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Tunneling times of electromagnetic planar wave propagating through a barrier made of split-ring resonators
and long metallic wires embedded into a dielectric with saturable nonlinearity are analyzed. For such structure,
analytical expressions for the tunneling times and relation between the group delay and the dwell time are
obtained. The electric-field distribution inside the barrier is numerically evaluated and a detailed study of the
influence of nonlinearity on the spectral structures of the tunneling times is performed. It is demonstrated that
intensity variation in the incident field may change the wave propagation direction, the sign of the barrier’s
refractive index, and group delay.
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I. INTRODUCTION

Although a typically quantum-mechanical phenomenon
�1–3�, tunneling can be represented as a problem of classical
electromagnetics owing to the deep analogy between the
Schrödinger equation and the Helmholtz equation. Expres-
sions that describe the tunneling times, i.e., the dwell time
and the group delay, that occur while electromagnetic �EM�
wave travels through a barrier placed inside the waveguide
with different index of refraction were first derived by Win-
ful �4�. This model included a linear nondispersive obstacle
and waveguide with positive refraction indices. Recently,
tunneling times have been calculated for linear dispersive
media �5� and nondispersive media with Kerr nonlinearity
�6�.

The refractive index of a material n is the key parameter
which describes interactions between the material and the
EM wave. Recent studies have verified the existence of arti-
ficial complex media, namely, left-handed metamaterials
�LHMs� that exhibit negative values of both the dielectric
permittivity � and the magnetic permeability � within a cer-
tain range of frequencies. This property of negative refrac-
tion was predicted by Veselago �7� in 1968 and it has led to
a number of peculiar properties: inverse Snell’s law, inverse
Doppler shift effect, backward Cerenkov radiation, etc. The
first experimental realization of LHMs was performed by
Smith �8�, who combined a periodic array of metallic wires
with a regular array of split-ring resonators �SRRs�, which
had negative index of refraction in the microwave range of
frequencies. Subsequent papers �9,10� have shown the exis-
tence of left-handed characteristics for the THz range, too.

Nonlinear behavior of the LHMs was analyzed by observ-
ing the example of a lattice of SRRs and wires embedded in
a Kerr-type nonlinear dielectric �11,12� or inserting certain
nonlinear elements in each SRR slit �13�. Both propositions
lead to effectively field-dependent values of � and � and the
same phenomenon has been demonstrated for the case of
saturable nonlinearity by using nonlinear photorefractive
crystals such as GaAs and LiNbO3 �14,15�. Numerous papers
and experiments show that nonlinear effects in metamaterials
enable second harmonic generation in SRR-based magnetic
metamaterials on glass substrate �16� as well as formation of
solitons and discrete breathers �17–19�.

In this work we present theoretical and numerical results
obtained for the tunneling times described above, i.e., the
group delay and the dwell time, in case of the wave packet
tunneling through a metamaterial barrier designed using cir-
cular SRRs and long metallic wires, embedded in a dielectric
with saturable nonlinearity. We presume propagation of TE
modes only. In contrast to previously presented expressions
for the tunneling times, obtained only for linear dispersive
and nondispersive media �4,5� and for nondispersive media
with Kerr-type nonlinearity �6�, we offer a more generalized
approach. This model encompasses both the linear media and
all the media with third-order nonlinearities of the electric
susceptibility, the Kerr-type nonlinearity being just a specific
case of the latter �and described here by a more accurate
expression for the EM energy density�. In addition, we pro-
vide a comparative analysis of the considered effects in
terms of varying the structural parameters and the light in-
tensity.

The paper is structured as follows: the model and the
theoretical considerations are formulated in Sec. II; a nu-
merical method used for calculating quantities of interest is
described in Sec. III; numerical results and discussion of
tunneling times are presented in Sec. IV. The paper is con-
cluded by Sec. V.

II. THEORETICAL CONSIDERATIONS

The model, i.e., a planar dielectric waveguide and an ab-
sorptive barrier made of circular SRRs and long metallic
wires embedded into a material with saturable nonlinearity,
placed inside the waveguide, is shown in Fig. 1. The thick-
ness of the barrier is L. The waveguide is made of a linear
material whose permittivity and permeability are purely real
and denoted by �b and �b, respectively. The effective permit-
tivity and permeability of the barrier are given by �20�

�s = �LHM + �NL = ���1 −
�p

2

�2 − �r
2 + i�e�

� + �NL, �1�

�s = 1 −
F�0

2

�2 − �0
2 + i�m�

, �2�

respectively. Here, �� is the background dielectric constant,
�p is the plasma frequency, measure of the strength of inter-
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action between the oscillators and the electric field, � is the
frequency of incident EM wave, �r is the resonance fre-
quency of the electric dipole oscillators, �0 is the resonance
frequency of the magnetic dipole oscillators, while �e and �m
stand for the damping frequencies of the electric and the
magnetic field, respectively. Finally, F is a measure of the
strength of interaction between the oscillators and the mag-
netic field and �NL=�NL��Ey�2� represents the intensity-
dependent part of the permittivity given by �20�

�NL = �D0 + �
�Ey�2/Ec

1 + ��Ey�2/Ec
, �3�

where �D0 is the linear dielectric permittivity, Ec is a charac-
teristic electric field, � is the sign of the nonlinearity, i.e.,
�=+1 for focusing and �=−1 for defocusing nonlinearity,
and � is the saturation strength. The second term of permit-
tivity is a nonlinear function of the electric-field intensity
which describes saturable type of nonlinearity and will be
noted as �SNL. We presume that ������, Ec�Ec���, and
������. The dwell time is defined as the time spent by a
wave packet in a given region of space �2,4,21� defined by

�d =
W

Pin
, �4�

where W stands for the stored EM energy inside the barrier
and Pin is the time-averaged incident power.

In order to calculate the stored EM energy inside the bar-
rier, it is first necessary to define its density w, which can be
represented as a sum of the linear wLIN and the nonlinear part
wNL. For a dispersive and absorptive linear medium the
stored EM energy density is given by �5�

wLIN =
�0

4
�ef fLIN�E�2 +

�0

4
�ef fLIN�H�2, �5�

where �0 and �0 are the vacuum permittivity and permeabil-
ity, respectively, �ef fLIN=�D0+Re��LHM�+2� Im��LHM� /�e
and �ef fLIN=Re��s�+2� Im��s� /�m. In a nonlinear disper-
sive medium, the nonlinear part of the time-averaged stored
EM energy density is given by �22�

wNL =
�0

4

d���SNL�
d�

�E�2 =
�0

4
�ef fNL�E�2 �6�

assuming the imaginary part of permittivity to have very
small value compared to its real part, as well as �NL

=�NL��Ey�2� and Ey =Ey���. Since only the TE modes propa-
gate through the barrier, the total stored EM energy in the
barrier may be derived, by using the Helmholtz equation, in

W = −
S�ef f	0

2���s�2�0
Im�R��E0�2 −

S�ef f

�2��s�2�0
S1

+
�0S

4 �	
0

L

�ef f�Ey�2dx +
�ef f

��s�2
	

0

L

Re��s�s��Ey�2dx
 ,

�7�

where S is the cross-section surface, �E0� is the incident
electric-field amplitude, �ef f =�ef fLIN, �ef f =�ef fLIN+�ef fNL,
	0=�k0

2�b�b−
2, k0 stands for the wave vector in vacuum,

=�k0

2�b�b sin2��� is the propagation constant, � is the angle
of incidence and

S1 = Re���s − �b���Ey
� Ey�

��x�
��

x=0



+ Re���b − �s���Ey
� Ey�

��x�
��

x=L

 . �8�

The time-averaged incident power, obtained from the com-
plex Poynting theorem, is Pin=	0�0c2S�E0�2 / �2��. The equa-
tion describing the dwell time now obtains the following
form:

�d =
�

2	0c2�E0�2�����ef f	
0

L

�Ey�2dx

+ 	
0

L �d���SNL�
d�

+
�ef f

��s�2
Re��s��SNL��Ey�2dx


−
�ef f

��s�2�
Im�R� −

2�ef f

��s�2�	0�E0�2
S1. �9�

Here, c stands for the speed of light in vacuum and ����ef f
=�ef fLIN+�ef fLINRe���LHM +�D0��s� / ��s�2.

In order to derive the relation between the dwell time and
the group delay �g, it is necessary to find the dependence of
0

L�Ey�2dx on �g. Subtracting the conjugate of the Helmholtz
equation multiplied by dEy /d� from the derivative of the
Helmholtz equation with respect to �, multiplied by Ey

�, and
integrating this expression along the barrier, leads to the fol-
lowing relation:

	
0

L

�Ey�2dx =
�2	0�g + 2

d	0

d�
Im�R�
�E0�2 − S2 − S3

2�

c2 �LIN +
�2

c2

d�LIN

d�

−

2� Re��s�
c2 	

0

L ��SNL +
�

2

d�SNL

d�

�Ey�2dx

2�

c2 �LIN +
�2

c2

d�LIN

d�

,

�10�

where

y

x

ns(| | , )Ey

2
ω

nb( )ω nb( )ωz

0 L

FIG. 1. �Color online� The model: SRRs and long metallic wires
embedded into a barrier made of dielectric with saturable nonlin-
earity. x is the propagation axis.
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S2 = Re���s − �b�
Ey�

��x�
dEy

�

d�
−

d

d�
���s − �b�

Ey�

��x�
Ey
��

x=0

x=L

,

�11�

S3 = 2k0
2	

0

L

Im��s�s�Im�Ey

dEy
�

d�
�dx , �12�

�LIN = Re���LHM + �D0��s� − �b�b sin2��� , �13�

and

�g = �T�2
d�0

d�
+ �R�2

d�r

d�
, �14�

which represents the group delay, with R= �R�exp�i�r� and
T= �T�exp�i�t� being the reflectance and the transmittance,
respectively, and �0=�t+	0L the phase of the incident wave.
In the case of lossless barrier, the terms d�0 /d� and d�r /d�
become equal, hence, �g=d�0 /d�=d�r /d�.

By using expressions �9� and �10�, the relation between
the group delay and the dwell time is obtained:

�g = �def f + �ief f + �NL + �loss + �interface, �15�

where �def f is the effective dwell time and �ief f is the effec-
tive self-interference time which represents the time that the
incident wave spends interfering with its reflected part on the
cross-section surface of the barrier. Further, �NL originates
from the nonlinearity of the barrier, �loss is the consequence
of the losses in the barrier, while �interface occurs due to per-
meability difference between the waveguide and the barrier.
The explicit expressions for all five defined times read

�def f = �d
�̃LIN

����ef f
, �16�

�ief f = � �̃LIN

����ef f

�ef f

���s�2
−

1

	0

d	0

d�

Im�R� , �17�

�NL =
� Re��s�

2	0c2 	
0

L

�̃SNL�Ey

E0
�2

dx

−
�̃LIN

����ef f

�

2	0c2�	
0

L d���SNL�
d�

�Ey

E0
�2

dx

+ 	
0

L �ef f

��s�2
Re��s��SNL�Ey

E0
�2

dx
 , �18�

�loss =
S3

2	0�E0�2
, �19�

�interface =
S2

2	0�E0�2
+

�̃LIN

����ef f

2�ef fS1

���s�2	0�E0�2
, �20�

where �̃LIN/SNL=2��LIN/SNL+ �� /2��d�LIN/SNL /d���.

III. NUMERICAL METHOD

Once the electric field inside the barrier is determined, all
the other time-related quantities defined in Sec. II may be

calculated. The distribution of this field depends on param-
eters that characterize the incident field, such as E0, �, �, and
on characteristics of the barrier itself. The starting equation
for the calculation of electric field inside the barrier is the
Helmholtz equation:

d2Ey

dx2 −
1

�s

d�s

dx

dEy

dx
+ �k0

2�s�s − 
2�Ey = 0. �21�

Presuming that the permeability is homogenous inside the
barrier, the second term on the left-hand side of the previous
equation becomes equal to 0. By inserting the expressions
for permittivity and permeability in the Helmholtz equation,
we derive a second-order nonlinear differential equation:

d2Ey

dx2 + �k0
2��D0 + �LHM��s − 
2�Ey + k0

2�s�

�Ey�2

Ec
2

1 + �
�Ey�2

Ec
2

Ey = 0.

�22�

In order to calculate the distribution of the electric field in-
side the barrier, it is necessary to solve the differential equa-
tion described above taking into consideration the appropri-
ate boundary conditions. This typical boundary value
problem can be solved by the shooting method. In this case,
the initial conditions are the values of the electric field and
its derivative at the left boundary of the barrier:

Ey�x = 0� = E0 + E0�Rr + iRi� , �23�

�dEy

dx
�

x=0
=

�s

�b
�i	0E0 − i	0E0�Rr + iRi�� , �24�

where Rr and Ri are the variational parameters which repre-
sent the real and the imaginary part of reflectivity, respec-
tively. The shooting method starts with solving the Helm-
holtz equation by using the fifth-order Runge-Kutta method
for arbitrary initial values of Rr and Ri and calculating the
electric field at the right boundary of the barrier x=L. The
next step is the calculation of the expression F�Rr ,Ri�
= ��dEy /dx− i	0Ey��x=L which should be minimized by varia-
tion in the parameters Rr and Ri in order to satisfy the Som-
merfeld radiation condition �23�:

��dEy

dx
− i	0Ey��

x=L
= 0. �25�

The minimization of the function F�Rr ,Ri� is based on the
Broyden’s method �24�. This method was used to calculate
the distribution of the electric field and its derivative, as well
as the reflectivity, transmittivity, and the absorption inside
the barrier. Then, it was straightforward to calculate the
quantities that stem from these variables such as the dwell
time and the group delay.

IV. NUMERICAL RESULTS AND DISCUSSION

We presume that the barrier is placed in vacuum, with the
effective index of refraction defined by nef f
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=Re�0
Ln�x�dx /L�. In each of the following cases, the barrier

parameters are chosen so to obtain �d, �g, and nef f when the
effects of nonlinearity and the left-handed property are the
most pronounced, but also to describe realistic metamaterials
�9�. We present numerical results for �d, �g, and nef f as func-
tions of � for different values of the amplitude of the inci-
dent wave E0, comparing two cases: SRRs and long metal
wires embedded into dielectric with Kerr and with saturable
nonlinearity. The mathematical model describing the propa-
gation of EM waves in surroundings with Kerr nonlinearity
is already included in the corresponding model for materials
with saturable nonlinearity when the saturation strength van-
ishes ��=0�.

The refractive index is calculated from an expression n
=��� if ���→��0 and ���→��0 as it has been de-
rived in �25�. Assuming the following dependences: �s
= ��s�exp�i���, �s= ��s�exp�i���, where ��� ,��� �0,���,
since �e, �m0, index of refraction can be derived as ns

= ����s���s�exp�i���+��� /2�. In our case, it is evident from
the Helmholtz equation that for �→�, Ey→0, therefore
�NL→�D00. Also, it is obvious that �LHM��→��→��

0 and �s��→��→10, thus, for all frequencies the re-
fractive index can be represented by ns=��s�s. Conse-
quently, it can be shown that the sign of the real part of
refractive index is directly proportional to the sign of the
expression Re��s�Im��s�+Im��s�Re��s� �25�.

The parameters of the observed material are ��=3.1, �p
=2700 THz, �r=0, �e=35 THz, F=0.052, �0=2300 THz,
�m=35 THz, Ec=1 V /m, �D0=2, and the angle of inci-
dence is �=� /6. A pure metamaterial �not embedded into a
nonlinear dielectric� with these parameters has negative in-
dex of refraction in the range of 2178 THz��
�2445 THz �Fig. 2�. However, taking into account �D0, the
refractive index becomes positive for all incident frequen-
cies. By embedding SRRs and metal wires into a material
with self-defocusing saturable nonlinearity ��=−1, �=1�,
one can change its index of refraction by modifying the in-
cident electric field. For small values of E0, the change in

refractive index is negligible, since the nonlinear part of di-
electric permittivity is significantly smaller than its linear
part. However, the increase in the incident field leads to a
rapid growth of nonlinear part of dielectric constant, which
leads to a decrease in the refractive index due to the self-
defocusing property of the nonlinear dielectric. At a certain
point, for sufficiently strong incident fields �around 3 V/m�,
the index of refraction becomes negative within a range of
frequencies. Further increase in the incident field widens the
range of frequencies in which the refractive index has nega-
tive values, again up to a point �around 10 V/m� after which
the nonlinear contribution of dielectric constant saturates,
which leads to saturation of the refractive index. This ex-
ample shows that nef f��� may be varied significantly by
changing the incident field amplitude: from positive, over
extremely small, up to saturation values. In case of self-
focusing type of nonlinearity, the opposite effect occurs. By
increasing E0, nef f increases for all frequencies, up to some
value, after which it saturates. In this case ��=1�, nef f re-
mains positive for all frequencies and intensities of the inci-
dent field, which is not of interest for this observation.

The previously described effect can also be seen in Fig. 3,
where the dependence of the refractive index on the incident
field is depicted for two different barrier lengths for �
=2300 THz. In the linear case, i.e., for small values of inci-
dent field amplitude, refractive index is not a function of the
barrier length L, since the dielectric permittivity and mag-
netic permeability are not functions of electric field Ey�x�,
thus of x coordinate in the barrier. On the other hand, if the
incident field amplitude is too large �E0�10 V /m�, the con-
tribution of the dielectric permittivity that describes saturable
nonlinearity is independent of Ey�x� ��SNL�−1�, thus the
whole dielectric permittivity is independent of x. This im-
plies that the refractive index is not a function of the barrier
length for extremely small or high values of the incident
field. However, between these two cases, when 2 V /m
�E0�10 V /m, saturable part of dielectric permittivity
strongly depends on Ey�x�, thus on L. This dependence of
�SNL on L clearly causes nef f to be a function of L for the
specified interval of incident field amplitudes. Therefore, it

FIG. 2. Index of refraction nef f versus incident frequency � for
L=10−7 m, for a barrier placed in vacuum. The increment of the
incident field amplitude shifts the peak of the refractive index to-
ward higher frequencies.

FIG. 3. Refractive index nef f versus incident field amplitude E0

for two different barrier lengths: L=10 nm and L=100 nm.
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can be noted that the smaller the barrier length, the smaller
the incident field is required to achieve the negative index of
refraction. For the range of incident field amplitudes between
2 and 10 V/m, nonlinear contribution of the dielectric con-
stant depends significantly on E0, thus nef f also has a strong
dependence on E0: from 1.4, it reduces to −0.35.

For nearly all frequencies of interest, the dwell time is
increased by embedding SRRs and metal wires into a satu-
rable nonlinearity dielectric �Fig. 4�. However, around the
frequency where the metamaterial becomes double-negative,
i.e., where the dwell time reaches maximum, the nonlinearity
decreases �d. Around the upper limit frequency of the
metamaterial’s double-negativity region, there is a local
maximum which is a consequence of the nonzero angle of
incidence and which increases by placing the metamaterial
into a material with saturable nonlinearity. The absorption
has a similar dependence on � as the dwell time; therefore, it
has the largest value around the frequencies at which the
refractive index changes its sign. Also, the behavior of these
quantities �the absorption and the dwell time� is in agreement
with the Hartman effect; i.e., they saturate with the increase
in the barrier length �26�.

(b)(a)

(c)

FIG. 5. Dependence of the group delay on incident wave frequency for a barrier made of SRRs and metal wires embedded into linear
dielectric with permittivity �D0=2 �solid line�; a barrier made of SRRs and metal wires embedded into dielectric with Kerr nonlinearity
�dash-dotted line� and a barrier made of SRRs and metal wires embedded into dielectric with saturable nonlinearity �dashed line� for three
different values of incident field amplitude: �a� E0=0.1 V /m, �b� E0=2 V /m, and �c� E0=4 V /m.

FIG. 4. Dwell time as a function of the incident wave frequency
in case of a barrier made of SRRs and metal wires �dash-dotted
line� and SRRs and metal wires embedded into a material with
saturable nonlinearity �solid line�. In both cases the barrier is placed
in vacuum and L=10−7 m.
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For low incident power, i.e., when E0=0.1 V /m, �g is
equal for all three media, since the nonlinear term of permit-
tivity, in both the Kerr and the saturable media, becomes
negligible compared to the linear part �Fig. 5�. With the in-
crease in amplitude of the incident field, the group delay in
nonlinear materials becomes smaller and even negative at its
first local minimum, which corresponds to the resonant fre-
quency of the magnetic dipole oscillators. This may seem to
contradict the classical causality principle, which states that
the particle cannot exit a region before entering it. In that
sense, the group delay must always have a positive value.
This counterintuitiveness and apparent ambiguity in interpre-
tation of the negative group delay stems from the intricacies
involved in extending the group delay concept to the quan-
tum domain �27�. Nevertheless, the negative group delay for
a particle traversing a quantum well, subject to specific re-
strictions imposed on the particle energy and the well thick-
ness, has been reported in recent works �28�. Because of the
apparent analogy between the Schrödinger and the Helm-
holtz equations, one expects to find evidence of this phenom-
enon in electromagnetic wave propagation as well and such
assumption has been verified by experimental data �29�.

Also, the first local maximum of the group delay in non-
linear media is shifted toward lower frequencies and intensi-
fied. It is important to mention that the second local mini-
mum for the Kerr medium, which is a consequence of the
nonzero angle of incidence, becomes positive. This implies
that in this type of media, at some frequencies, it is possible
to manipulate the direction of wave propagation simply by
changing the incident field amplitude. For E0=4 V /m, �g is
significantly smaller and negative only at its first local mini-
mum, especially for the Kerr medium, while for the saturable
nonlinear material it reaches its saturable value. Furthermore,
the first peak for the Kerr medium reaches three times its
previous value and shifts significantly for about 100 THz.

V. CONCLUSION

Analytic expressions for the tunneling times, in case of a
barrier made of SRRs and long metal wires embedded in a
material with saturable or Kerr nonlinearity, are derived. It is
shown that the group delay can be represented as a sum of
five contributions, among which are the dwell time and the
self-interference time. The electric-field distribution inside
the barrier is numerically calculated by the shooting method.
Based on these calculations, a detailed numerical study of
the influence of the nonlinearity on the spectral structure of
the tunneling times is presented. Due to the nonlinear re-
sponse of the metamaterial it is possible to change the sign of
the refractive index and the direction of wave propagation by
changing only the incident field amplitude, which strongly
affects the spectral profiles of the tunneling times. The dwell
time and the absorption have the highest values in frequency
regions in which the refractive index sign and the wave
propagation direction can be changed. The nonlinearity leads
to the creation of two frequency regions in which it is pos-
sible to obtain negative values of the group delay. The effects
of the negative group delay are more pronounced for the
metamaterial with Kerr nonlinearity than the one with satu-
rable nonlinearity. The negative group delay concept does
not violate the causality principle; moreover, in microelec-
tronics negative group delays can apparently be used to can-
cel out the positive group delays introduced by, e.g., transis-
tor latency �30�.

ACKNOWLEDGMENTS

This work was supported by the Ministry of Science �Re-
public of Serbia� Ev. No. 141006 and No. 141034. V.M. and
J.R. also acknowledge financial support provided by the
NATO Collaborative Linkage Grant �Reference No. CB-
P.EAP.CLG 983316�.

�1� D. Bohm, Quantum Theory �Prentice-Hall, New York, 1951�.
�2� F. T. Smith, Phys. Rev. 118, 349 �1960�.
�3� H. G. Winful, Phys. Rev. Lett. 91, 260401 �2003�.
�4� H. G. Winful, Phys. Rev. E 68, 016615 �2003�.
�5� I. Ilić, P. P. Beličev, V. Milanović, and J. Radovanović, J. Opt.

Soc. Am. B 25, 1800 �2008�.
�6� G. Isić, V. Milanović, J. Radovanović, Z. Ikonić, D. Indjin, and

P. Harrison, Phys. Rev. A 77, 033821 �2008�.
�7� V. G. Veselago, Sov. Phys. Usp. 10, 509 �1968�.
�8� D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and

S. Schultz, Phys. Rev. Lett. 84, 4184 �2000�.
�9� U. K. Chettiar, A. V. Kildishev, H.-K. Yuan, W. Cai, S. Xiao,

V. P. Drachev, and V. M. Shalaev, Opt. Lett. 32, 1671 �2007�.
�10� A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A.

Firsolv, I. Y. Khrushchev, and J. Petrovic, Nature �London�
438, 335 �2005�.

�11� A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, Phys. Rev.
Lett. 91, 037401 �2003�.

�12� S. O’Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry,

Phys. Rev. B 69, 241101�R� �2004�.
�13� M. Lapine, M. Gorkunov, and K. H. Ringhofer, Phys. Rev. E

67, 065601�R� �2003�.
�14� W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D.

Averitt, Phys. Rev. Lett. 96, 107401 �2006�.
�15� C. Helgert, C. Rochstuhl, T. Pertch, E.-B. Kley, and A. Tün-

nermann, IEEE-CLEO Europe-IQEC �Fraunhofer Publica,
Munich, 2007�.

�16� M. W. Klein et al., Science 313, 502 �2006�.
�17� N. Lazarides, M. Eleftheriou, and G. P. Tsironis, Phys. Rev.

Lett. 97, 157406 �2006�.
�18� Y. Liu, G. Bartal, D. A. Genov, and X. Zhang, Phys. Rev. Lett.

99, 153901 �2007�.
�19� S. Bian, J. Frejlich, and K. H. Ringhofer, Phys. Rev. Lett. 78,

4035 �1997�.
�20� A. Maluckov, Lj. Hadžievski, N. Lazarides, and G. P. Tsironis,

Phys. Rev. E 77, 046607 �2008�.
�21� M. Büttiker, Phys. Rev. B 27, 6178 �1983�.
�22� L. D. Landau and E. M. Lifshitz, The Classical Theory of

BELIČEV et al. PHYSICAL REVIEW A 80, 023821 �2009�

023821-6



Fields, 2nd ed. �Pergamon, London, 1962�.
�23� A. Sommerfeld, Partial Differential Equations in Physics

�Academic Press, New York, 1949�.
�24� W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan-

nery, Numerical Recipes—The Art of Scientific Computing
�Cambridge University Press, New York, 2007�.

�25� R. W. Ziolkowski and E. Heyman, Phys. Rev. E 64, 056625
�2001�.

�26� T. E. Hartman, J. Appl. Phys. 33, 3427 �1962�.
�27� J. G. Muga, I. L. Egusquiza, J. A. Damborenea, and F. Del-

gado, Phys. Rev. A 66, 042115 �2002�.
�28� C.-F. Li and Q. Wang, Phys. Lett. A 275, 287 �2000�.
�29� L. G. Wang, J. P. Xu, and S. Y. Zhu, Phys. Rev. E 70, 066624

�2004�.
�30� D. Solli, R. Y. Chiao, and J. M. Hickmann, Phys. Rev. E 66,

056601 �2002�.

TUNNELING TIMES IN METAMATERIALS WITH… PHYSICAL REVIEW A 80, 023821 �2009�

023821-7


