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We explore the existence and stability of two-dimensional spatial gap solitons with embedded vorticity in a
bulk medium with the quadratic ���2�� nonlinearity and a transverse grating represented by periodic modulation
of the refractive index. Gap-vortex solitons �GVSs� can be found in total gaps of the underlying spectra of the
fundamental-frequency and second-harmonic waves. We demonstrate the existence of a family of stable GVSs,
which are built as four-peak complexes, in the lowest total gap. We also consider dynamical effects, such as
self-trapping of GVSs from input beams, and delocalization transitions.
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I. INTRODUCTION

Experimental and theoretical studies of spatial, temporal,
and spatiotemporal solitons in optical media with various
nonlinearities have grown into a tremendous field of research
�1�, starting from the prediction of famous �although un-
stable� Townes’ solitons �2�. Two-dimensional �2D� and
three-dimensional �3D� solitary vortices, i.e., solitons with
embedded vorticity, have also been predicted in these set-
tings �3�. In uniform bulk media with cubic, saturable, and
quadratic nonlinearities, spatial ring-shaped vortex solitons
are unstable against azimuthal perturbations �in addition to
the instability against the collapse in the cubic medium�, as
forecast theoretically �4� and demonstrated experimentally
�5�. However, vortices may be made stable in media featur-
ing competing �cubic-quintic, ��3� :��5�, or quadratic-cubic,
��2� :��3�� nonlinearities �6� or effective lattice potentials in-
duced by transverse gratings in the form of periodic modu-
lation of the local refractive index. The latter mechanism was
theoretically predicted �7–9� and demonstrated in experi-
ments, using photoinduced lattices in photorefractive crys-
tals, where the nonlinearity is saturable �10–12�. The combi-
nation of the cubic-quintic nonlinearity and grating-induced
periodic potential was considered too �13�.

The light propagation in nonlinear media with transverse
gratings exhibits a variety of specific features originating
from the grating-induced band-gap spectrum of the system.
In particular, the mechanism behind the formation and stabi-
lization of the above-mentioned solitary vortices is the inter-
play of the wave tunneling between adjacent cells of the
periodic potential and local nonlinearity. It has been pre-
dicted that, in addition to the fundamental vortices, with to-
pological charge S=1, this setting may also support stable
higher-order vortices, with S�2, and “supervortices” in the
form of a ring-shaped chain of compact vortices with indi-
vidual topological charges s=1, global vorticity S= �1 be-
ing imprinted onto the chain �9�. The localized patterns with
S=2 and quadrupoles �11�, as well as chains built of funda-
mental vortices �12�, have been created in the experiment.
Generally, possible types of higher-order localized vortices

are restricted by the symmetry of the underlying lattice po-
tential �14�. Three-dimensional �spatiotemporal� vortex soli-
tons supported by a low-dimensional 2D lattice have been
predicted too �15� �stable 3D solitary vortices may also be
stabilized by completing nonlinearities in uniform media
�16��.

The subject of this work are 2D spatial vortex solitons in
a medium carrying the ��2� �alias second-harmonic-
generating� nonlinearity in the combination with the trans-
verse grating. As usual, the ��2� solitons are composed of
fundamental-frequency �FF� and second-harmonic �SH�
components. The model is formulated in Sec. II. Examples of
localized vortices in such a setting have been previously re-
ported in Ref. �17�, where, in particular, an existence border
�cut-off value� was found for the propagation constant of
vortex solitons. In this context, it is relevant to mention that
a different type of spatial-spectral vortices can be supported
in a discrete system �18�, which may be considered as a
counterpart of the continuous model considered in the
present paper �the correspondence between the models can
be obtained in the proper limit by means of the Wannier-
function expansion �19��.

In Sec. III, which reports main results obtained in this
work, we carry out the analysis of this physical model. First,
we establish an intrinsic relation of the cutoff to the band-gap
spectra induced by the underlying grating. The propagation
constants of the FF and SH components of vortical modes do
not necessarily fall into the semi-infinite gaps of the respec-
tive spectra �the situation reported in Ref. �17��, unless one
deals with the case when no finite band gaps open in each
component �20�. In the general situation, solitons exist for
propagation constants �frequencies � and 2�, in terms of our
notation� belonging to one of the total gaps of the FF and SH
spectra, which means that both � and 2� must fall into re-
spective gaps �similar to the one-dimensional �1D� situation
considered in Ref. �21��. Thus, we report the existence of the
solitons belonging to finite band gaps of the FF and SH
spectra. The phase-mismatch constant is an essential param-
eter controlling the existence domains—varying it, one can
change the number of the total gaps. In this connection, it is
relevant to mention that binary solitons with two components
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belonging to different spectral gaps �in particular, one semi-
infinite, and another one being the first or second finite band
gap� were reported in the model of a Bose-Einstein mixture
loaded into 1D or 2D lattice potentials �22�. We also explore
dynamical effects, such as the generation of the SH compo-
nent and the delocalization transition, which was first studied
in detail in the 2D model combining the grating potential and
cubic self-focusing nonlinearity �23� �for a brief review of
the latter topic, see Ref. �24��.

II. MODEL

We start with the well-known coupled evolution equations
for complex amplitudes �1 and �2 of the FF and SH fields in
the spatial domain with coordinates r= �x ,y� �25�:

i
��1

�t
= −

1

2
�2�1 + �1�r��1 − �̄1�2, �1a�

i
��2

�t
= −

1

4
�2�2 + �2�r��2 −

1

2
�1

2 + q�2. �1b�

Here evolution variable t stands for the propagation distance
in the bulk quadratically nonlinear medium, with the respec-
tive ��2� coefficient scaled to be 1, the transverse diffraction
is accounted for by �2=�2 /�x2+�2 /�y2, q is the phase-
mismatch parameter, and the transverse grating is repre-
sented by the periodic functions, �1,2�r�=�1,2�r+a j�, where
a1,2 are the corresponding lattice vectors. The system can be
written in the Hamiltonian form, ��1,2 /�t=−i�H /��̄1,2, with
Hamiltonian

H =� �1

2
���1�2 +

1

4
���2�2 + �1�r���1�2 + �2�r���2�2

−
1

2
�̄1

2�2 −
1

2
�1

2�̄2 + q��2�2�dr �2�

�the overbar stands for the complex conjugation�. In addition
to the Hamiltonian, another conserved quantity is the total
power of the optical beam, alias the Manley-Rowe invariant,
P=	���1�2+2��2�2�dr.

We are interested in stationary solutions to Eqs. �1�,
�m=�m�r�exp�−im�t� with m=1,2. The substitution of this
into Eqs. �1� leads to the spatial equations,

− �2�1 + 2�1�r��1 − 2�̄1�2 = 2��1, �3a�

−
1

4
�2�2 + �2�r��2 −

1

2
�1

2 + q�2 = 2��2. �3b�

Soliton solutions of Eqs. �3� are intrinsically related to the
corresponding Bloch modes, �	,k

�m��r�, which are solutions of
the respective linearized problems,

Lm�	,k
�m��r� = E	,k

�m��	,k
�m��r�,m = 1,2, �4�

with Lm
−�1 /m2��2+ �2 /m��1�r�. Here, subscript
	=1,2 , . . . enumerates allowed Bloch bands, and k desig-
nates the wave vector in the first Brillouin zone. We consider
the square lattice, with a1 ·a2=0 and normalization

�a1�= �a2�=
 /2, hence k� �−2,2�� �−2,2�. We will also use
notations E	,�

�m� for the lower �“−”� and upper �“+”� edges of
the 	th band, and �	

�m�
E	+1,−
�m� −E	,+

�m� for the width of the gap
separating the 	th and �	+1�th bands. An example of the
band-gap structures for the usual cosinusoidal grating �with
strength �0�,

�2�r� = 2�1�r� = 2�0�cos�4x� + cos�4y�� , �5�

is shown in Fig. 1.
Assuming that finite band gaps exist for both components,

Eqs. �3� may give rise to exponentially localized solutions
only if there is a nonzero overlap between the two band gaps,

i.e., if there is a total gap, �g
�	,	��
�	

�1���	�
�2��0 �for a more

detail discussion of the required band-gap structure of the
coupled ��2� system, see Ref. �21��. The existence of the total
gap is always achievable by adjusting mismatch q, which
determines the relative position of the band-gap structures in
the SH and FF components, provided that a gap exists in
each of them �the latter requirement is relevant to the 2D
case, as in the 1D case a periodic potential always induces at
least a finite number of gaps�.

By analogy with the 1D case �21�, one can establish that if
a stationary localized solution ��1 ,�2� exists, it satisfies in-
tegral relations

� ���1�r��2 � �1�r� + ��2�r��2 � �2�r��dr = 0,

Im�� �̄1
2�r��2�r�dr� = 0, �6�

which represent necessary conditions for the existence of lo-
calized modes and thus impose constrains on admissible dis-
tributions of the intensity. Then, introducing
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FIG. 1. The band-gap structures of the FF �a� and SH �b� com-
ponents for grating �5�. Shown are the four lowest bands, with
	=1, . . . ,4. The phase mismatch is q=−8.0. In this case, the single
total gap, whose limits are indicated by the horizontal dashed lines,
is �g

�1,1�
6.0. The inset in panel �b� shows the standard notation
used for the high-symmetry points of the first Brillouin zone.
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HV�r� =� ��1�r� + r���1�r���2 + �2�r� + r���2�r���2�dr�,

�7�

the necessary existence conditions, given by Eq. �6�, can be
rewritten as �HV�r� �r=0=0, while necessary conditions for
the stability of the solitons take the form of

� �2HV�r�
�x2 �

r=0

 0 and � �2HV�r�

�y2 �
r=0


 0. �8�

III. ANALYSIS AND NUMERICAL SIMULATIONS

A. Propagation and stability of gap vortex solitons

As seen from Fig. 1, the lowest domain of the existence of
solitons is defined by 2��min�E1,−

�1� ,E1,−
�2� �. In this case, the

solution belongs to the semi-infinite gaps of both compo-
nents �this type of vortex solitons was reported in Ref. �17��.
Other possibilities are determined by the existence of finite
band gaps for the two components. It follows from the ex-
plicit forms of the operators introduced in Eq. �4� that, in the
general situation, the SH spectrum has larger gaps than its FF
counterpart; accordingly, at moderate values of �0, finite SH
band gaps exist even if they are absent in the FF �this situa-
tion corresponds to the first vortex soliton considered in Ref.
�17��. In Fig. 1 we show another situation, when the FF
possesses one finite band gap in addition to the semi-infinite
gap, while at least two finite band gaps are open in the SH.

This simple analysis of possible gap structures allows one
to predict possible types of gap solitons. The expected soli-
ton types may be classified by a pair of numbers �m ,n� of the
gaps in the FF and SH components, to which the soliton’s
frequencies belong. In other words, the localized modes be-
longing to total gap �g

�m,n� are identified as �m ,n� solitons
��g

�0,0� will stand for the overlap of the semi-infinite gaps of
both harmonics�. Actually, we will concentrate on gap-vortex
solitons �GVSs� of the �1,1� type, which belong to full band
gap �g

�1,1� shown in Fig. 1.
Typical examples of GVSs of the off-site and on-site

types �alias square- and rhombus-shaped vortices, respec-
tively �8�� are shown in Fig. 2. Unlike the 1D case, where
localized modes can be constructed by means of the shooting
method, allowing one to easily scan the entire gap and thus
find the complete set of the solutions �21�, in the 2D case it
is necessary to resort to the relaxation method, using an ini-
tial guess with phase profiles exp�is�� carrying vorticities
s=1 and s=2 in the FF and SH components, respectively.
The intensity profiles in panels �a� and �b� feature sets of four
peaks, for 2�=1, which belongs to �g

�1,1�. The positions of
the main peaks practically coincide with local minima
�maxima� of the lattice potential for off-site �on-site� vorti-
ces. The phase distributions in panels �c� and �d� feature the
phase shift of 
 /2 between adjacent peaks, as it should be in
vortex patterns.

The application of Eq. �8� to the off- and on-site vortex
families demonstrates that only the vortices of the former
type �off-site alias “square” �8�� meet the necessary stability
conditions. To perform the full stability inspection, we car-

ried out direct simulations of Eqs. �1�, using the split-step
Fourier method and adding amplitude perturbations �1% to
the initial configurations in both FF and SH components. In
Figs. 3�a� and 3�b�, we show the intensity profiles as ob-
served at t=500, which were generated by the perturbed off-
site and on-site localized states shown in Fig. 2 �note that the
characteristic diffraction distance for the patterns displayed
in Fig. 2 is estimated as tdiffr�5, hence t=500 corresponds to
�100 diffraction lengths, which is quite sufficient to make
conclusions concerning the stability�. The corresponding
phase distributions are displayed in panels �c� and �d�, re-
spectively. It is concluded from Fig. 3 that the GVSs of the
off-site �on-site� type are stable �unstable�, in agreement with
the prediction of Eq. �8�. We have also tested a possibility to
create asymmetric GVSs configurations with rectangular and

FIG. 2. Intensity profiles and phase distributions �upper and
lower panels, respectively� of gap-vortex solitons for 2�=1. Two
examples of spatially localized solutions, �a� off-site and �b� on-site,
are obtained from Eqs. �3� by means of the standard relaxation
method for the same parameters as in Fig. 1. The dashed lines in �a�
and �b� represent minima and maxima of the lattice potential,
respectively.

FIG. 3. Results of the evolution of the spatially localized solu-
tions from Fig. 2, as produced by direct simulations of Eqs. �1�, at
t=500. The results are displayed only for the FF wave as for the SH
component the situation is quite similar.
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triangular shapes, similar to those which were recently re-
ported in lattices with the cubic nonlinearity �26�. However,
we have found that both asymmetric configurations are un-
stable in the present model. This conclusion does not contra-
dict the one obtained in the discrete model. Indeed, the band
structure of the underlying linear continual model is essen-
tially different, including an infinite number of bands �unlike
the discrete model�, hence unavoidable excitation of higher
harmonics is likely a reason for the instability of the asym-
metric vortices.

The dependence of total power carried by the GVSs of the
off-site type on SH frequency 2� �within the limits of the
total gap� is shown in Fig. 4. We display two lowest branches
of the �P ,�� curves in gap �g

�1,1� and the lowest branch in
�g

�0,0�. Note that there is a minimum �threshold� power re-
quired for the existence of ��2� solitons supported by the
lattice potential in 2D �27�, unlike the 1D case, where no
such threshold exists �21�. Threshold power Pth

�1,1� for the
GVSs of the �1,1� type is lower than that for their counter-
parts of the �0,0� type, cf. panels �a� and �b� in Fig. 4. Note
that the solitons located close to edges of the band gap are
less stable than ones placed deeply inside of it. It is also
worthy to note that the stability and instability of the solitons
in this figure exactly comply with the Vakhitov-Kolokolov
criterion, dP /d��0 �28�.

The existence and stability of the GVSs also depend on
phase mismatch q when 2� is fixed. Since q determines the
position of the SH band-gap structure, we fix 2� inside the
FF gap and then vary q continuously. As long as 2� stays
outside of the SH gap, the GVSs cannot exist. If 2� gets into
the SH gap, the vortex solitons may be both stable and

unstable. Their existence and stability regions are shown in
Fig. 5.

B. Self-trapping of gap-vortex solitons

To explore the robustness of the GVSs, it is relevant to
consider their self-trapping from Gaussian beams with em-
bedded vorticity. To this end, we simulated the evolution of
Gaussian pulses carrying the screw phase dislocation nested
at its center,

�m�t = 0� = Amrmeim�e−r2
�1 + 0.01��x,y��, m = 1,2, �9�

where r= �x2+y2�1/2, Am are amplitudes of the initial beam,
and ��x ,y� is a broadband random function accounting for
the initial perturbations. The simulations were performed in
the presence and absence of the grating �periodic potential�.
If the grating is absent, the beams are broken by the azi-
muthal modulational instability into several fragments when
the input power exceeds a certain threshold value, in accor-
dance with the known scenario �4�. The fragments then move
away along directions tangential to the initial ring, see Fig.
6�a�. If the input power is taken below the splitting threshold,
the ring-shaped beam spreads, decreasing its amplitude. If
the grating is present, the vortical beams readily form stable
GVSs, as shown in Fig. 6�b�. This may happen at powers
much lower than the splitting threshold in the free space.

Gaussian inputs �Eq. �9�� with different amplitudes Am are
able to generate GVSs belonging to different total gaps. In
Fig. 6�b�, we show the FF component of the vortex soliton
with the same total power as that carried by the fragmented
pattern in panel �a�. The frequency of the soliton from panel
�b� of Fig. 6 falls into �g

�0,0�, i.e., it is a vortex soliton of the
�0,0�-type. In Fig. 6�c�, we display the FF component of the
GVS of the �1,1�-type, with the total power taken just above

FIG. 4. �a� The lowest branch of the P��� curve for
off-site GVSs of type �0,0� in the semi-infinite gap of the FF,
−��2��−3.7. The minimum power necessary for the existence
of these GVSs is Pth

�0,0�
80, which is achieved at 2�
−6.3. �b�
The two lowest branches of P��� for GVSs of type �1,1� in the first
lowest band, −0.5�2��5.5. In the latter case, the power threshold
is Pth

�1,1�
47, achieved at 2�
3.2. In both panels, black and white
circles correspond to unstable and stable solitons, respectively �the
stability was tested by way of direct simulations�.

FIG. 5. The intensity profiles of the FF component of the off-site
GVSs with 2�=1.0 and phase mismatch �a� q=−10 �unstable�, �b�
q=−4 �unstable�, and �c� q=0 �stable� after evolution time t=500.
�d� Regions of the nonexistence �dark gray�, instability
�shadow gray�, and stability �white� of the GVSs for a fixed fre-
quency, 2�=1.0, and different values of the phase mismatch,
−12�q�4. The positions of the GVSs displayed in panels �a�–�c�
are marked by the empty circles in �d�.
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the threshold necessary for the formation of the GVS of this
type. It is worthy to note that the power of the �0,0� vortex
soliton is usually higher than that of its �1,1� counterpart.
Comparison between profiles of the vortex solitons of types
�0,0� and �1,1�, which are shown in panels 6�b� and �c�, re-
spectively, is presented in panel 6�d�.

We have also studied the generation of GVSs from input
beams containing solely the FF component. The respective
results are shown in Fig. 7. The soliton is stabilized after
rapid oscillations at the initial stage of the evolution, which
account for the energy exchange between the FF and SH
components. We can define the SH-generation efficiency, �,
as the ratio of the total power in the SH component of the
output to that of the input FF field, i.e.,

��t� =
P2

�out�

P1
�in� =

� ��2�t��2dr

� ��1�t = 0��2dr

. �10�

The efficiency may reach 15% for parameters used in Fig. 6
and still larger levels in other cases.

C. Delocalization transition of gap-vortex solitons

Threshold values of the total power needed for the gen-
eration of GVSs depend on the strength of the underlying

grating, �0. In Fig. 8�a�, we show the power threshold, in the
form of ln�Pth� versus �0. Below the threshold, one can ob-
serve delocalization of vortex solitons. Actually, the GVSs of
the �0,0�-type exist, in the semi-infinite gap, for any finite �0,
while the GVSs of the �1,1�-type exist only for �0 exceeding
some minimum �threshold� value, which is required to open
the total gap �g

�1,1� �i.e., the FF band gap �1
�1�, as the respec-

tive SH band gap already exists�. In Fig. 8, Pth decreases
with the increase in �0. In this connection, it is relevant to

FIG. 6. The evolution of the input Gaussian pulse given by Eq.
�9�. �a� The initial vortex ring breaks along the azimuthal direction
into three separating fragments. The panel is composed of intensity
profiles obtained at different values of the propagation distance,
viz., t=0,15, 20, 25, and 30. The amplitudes of the initial beams are
A1=A2=14, which corresponds to the total power just above the
splitting power threshold. �b� The intensity profile of the FF com-
ponent of the GVS, at t=50, with the same total power as in �a� but
in the presence of the grating. In this case, 2�=−12.0 belongs to
semi-infinite gap �g

�0,0� �the GVS of the �0,0� type�, and
A1=A2=14. �c� The intensity profile of the FF component of the
GVS at t=50 in the presence of the grating. The total power is just
above the threshold power necessary for the existence of GVSs. In
this case, 2�=3.2 belongs to �g

�1,1� �the GVS of the �1,1� type� and
A1=A2=4.5. �d� Comparison between the intensity profiles of the
stable vortex solitons of the �0,0� and �1,1� types �dashed and solid
lines, respectively�.

FIG. 7. The generation of the GVS from the FF input beam. The
initial conditions are taken as per Eq. �9� with A1=9.0 and A2=0.
The lattice parameters are the same as in Fig. 1. �a� The intensity
profile of the FF component at t=200. �b� The intensity profile of
the SH component at t=200. �c� The total powers of the FF and SH
components �the upper and lower lines, respectively�. The corre-
sponding SH-generation efficiency is ��t=200�
0.15.
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FIG. 8. �a� The existence border for GVSs, i.e., power threshold
Pth versus the grating’s strength �0, on the logarithmic scale. Along
the existence curve, the solitons are stable, as shown by white
circles. �b� The localized power, Ploc, versus t corresponding to
adiabatic processes Z→Y →Z and Z→X→Z. The parameters are
�Y =3.3, �X=3.1, the respective critical value being �cr
3.2.

GAP VORTEX SOLITONS IN PERIODIC MEDIA WITH… PHYSICAL REVIEW A 80, 023824 �2009�

023824-5



emphasize that stable GVSs cannot be supported either when
the grating acts only on one of the components �i.e., when
�1�2=0�. Direct simulations �not shown here in detail� dem-
onstrate that the beam decays in this case, via spreading out,
the decay being slower when the grating is imposed on the
FF �i.e., when �1�0 and �2=0�.

The existence of the power threshold is related to the
phenomenon of the delocalization transition, which amounts
to impossibility of restoring an initial localized state subject
to an adiabatic change in the system’s parameters when such
change trespasses a properly defined border �see Ref. �24� for
a brief review of the delocalization transitions�. The lattice
amplitude is a natural controlling parameter to govern such a
transition, and a change in �0 may lead to dramatic conse-
quences for the existence of GVSs.

To illustrate this phenomenon, we fix an initial lattice
depth by designating �0�t=0�
�Z. The respective initial
conditions, indicated by point Z in Fig. 8�a�, correspond to a
GVS with total power P
60. As the adiabatic variation in �0
conserves the total power, the change in �0 corresponds to a
horizontal shift of the point in the plane of �� , P�, the dashed
line in Fig. 8�a�. To observe the delocalization transition, an
initial decrease in �0 has to be followed by its increase back
to the initial value, �Z. Denoting by �cr the intersection of the
horizontal line with the existence border �the solid line� in
Fig. 8�a�, one can distinguish two possibilities. First, the de-
crease in �0 stops before reaching �cr, say, at �0=�Y 
�cr.
Second, �0 is decreased up to some value �0=�X��cr. These
two possibilities correspond to routes Z→Y →Z and
Z→X→Z in Fig. 8�a�. In the former case the, GVSs exist
along the entire route, hence one may expects that, at the end
of the process, the initial soliton is �approximately� restored.
In the latter case, however, a part of the route, which corre-
sponds to �X����cr, runs through the nonexistence region,
where the soliton is destroyed and thus cannot be restored in
the course of the further increase in �0.

These scenarios are indeed observed in numerical
simulations, as shown in Fig. 8�b�. To measure the
power of the localized mode, we computed integral
Ploc=	−3

+3���1�2+2��2�2�dr, taken over a finite domain
as a function of t �recall that the total power, computed
over the entire integration domain, was preserved�. For
the of change in the lattice depth, we have set
�0�t�=�t+ ��Z−��t��1−2t / tf�, with �t=�0�tf /2�. As one can
see from the figure, for �t
�cr the solution indeed remains
localized and recovers its initial profile at the end of the
adiabatic change, while for �t��cr the localized solution ir-
reversibly spreads out.

IV. CONCLUSIONS

In this work, we have studied the existence and stability
of 2D spatial GVSs �gap-vortex solitons� in the medium
combining the quadratic nonlinearity and transverse grating,
which is represented by the periodic modulation of the local
refractive index. We have demonstrated that GVSs exist for
frequencies belonging to one of the finite total gaps in the
spectra of the FF and SH components. These vortex solitons
of the gap type are different from solitary vortices previously
found in the semi-infinite gap in Ref. �17�. The phase mis-
match is an efficient tool for controlling the existence do-
mains of the 2D solitons as one can change the number of
the total gaps and their size by varying the mismatch. In
addition to the analysis of the existence and stability of the
GVS family in the first finite total gap, we have explored the
self-trapping of the vortex solitons from input beams and the
delocalization transition.
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