
bound states of many other noncircular resonators are also of

PHYSICAL REVIEW A 80, 023825 (2009)

whispering gallery mode type. Moreover, the circular reso-
nator has many important applications by itself [1,2]. One of
these is the precise measurement of the index of refraction
over a wide range of frequencies which, however, relies on a
rigorous model for the resonance frequencies.

In summary, the comparison of the measured and com-
puted resonance frequencies and widths clearly attests the
need of an improved n.; model, which takes into account the
boundary conditions at the cylindrical sidewalls. We hope
that this work will stimulate further research in this direction
to obtain a reliable 2D model for the computation of the
resonance frequencies and widths of flat dielectric resona-
tors. Although the numerical solution of the full three-
dimensional Maxwell’s equations is feasible for the circular
resonator [33-35], it is computationally demanding, and
even more so for other (viz. chaotic) geometries. Still, 3D
numerical calculations for the circular resonator would be
helpful to validate our data and investigate the accuracy of
the n.; model in a broader range of aspect ratios b/R and
indices of refraction n.

ACKNOWLEDGMENTS

The authors are grateful to E. Bogomolny for his original
suggestion to investigate the validity of the n 4 model experi-
mentally and to him and M. Hentschel for many intense dis-
cussions. E.S. acknowledges support from Deutsche Telekom
Foundation. This work was supported by the DFG within the
Sonderforschungsbereich 634.

[1] G. Annino, M. Cassettari, I. Longo, and M. Martinelli, [IEEE
Trans. Microwave Theory Tech. 45, 2025 (1997).

[2] G. Annino, D. Bertolini, M. Cassettari, M. Fittipaldi, I. Longo,
and M. Martinelli, J. Chem. Phys. 112, 2308 (2000).

[3]7J. U. Nockel and R. K. Chang, in 2-d Microcavities: Theory
and Experiments, Contribution for Cavity-Enhanced Spec-
troscopies, Experimental Methods in the Physical Sciences,
edited by Roger D. van Zee and John P. Looney (Academic
Press, San Diego, 2002).

[4] S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R.
A. Logan, Appl. Phys. Lett. 60, 289 (1992).

[5] Optical Microcavities, edited by K. Vahala (World Scientific,
Singapore, 2004).

[6] E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and C.
Otto, Opt. Lett. 27, 512 (2002).

[7] A. M. Armani and K. J. Vahala, Opt. Lett. 31, 1896 (2006).

[8] D. Y. Chu, M. K. Chin, N. J. Sauer, Z. Xu, T. Y. Chang, and S.
T. Ho, IEEE Photon. Technol. Lett. 5, 1353 (1993).

[9] N. C. Frateschi and A. F. J. Levi, J. Appl. Phys. 80, 644
(1996).

[10] M. Kuwata-Gonokami, R. H. Jordan, A. Dodabalapur, H. E.
Katz, M. L. Schilling, and R. E. Slusher, Opt. Lett. 20, 2093
(1995).

[11] R. C. Polson and Z. V. Vardeny, Appl. Phys. Lett. 85, 1892
(2004).

[12] M. Lebental, J. S. Lauret, R. Hierle, and J. Zyss, Appl. Phys.

Lett. 88, 031108 (2006).

[13]J. U. Nockel, A. D. Stone, and R. K. Chang, Opt. Lett. 19,
1693 (1994).

[14] J. U. Nockel and A. D. Stone, Nature (London) 385, 45
(1997).

[15] C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nockel, A. D.
Stone, J. Faist, D. L. Sivco, and A. Y. Cho, Science 280, 1556
(1998).

[16] M. K. Chin, D. Y. Chu, and S.-T. Ho, J. Appl. Phys. 75, 3302
(1994).

[17] H. C. Casey and M. B. Panish, Heterostructure Lasers (Aca-
demic Press, New York, 1978).

[18] M. Lebental, N. Djellali, C. Arnaud, J.-S. Lauret, J. Zyss, R.
Dubertrand, C. Schmit, and E. Bogomolny, Phys. Rev. A 76,
023830 (2007).

[19] R. Dubertrand, E. Bogomolny, N. Djellali, M. Lebental, and C.
Schmit, Phys. Rev. A 77, 013804 (2008).

[20] A. Richter, in Emerging Applications of Number Theory, The
IMA Volumes in Mathematics and its Applications Vol. 109,
edited by D. A. Hejhal, J. Friedmann, M. C. Gutzwiller, and A.
M. Odlyzko (Springer, New York, 1999), pp. 479-523.

[21] H.-J. Stéckmann, Quantum Chaos: An Introduction (Cam-
bridge University Press, Cambridge, England, 2000).

[22] R. Schifer, U. Kuhl, and H.-J. Stockmann, New J. Phys. 8, 46
(2006).

[23] C. Vassallo, Optical Waveguide Concepts (Elsevier, Amster-

023825-8



EXPERIMENTAL TEST OF A TWO-DIMENSIONAL ...

dam, 1991).

[24]J. D. Jackson, Classical Electrodynamics (John Wiley and
Sons, Inc., New York, 1999).

[25] H. G. L. Schwefel, A. D. Stone, and H. E. Tureci, J. Opt. Soc.
Am. B 22, 2295 (2005).

[26] M. Hentschel and K. Richter, Phys. Rev. E 66, 056207 (2002).

[27] M. Janezic, E. Kuester, and J. Jarvis, Microwave Symposium
Digest, 2004 IEEE MTT-S International (IEEE, 2004), Vol. 3,
p. 1817.

[28] G. Kent, IEEE Trans. Microwave Theory Tech. 36, 1451
(1988).

[29] L. C. Maier and J. C. Slater, J. Appl. Phys. 23, 68 (1952).

[30] E. Bogomolny, B. Dietz, T. Friedrich, M. Miski-Oglu, A.

PHYSICAL REVIEW A 80, 023825 (2009)

Richter, F. Schifer, and C. Schmit, Phys. Rev. Lett. 97,
254102 (2006).

[31] T. Harayama, S. Sunada, and K. S. Ikeda, Phys. Rev. A 72,
013803 (2005).

[32] T. Harayama, P. Davis, and K. S. Ikeda, Phys. Rev. Lett. 90,
063901 (2003).

[33] J. Vuckovic, O. Painter, Y. Xu, A. Yariv, and A. Scherer, IEEE
J. Quantum Electron. 35, 1168 (1999).

[34] M. Ghulinyan, D. Navarro-Urrios, A. Pitanti, A. Lui, G.
Pucker, and L. Pavesi, Opt. Express 16, 13218 (2008).

[35] Q. Song, H. Cao, S. T. Ho, and G. S. Solomon, Appl. Phys.
Lett. 94, 061109 (2009).

023825-9



