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When chromatic dispersion operates together with two-dimensional diffraction, the degenerate optical para-
metric oscillator exhibits three-dimensional �3D� localized structures in a regime devoid of Turing or modu-
lational instabilities. They consist of single lamella, cylinder, or light drops. These 3D structures are generated
spontaneously from a weak random noise. We construct 3D bifurcation diagrams associated with these struc-
tures. We show that a single cylinder and a single light drop exhibit an overlapping domain of stability. Finally,
for a large input intensity, we identify a self-pulsing behavior affecting the stability of 3D localized structures.
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I. INTRODUCTION

Self-organization process leading to a spontaneous forma-
tion of dissipative structures is a universal phenomenon ob-
served in a wide variety of natural nonlinear systems such as
biology, chemistry, fluid mechanics, ecology, and nonlinear
optics �1–5�. Recently, significant advances have been made
in the study of transverse optical localized structures often
called cavity solitons �6,7�. These are largely due to research
in nonlinear optical settings, where cavity solitons have po-
tential applications as bits for information storage and pro-
cessing. Experimental evidence of two-dimensional �2D� lo-
calized structures in nonlinear planar cavities has reinforced
the interest in this area of research �8–16�.

On one hand, the coupling between nonlinearity and dif-
fraction leads to the formation of dissipative localized struc-
tures that can be classified as follows: depending on the criti-
cal value of the most instable wave number kT at the Turing
or the modulational instability, �i� if kT=O�1�, and if the
Turing bifurcation appears subcritical, then stable localized
structures can be generated in the pinning range involving
self-organized periodic structures and a single homogeneous
steady state. The commutation process associated with opti-
cal bistability is not a necessary condition for the generation
of stable localized structures �17,18�. The link between sub-
critical Turing instability and the formation of localized
structures were established first in passive nonlinear resona-
tors �18–20,26� and in quadratic media �21–25�. �ii� If kT
→0, the modulational instability occurs close to the limit
point associated with a domain of bistability. The long-
wavelength pattern forming process is altered and leads to
the spontaneous formation of localized structures �27�. �iii� If
kT=0, i.e., the homogeneous steady states are stable with
respect to the Turing bifurcation. In this case, localized struc-
tures can be generated spontaneously from a weak noise. The
stabilization of these structures often called phase solitons is
attributed to phase indetermination in bistable systems.
Bistable behavior between two stable homogeneous steady
states becomes a necessary condition for the existence of
phase solitons �28–36�.

On the other hand, in the purely temporal regime, the
chromatic dispersion plays a central role in the formation of
time dissipative structures and fronts �37–39�. These struc-

tures have important possible applications for the develop-
ment of high bit-rate optical communication and passively
mode locked lasers. In this case, the intracavity field is spa-
tially homogeneous by using a guided wave structures, and
therefore diffraction does not play any role.

When diffraction and chromatic dispersion have a compa-
rable influence in the nonlinear resonators, three-dimensional
�3D� localized structures are formed. They consist of either
self-organized lattices or localized light drops traveling at the
group velocity of the light within the cavity. They are often
called light bullets in the case of conservative systems
�40,41� where the stabilization is achieved by a balance
among focusing nonlinearity, 2D diffraction, and dispersion.
By using a multiscale analysis, Leblond derived a 3D model
to describe the propagation of short pulses in quadratic me-
dia �42�. He also discussed the validity of that model by
taking into account the walkoff, the phase mismatch, and the
anisotropy �42�. In dissipative systems, such as nonlinear
resonators, we shall adopt the terminology “dissipative light
bullets” proposed recently by Akhmediev et al. �43�. In order
to avoid the problem of beam collapse, a saturable nonlin-
earity �44� or an optical cavity �45� is used. Laser bullets
belong to the class of 3D dissipative localized structures,
which have been found in active systems �40�. Dissipative
light bullets have been studied in the nonlinear Kerr cavity
�45–47�, in the optical parametric oscillator �48�, in the type
II second-harmonic generation �49–51�, in the wide-aperture
laser with saturable absorber �52–54�, and in the complex
cubic-quintic Ginzburg-Landau equation �55,56�. Recently,
dissipative light bullets have been found in a non-mean-field
model describing a nonlinear resonator with a saturable ab-
sorber �57,58�. Excellent overview of dissipative light bullets
are given by Rosanov �2�.

In this paper, we consider a diffractive and dispersive de-
generate optical parametric oscillator �DOPO�. All previous
works reported on dissipative light bullets in that system
have been performed in regimes where one or more steady
states exhibit a pattern forming instability. In the present
work, we focus on dissipative light bullets in a regime de-
void of pattern forming instability. We show the existence of
stable 3D localized structures consisting of a single lamella,
a cylinder, or light drops �or bullets�. Some of these struc-
tures have been previously reported in the special case of
nascent bistability where the dynamics is described by the
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Swift-Hohenberg equation �48�. Here, we study the full
DOPO mean-field model. The 3D dissipative light bullets are
robust since they are generated spontaneously from a weak
initial noise. We construct a 3D bifurcation diagrams for a
single lamella, a cylinder, and a light drop. We show that
there is an overlapping domain of stability between a single
cylinder and a light drop. Finally, when we increase further
the intensity of the input field, 3D dissipative light bullets
exhibit a time self-pulsation behavior.

The paper is organized as follows. After briefly introduc-
ing the DOPO mean-field model and presenting the linear
stability analysis �Sec. II�, we present the full numerical
simulations of the model equations showing stable dissipa-
tive light bullets and 3D bifurcation diagrams associated
with a single lamella, a cylinder, and a light drop �Sec. III�.
We conclude in Sec. IV.

II. MEAN-FIELD MODEL

Frequency conversion by means of optical parametric
conversion is a fundamental phenomenon for the generation
of tunable coherent radiation in ��2� medium. The optical
parametric oscillator is a promising device in several appli-
cations, ranging from the generation of nonclassical states of
light to detection, to optical coherent information processing,
and to spectroscopy �59,60�. We consider the type I paramet-
ric amplification that does not involve polarization degrees
of freedom generated by the birefringence of the quadratic
crystal. The propagation equations for the pump and the sig-
nal amplitudes are
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where u1 and u2 are the normalized slowly varying complex
envelopes of the signal and the pump fields at frequencies �
and � /2, respectively. The time t, describes the slow evolu-
tion of the field envelopes; � is the normalized time in refer-
ence frame traveling at the group velocity of the light. The
parameters n1,2 and �1,2 are the index of refraction and the
characteristic impedance associated with the pump and the
signal fields, respectively. Diffraction is described by the
Laplace operator ��=�2 /�x2+�2 /�y2 acting on the trans-
verse plane �x ,y� orthogonal to the longitudinal direction z,
and chromatic dispersion is modeled by the second deriva-
tive with respect to the fast time �. The dispersion coeffi-
cients of the signal and the pump fields are �1 and �2, re-
spectively, and c is the speed of light.

The device we consider consists of a ring cavity filled
with ��2� medium and driven by an external coherent beam S
at the frequency � as shown in Fig. 1. The propagation equa-
tions �1� and �2� with appropriate boundary conditions at the
mirrors can be reduced to the following partial differential
equations �61�:

�u1

�t
= − �1 + i�1�u1 + u2u1

� + i�a1�� + �1
�2

��2�u1, �3�

�u2

�t
= − �1 + i�2�u2 − u1

2 + S + i�a2�� + �2
�2

��2�u2. �4�

The parameters �1,2 are the detuning at both frequencies. The
diffraction coefficients of the signal and the pump fields are
a1 and a2, respectively. Equations �3� and �4� have been de-
rived in the framework of mean-field approximation which
means that �i� the length of the cavity is much shorter than
the characteristic diffraction and dispersion lengths of the
pump and the signal fields; �ii� high finesse resonator and
�iii� both cavity detuning and nonlinear cavity phase shift
should be smaller than unity. This last condition comes from
the fact that external power can be coupled into the cavity
only if the system is close to resonance.

Equations �3� and �4� have two types of homogeneous
steady-state solutions: �a� nonlasing state u1=0 and u2
=S / �1+ i�2� and �b� lasing state S2= �1+�1

2��1+�2
2�

+2�1−�1�2��u1�2+ �u1�4 and �u2�2=1+�1
2. The two homoge-

neous solutions coincide at the lasing threshold S2=Sth
2

= �1+�1
2��1+�2

2�. The nonlasing solution undergoes the pitch-
fork bifurcation at the point S=Sth. The linear stability analy-

FIG. 1. �Color online� Schematic setup of a ring cavity resonator
filled with quadratic medium and driven by a coherent radiation
beam S at frequency �. Pump and signal fields are coupled by the
��2� crystal.
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sis of the homogeneous states �a� and �b� with respect to
perturbations of the form exp�ik ·r−�t� with k= �kx ,ky ,k��
and r= �x ,y ,��, which are compatible with wide-aperture
cavity, i.e., a large Fresnel number systems, shows that the
Turing instability occurs when one of the eigenvalues of the
linear operator vanishes. This happens when

4�u1�4 + 4�u1�2�	1�1 − 	2� + 	2� + 	2�	1 − �u2�2� = 0, �5�

	1,2 = 1 + ��1,2 + a1,2�kx
2 + ky

2� + �1,2k�
2�2. �6�

From this equation, we see that the nonlasing solution �a�
becomes instable with respect to a Turing instability in the
range ST
S
Sth, with ST=�1+�2

2. At the Turing instability
point �S=ST�, the most unstable wave number is given by
a1�kx

2+ky
2�+�1k�

2=−�1. These modes form an ellipsoid in the
Fourier space �kx ,ky ,k��, when a1 and �1 have the same sign,
and a hyperboloid for opposite signs. Here, we consider only
the anomalous dispersion regime, i.e., �1,2�0. In order to
study the stability of the lasing state �b�, let us assume that,
�2=�1 /2 and �2=�1 /2. In addition, the phase-matching con-
dition imposes that a2 /a1=1 /2. Under these assumptions,
the critical wavelength is a1�kx

2+ky
2�+�1k�

2=−�1

+��4−�1
2� / �2�4�u1T�2−1�� and the threshold associated by

the Turing instability; �u1T�2 satisfies the following cubic
equation: �4+�1

2�2+64�u1T�2�4�u1T�4+3�u1T�2−1−�1
2�=0. In

what follows we focus on a situation usually realized experi-
mentally, namely, a near resonance condition, i.e., �1,2=0. In
that case the above linear stability analysis of the homoge-
neous solutions shows that both lasing �b� and nonlasing �a�
states are stable with respect to Turing instability.

III. THREE-DIMENSIONAL STRUCTURES
AND BIFURCATION DIAGRAMS

We have performed numerical simulations of the full
DOPO model equations �3� and �4� taking into account 2D
diffraction and chromatic dispersion. The numerical simula-
tions are based on a finite-difference method. More precisely,
the Crank-Nikolson scheme is used with periodic or Neu-
mann boundary condition in �x ,y ,�� directions. The initial
condition consists of a small noise with an amplitude of 10−5

added to the unstable homogeneous nonlasing state �a�. Inte-
gration mesh varies from 30�30�30 to 80�80�80 with a
step size of 0.1–0.3. In the earlier time evolution, the signal
field amplitude displays a random distribution of small size
domains. During the time evolution, these domains slowly
grow and deform. Some of these 3D domains disappear. As
the time further increases, the dynamics leads to the forma-
tion of crossing cylinders as shown in Fig. 2 at t=25. For a
late time evolution, the dynamics leads spontaneously to a
stationary state which consists of stable light drops or bul-
lets. The spontaneous time evolution toward the formation of
this 3D structures is shown in Fig. 2. To visualize 3D light
bullets, we draw isosurfaces, corresponding to zero real part
of the signal field u1. In order to study numerically the sta-
bility of 3D localized structures �LSs�, we first consider the
simplest solution, namely, a single lamella. The bifurcation
diagram associated with this solution is shown in Fig. 3. We

used the same integration method and the same initial con-
dition as for light drops �cf. Fig. 2�. The amplitude of the
lamella increases as the input field amplitude increases as
shown in the bifurcation �Fig. 3�. The single lamella struc-
ture becomes unstable when the input field S�Scr and the
branch of a single lamella undergoes a time oscillation �Hopf
bifurcation�. The maximum and the minimum of these peri-

FIG. 2. �Color online� Isosurfaces associated with the signal
field amplitude �u1� showing the time evolution of robust stable light
drops in the �x ,y ,�� space obtained numerically from a random
initial condition. Parameters are �1,2=0, �2=�1 /2=1, a2=a1 /2=1,
and S=4.
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FIG. 3. �Color online� Bifurcation diagram associated with a
single lamella. Parameters are �1,2=0, �2=�1 /2=1, a2=a1 /2=1,
and S=3. The broken line indicates the semianalytical solutions
obtained by solving the boundary value problem �BVP� associated
with model �3� and �4� with the Neumann boundary conditions. The
full line curve indicates the solutions obtained by numerical simu-
lations of Eqs. �3� and �4�.
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odic oscillations in time are plotted in red of Fig. 3. We
check this full 3D numerical simulation by solving the
boundary value problem associated with Eqs. �3� and �4�
with the Neumann boundary conditions. This is because a
single lamella is essentially a one-dimensional structure. The
results of these calculations are plotted in green dotted line
of Fig. 3. Stability analysis of the lamella is performed by
linearizing Eqs. �3� and �4� around the single lamella solu-
tion and by solving the eigenvalue problem. This method
allows us to estimate the threshold associated with the self-
pulsing instability �Hopf bifurcation� S=Scr	29. This semi-
analytical estimation is rather good when comparing with 3D
numerical simulations of the full DOPO mean-field model.
The 3D bifurcation diagram associated with a single cylinder
and light bullets is shown in Fig. 4. By varying the input
field intensity, the single cylinder appears spontaneously in
the range SC
S
SB. At S=SB, a transition from a single
cylinder branch of solution toward the light bullet solutions
occurs at S=SCB as shown in Fig. 4. When increasing the
input field intensity from S=SCB, the light bullet survives and
we see clearly an overlapping domain of stability between a

single cylinder and a light bullet in the parameter range SB

S
SCB. For large intensity, the light bullet solutions un-
dergo, as for the single lamella, time oscillations associated
with the Hopf bifurcation. In the range SB
S
SCB, by us-
ing an appropriate initial condition, we can generate a coex-
istence of a single cylinder and a single light bullet. This
feature is illustrated in Fig. 5.

IV. CONCLUSIONS

We have demonstrated numerically the formation of
stable dissipative light bullets in the dispersive and diffrac-
tive degenerate optical parametric oscillator. We have con-
structed bifurcation diagrams associated with a single
lamella, a single cylinder, and a light bullet. These diagrams
give an information on the stability domain of these struc-
tures, and they also show a coexistence between a single
cylinder and a light bullet. Finally, we show a dynamical
regime associated with a time-oscillatory instability affecting
the stability of dissipative light bullets.
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