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The collective atomic recoil lasing is studied for an ultracold and collisionless atomic gas in a partially
coherent pump with a colored noise. Compared to white noise, correlations in colored noise are found to be
able to greatly enhance or suppress the growth rate above or below a critical detuning. Effects on cooperative
scattering of light for noise correlation time, noise intensity, and pump-probe detuning are discussed. This
result is consistent with our simulation and linear analysis about the evolution equations in the regions of
instability.
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I. INTRODUCTION

Collective nonlinear interactions between cold atoms and
light have attracted considerable attention since collective
atomic recoil lasing �CARL� was observed in cold atoms
�1,2� and superradiance from Bose-Einstein condensation
�BEC� was realized in experiments �3�. The signature of
CARL is sudden buildup in the probe field or backscattering
beam oriented reversely to a coherent pump strongly inter-
acting with an atomic gas �4–6�. This self-organization phe-
nomenon shows spontaneous formation of an atomic density
grating and offers the possibility to study the light amplifi-
cation derived from collective interaction of light with cold
atomic gases �7–10�.

Most studies so far have focused on the coherent laser
pump neglecting the fact that environment is intrinsically
noisy. As found in a recent work for a partially coherent
pump field with a white-noise spectrum �11�, the probe in-
tensity can be larger than that in a coherent pump due to the
noise. The intensity fluctuation and noise play important
roles in this nonlocally coupled many-body system. Al-
though the white-noise assumption is convenient for math-
ematical treatment, it is somewhat unrealistic because fluc-
tuations in the microscopic dynamics have a finite �nonzero�
correlation time commonly referred to as colored noise �12�.
The white-noise approximation is valid when the correlation
time of fluctuation is much shorter than all other relevant
time scales in this problem. In other cases there are discrep-
ancies between white-noise theory and experiments, such as
the photon statistics of a dye laser output where the relative
intensity fluctuations tend to increase indefinitely as the laser
is weakly excited �12–14�, the reversed asymmetry in the
doublet spectrum of double optical resonance is reverted
back to normal for lager detuning �15�. Hence, the colored
noise model is more realistic than the white-noise model and
is widely studied for laser systems, for example, in the side-
band squeezing in intracavity second-harmonic generation
�16�, excess quantum noise in a laser �17�, and four-wave
mixing �18�. In these systems, the colored noise is caused by
the laser frequency fluctuation and the field line shape is
Gaussian in some parameter regime different with the
Lorentzian line shape for white noise.

In this paper we study CARL based on a laser pump with
colored noise. Effects of noise on the cooperative scattering
of light are studied by stochastic simulation and linear analy-
sis at small correlation time. The Lorentzian bandwidth is
related to noise intensity, pump-probe detuning, and the cut-
off frequency given by the inverse of correlation time. Ef-
fects of these parameters on the growth rate of amplification
are analyzed and discussed.

II. MODEL

We consider the normal setup for CARL �1,11,19�. The
backscattered light named probe beam has amplitude E1 and
frequency �1 and a partially coherent strong pump field has
amplitude E2 and the mean frequency �2. These two beams
with almost the same frequency ��1−�2���1 or �2 are ap-
proximately counterpropagating to form a spatially periodic
optical lattice potential interacting with a very cold and col-
lisionless atomic gas. Atoms moving in this lattice form a
density grating and in turn play a role on the evolution of
probe field.

Since ��2−�1� is assumed to be very small, the pump or
probe wave vector is given by k=2� /� where ���2��1.
The pump frequency ���2 is detuned from the atomic reso-
nance frequency �0 by �=�−�0. The two-photon recoil fre-
quency is given by �r=2�k2 /m. In terms of the rescaled time
variable �=�r�t, the rescaled amplitude of probe field
A=�2	0 /n���E1, the rescaled position 
 j =2kzj and momen-
tum pj = �mv j� / ��k�� of the jth atom, the modified classical
CARL equations with a stochastic pump phase noise are
given by �11�

d
 j/d� = pj , �1�

dpj/d� = − Aei�
j−�� + c.c., �2�

dA/d� = − 		e−i�
j−��

 + i�A , �3�

d�/d� = 	��� , �4�

where the dimensionless CARL parameter is given by
�= �g�n /2��r�2/3, the pump Rabi frequency is =dE2 /�,
the atomic density is n, the atom-mode coupling constant is
given by g=d�� /2	0�, and the dipole matrix element for the*xjzhou@pku.edu.cn
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atomic transition is d. The average in Eq. �3� is defined as the
average over all atoms,

		 ¯ 

 �
1

N
�
j=1

N

� ¯ � j

and the scaled pump-probe detuning is given by
�= ��2−�1� / ��r��.

The partial coherence of pump field is described by a
phase diffusion model, assumed to evolve according to Eq.
�4�, where 	��� is a Gaussian random variable with zero
mean 		���
�	���=0, and variance �12,18,20�

		���	����
 � 	���	���� =
�

�0
e−��−���/�0. �5�

The colored laser noise given by Eq. �5� is parametrized by
the noise correlation time �0 and the noise strength �, where
	¯ 
 denotes the average over sampling. In the limit �0→0,
from Eq. �5� we get 	���������
→2����−��� corresponding
to the case of a white noise in laser phase fluctuations with a
Lorentzian line shape and linewidth �half width at half maxi-
mum �HWHM�� � for the pump field �11�. When �0→�, it
recovers the case with a coherent pump laser �1,11�. For
1 /�0��, the field line shape is a Lorentzian with a full width
at half maximum �FWHM� of 2�, while for 1 /�0�� it is a
Gaussian with a FWHM related to �� /�0. The general values
of ��0 between these two limits lead to Voigt profiles �18�,
meaning that the laser spectrum is significantly non-
Lorentzian for detuning greater than 1 /�0 �from line center�
and the spectrum cuts off much more rapidly than a Lorent-
zian. Consequently, 1 /�0 is known as the cutoff �15�. Equa-
tion �5� can also be written as 	̇���+ 1

�0
	���= 1

�0
�2�����,

where ���� is the Gaussian white noise satisfying 	����
=0,
	���������
=���−��� �16�. As pointed out in Ref. �11�, the
amplification due to the partially coherent pump is less sen-
sitive to the atomic distribution in the form of
exp�−p0

2 /2�2� than that due to a coherent pump, where the
scaled initial momentum is p0, �=�3m�BT /�k�, �B is
Boltzmann’s constant, and T is the temperature of atomic
gas. In this Brief Report we consider effects of correlation
time while assuming �=0.

III. STOCHASTIC SIMULATION

We directly solve the set of stochastic ordinary differential
Eqs. �1�–�4� using stochastic Runge-Kutta algorithms with a
colored noise �20�. To conveniently compare with the case of
a white noise, in the following we use the same value �=5
and detuning �=2,5 ,10, as in Ref. �11�. The scaled probe
intensity over time is plotted in Fig. 1 to show effects of
pump phase diffusion for pump-probe detuning �=2. The
solid line 1 is for the case with white noise �=5 and �0=0
�11�. The case of coherent pump with �0=0 and �=0 is
shown in the solid line 2, where the intensity of probe beam
is very low and oscillates with time and the gain is sup-
pressed. The growth rate and intensity of the backscattered
field greatly increase under the partially coherent pump. In
the case of colored noise, the growth rates and amplitudes of

the backscattering beams are increased compared to the case
of white noise, and this gain increases with correlation time
�0, as shown in the dotted line ��0=0.02�, dashed line
��0=0.05�, dash-dotted line ��0=0.08�, solid line 4 ��0=0.5�,
and solid line 3 ��0=2� for �=2. The correlation time of
noise has an opposite effect with �=5 as shown in Fig. 2.
The growth rates become slow and it take more time to get to
the saturation than in the case of �=2. The growth rate and
intensity of probe field are suppressed for �0=2 as shown in
the solid line 2. For small correlation time �0=0.02 �dotted
line�, it coincides with the case of white noise �the solid line
1 �0=0�. The growth rate decreases with the increase in cor-
relation time, as shown in the dashed line ��0=0.05� and
dash-dotted line ��0=0.08�. However, the difference between
the colored noise and white noise at these small correlation
times is not so obvious for �=5. For �0=0.5, there is a dis-
tinct decrease in the growth rate and intensity of probe beam
comparing to the case of white noise, as shown in the solid
line 3. When the detuning is further increased to �=10, as
shown in Fig. 3, the rate and intensity of gain are greatly
suppressed for correlation time �0=2 �solid line 2� and
�0=0.5 �solid line 3�. At small �0, growth rates also decrease
with the increase in correlation time, as shown by the dotted
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FIG. 1. �Color online� The scaled probe intensity �A�2 �averaged
over 100 runs� for a cold gas ��=0� by a partially coherent pump
with detuning �=2 for different correlation time �0. The solid line 2
is for noise intensity �=0, while all other lines are with �=5.
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FIG. 2. �Color online� The scaled probe intensity �A�2 versus
time for detuning �=5, �=5.
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line ��0=0.02�, dashed line ��0=0.05�, and dash-dotted line
��0=0.08�.

The above results show that the gain is suppressed with
the increase in correlation time for large detuning ��=5 and
�=10�. The condition of gain is destroyed with the long cor-
relation time of noise. However, for the case with small de-
tuning �=2, the long correlation time helps to enhance the
amplification in the growth rate and amplitude of the probe
beam. According to our simulation, there are similar results
for �=3 and �=1 where a long correlation time is able to
suppress the growth rate for �=5 and �=10 and enhance it at
�=2. Thus, depending on detuning, the increase in correla-
tion time can either enhance or suppress the gain. To further
understand these different behaviors, we carry out the linear
analysis at small correlation time in the next section.

IV. LINEAR ANALYSIS

To analyze effects of colored noise in the regions of in-
stability, we derive the linear evolution equations for the av-
erage scattered-field intensity A�A from equations Eqs.
�1�–�4�,

d�A�2

d�
= A�b + c.c., �6�

dA�b

d�
= − iA�P + b�b − �i� + ���A�b , �7�

dA�P

d�
= − �A�2 + b�P − �i� + ���A�P , �8�

d�b�2

d�
= − ib�P + c.c., �9�

db�P

d�
= − Ab� + i�P�2, �10�

d�P�2

d�
= − A�P + c.c., �11�

where �A�2=A�A, �b�2=b�b, �P�2= P�P, and

b =
1

N
�

j

N

e−i�
j−��, P =
1

N
�

j

N

�pje
−i�
j−��� . �12�

To understand how to derive the above formula, here we
show the steps in getting Eq. �7�. Other equations can be
obtained with similar steps. From Eq. �3�, we have

dA�b

d�
= − iA�P + b�b − i�A�b + i	A�b , �13�

where the last term can be expressed as

i	A�b = i
A�

N �
j=1

N

e−i
jei�T
�1	����d��f��1,T� , �14�

with

f��1,T� � 		���e��1

T i	����d��
 . �15�

We can expand Eq. �15� with the series

f��1,T� = �
m=0

�
1

2mm!


�1

T

i		����	��1�
d��

��
�1

T

d��1
�1

T

d��2
i2		���1

�	���2
�
�m

.

For small correlation time �0, it can be further expressed for
the moments m=0 and m=1 only,

f��1,T� � i��1 − e−T−�1/�0�

��1 +
��0�1 − e−T−�1/�0�

2
−

��T − �1�
2

� .

Assuming T=�1+K�0 where K is an adjustable parameter,
1�K� �T−�1�, we have

i	A�b = − ��A�b �16�

with

�� = ��1 − �K − 1���0/2� . �17�

Equations �6�–�11� are identical with Eqs. �5�–�10� in Ref.
�11� except that � for the white noise is now replaced by ��
for the colored noise. Thus we can use the relation between
the white noise and colored noise models given by Eq. �17�
for small �0. An increase in �0 can be regarded as decreasing
the noise intensity or the linewidth of white noise. Hence, for
the initially cold and collisionless atomic gas, we obtain the
characteristic root � from the solution of Eqs. �6�–�11�. The
region of instability or amplification satisfies Re����0.
Based on the solution, the growth rates of the probe beams
Re��� as the detuning � for the different correlation time are
plotted in Fig. 4.

As shown in Fig. 4, the maximum growth rate occurs at
�=0. In the case of a coherent pump shown by the solid line
1, the cutoff is so sharp that no instability or amplification of
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FIG. 3. �Color online� The scaled probe intensity �A�2 versus
time for detuning �=10, �=5.
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the probe beam occurs above �c= �27 /4�1/3�1.9. The noise
can extend regions of amplification because the pump phase
diffusion broadens the region of instability, as shown by the
solid line 2 for the partially coherent pump with a white
noise �=5, �0=0. The case with small �0=0.02 is very
close to the case of white noise �11�. For detuning �=2, the
growth rates increase with increasing �0 as shown in Fig. 4.
However, as the detuning increases, the growth rates de-
crease with the increase in correlation time for �=5. Com-
pared to the case of white noise, for example, the growth rate
is increased below the critical value �0�3.3 and decreased
above it with the correlation time �0=0.05 as shown in Fig.
4. Hence, depending on detuning, the effect on the growing
rate is different for different correlation times under the same
noise intensity. For the different noise strengths, the growth
rates versus detuning with �0=0.05 are drawn in Fig. 5. We
got �0�1.8 for �=1 and �0�2.7 for �=3. The critical de-
tuning �0 decreases with the decrease in noise strength �.
The growth rates are almost the same for white noise and
colored noise with small noise intensity �=1 and there is an
obvious difference for �=3. The increase in the correlation
time is beneficial to the growth rate of the amplification near
the threshold detuning, while destructive for the big detun-
ing.

V. DISCUSSION AND CONCLUSIONS

The gain of CARL given by the growth rate of the probe
beam depends on the frequency of the light field. It has a
certain gain bandwidth defined as the spectral range where
the light scattering is exponentially amplified. In the ampli-
fication process, atom scatter photons from the pump field
into the probe beam experience an acceleration due to the
photonic recoil and occupy different momentum states. On
the other hand, the frequency of scattered photons is shifted
with respect to the pump-light frequency resulting in pump-

probe detuning. In the case of a noisy pump, there are two
velocities involved. One is the stochastic phase velocity with
mean value ��1−�2�c / ��1+�2� of the optical potential, and
the other is the atomic velocity. Due to the interaction be-
tween the atoms and the optical field, the synchronization
between these two velocities eventually leads to the scaled
momenta distribution of atoms around a mean value
	p
�−�, when ���c=1.9 and the dynamical phase evolu-
tion of probe field is negligible. Thus the region of instability
extends from the threshold value of the coherent pump �c to
the bigger detuning �11�. At the same time, a decrease in 	p

causes an increase in �A�2 due to the conservation of momen-
tum 	p
+ �A�2=const. Hence the saturation of instability oc-
curs when the scaled probe intensity satisfies �A�2��. This is
the reason of amplification in large detuning for the partially
coherent pump.

However, the noise correlation time �0, noise intensity �,
and pump-probe detuning ���c greatly affect the growth
rate of this amplification behavior. To understand this rela-
tion, we define � as the ratio of the effective gain bandwidth
�ef f determined by noise intensity and correlation time to the
detuning,

� = �ef f/� . �18�

It determines how many momentum states lying within the
effective linewidth may participate and be amplified in the
CARL dynamics. If this ratio is 1, it means that all the mo-
mentum states within the linewidth are amplified at the same
time and the growth rate is the fastest. If the ratio is more or
less than 1, this growth rate decreases.

In the case with small correlation times, ��1 /�0, the
cutoff of the laser spectrum is larger than Lorentzian band-
width. The colored noise model and white-noise model lead
to similar results following the relation given by Eq. �17�,
�ef f =��1− �K−1���0 /2�. The effective bandwidth of noise
�ef f limits the range of frequencies accessible for the probe
light field. For �=5 and �=2, ��2.5–18.75�0, the increase
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in correlation time leads to the decrease in � closer to 1.
Hence, the growth rate of amplification is enhanced with
increasing �0 as shown in Fig. 4 of linear analysis and in Fig.
1 of simulation results with �0=0.02,0.05,0.08. However,
for �=5, ��1–7.5�0, the increase in correlation time leads
to a deviation from the match condition, hence, increasing �0
decreases the growth rate as shown in Fig. 4 of the linear
analysis and in Fig. 2 of simulation results. Furthermore, for
�=10, ��0.5–3.75�0, increasing correlation time destroys
the match condition �=1 as demonstrated in Fig. 4 of linear
analysis and in Fig. 3 of the simulation results with
�0=0.02,0.05,0.08. Based on linear analysis shown in Fig.
4, the simulation results at small correlation times shown in
Figs. 1–3, and the above analysis, we reach the conclusion
that the change in the correlation time can be regarded as
adjusting the effective noise intensity. Whether the change in
correlation time enhances or suppresses the growing rate de-
pends on whether it helps or destroys the match condition
�=1.

The large correlation time corresponds to slow frequency
fluctuation 1 /�0��, when the laser shape approaches a
Gaussian with the effective bandwidth of HWHM
�ef f =��8�ln 2�� /�0� /2. The effective bandwidth limits the
range of frequencies accessible for probe beam. When �=2,
we have �=1.86,0.93 for �0=0.5 and 2. Because 0.93 is
closer to unity than 1.86, the growth rate at �0=2 is faster
than that at �0=0.5 as shown in the solid lines 3 and 4 of Fig.
1. However, for �=5, �0=0.5,2 corresponding to
�=0.74,0.37, the increase in correlation time destroys the
match condition and the amplification at �0=2 is almost sup-
pressed as shown in the solid line 2 of Fig. 2. Furthermore, at
�=10 and �0=0.5,2, �=0.37,0.18, these two values are far
from 1 and the amplification is also suppressed at �0=0.5 as
shown in the solid line 3 of Fig. 3. The simulation results
show that the growth rate is greatly suppressed with large
correlation times. Hence, for big �0, the increase in correla-
tion time greatly reduces the bandwidth and suppresses the
number of momentum states of participating in the CARL
dynamics. The above explanation also is suitable for �=3,
while it is not right for weak noise intensity �=1.

It should be possible to observe these effects following
the experimental observation of CARL �1,2� where ultracold
87Rb atoms were enclosed in a ring cavity. The difference
between the experimental setup and our model is that the
pump field in the experiment is also in a cavity mode which
counterpropagates with respect to the probe beam. The ex-
perimental reported characteristic growth time tg for the in-
stability of CARL is about 1 �s �6� corresponding to
�r�� tg

−1=106 s−1, ��10, and the recoil shift of Rb as
�r=2�k2 /m�2��14 kHz. For a high finesse of the cavity

��pump�2��20 kHz and the scaled pump linewidth
�=��pump / ��r���0.02, it corresponds to the case of a co-
herent pump field for ��1. However, the linewidth of the
pump field can be adjusted between good-cavity and bad-
cavity regimes by varying the finesse of cavity, atom number,
and pump power. � from 0.3 to 0.2 corresponding to
�=4.7 to 7.0 is the semiclassical good-cavity regime. � from
3.7 to 2.8 corresponding to the parameter �=5.1 to 6.7 is the
typical semiclassical bad-cavity regime �1,2�. If we assume
�=5 for Rb, the scaled noise intensity �=5 means a line-
width of the Lorentzian of 2��350 kHz, the scaled corre-
lation time �0=0.5 means the cutoff at frequency
2��140 kHz, and pump-probe detuning �=2,5 ,10 corre-
sponds to 140, 350, and 700 kHz, respectively. Hence, to a
certain extent, our analysis can be regarded as the CARL in
bad-cavity regime which is possible to be accessed in experi-
ments.

In conclusion, the correlation time of pump phase noise
greatly affects the growth rate and intensity of cooperative
scattering in the system of CARL. The noise makes the am-
plification region for pump-probe detuning larger than that in
the coherent pump. The noise intensity and correlation time
determine the effective linewidth of pump laser not just noise
intensity in the case of white noise predicted by phase diffu-
sion model of ideal laser theory. The change in correlation
time can enhance or suppress the growing rate depending on
the ratio of the effective bandwidth to pump-probe detuning
which determines how many momentum states within the
linewidth are amplified at the same time. This ratio equal to
1 corresponds to the best match condition for big noise in-
tensity. Whether the growth rate is suppressed or enhanced
by the change in correlation time depends on whether it
helps or destroys the synchronization condition. These re-
sults are useful for analyzing the cooperative scattering pro-
cess and effects of noise on the collective nonlinear interac-
tion between cold matter and light and also helpful in
studying superradiance from BEC �21� or the phase coherent
matter-wave amplification �22� because of the same gain
mechanism.
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