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We present a detailed theoretical treatment of a three-level � system in a hot atomic vapor interacting with
a coupling and a probe field of arbitrary strengths, leading to electromagnetically induced transparency and
slow light under the two-photon resonance condition. We take into account all the relevant decoherence
processes including collisions. Velocity-changing collisions �VCCs� are modeled in the strong-collision limit
effectively, which helps in achieving optical pumping by the coupling beam across the entire Doppler profile.
The steady-state expressions for the atomic density-matrix elements are numerically evaluated to yield the
experimentally measured response characteristics. The predictions, taking into account a dynamic rate of influx
of atoms in the two lower levels of the �, are in excellent agreement with the reported experimental results for
4He�. The role played by the VCC parameter is seen to be distinct from that by the transit time or Raman
coherence decay rate.
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I. INTRODUCTION

Electromagnetically induced transparency �EIT� in three-
level � systems is a phenomenon in which an initially ab-
sorbing medium is rendered transparent to a resonant weak
probe laser when a strong coupling laser is applied to a sec-
ond transition �1�. It is based on quantum interference effects
involving coherence between the two lower states of the �.
The quest has been on for simple room-temperature systems
capable of demonstrating EIT for applications ranging from
narrow transparencies to switchable and controlled broad-
band delays and slowing of light �2� for use in quantum-
information processing. Room-temperature atomic vapors
have been found to be attractive candidates for such applica-
tions, necessitating a treatment of the phenomenon taking
into account effects of atomic motion and collisions.

There are some early studies �3� of Doppler-broadening
effects in EIT for a system of moving atoms. In the limit of
vanishing probe field and under the assumption that all atoms
are trapped in the dark state �which is a coherent superposi-
tion of the two lower levels of the ��, it was found that
power broadening of the EIT linewidth takes place: �EIT
=�C

2 /4WD �where �C is the Rabi frequency of the coupling
field and WD is the Doppler half width at half maximum
�HWHM��, which is similar to the well-known result for a
homogeneously broadened system: �EIT=�C

2 /4�0 �where �0
is the homogeneous linewidth�. This dependence was experi-
mentally verified in Ref. �2�. In the limit of relatively low
probe field intensity, �P� ��0 /WD��C, and under the same
assumption of full coherent trapping �i.e., neglecting the two-
photon coherence decay�, Taichenachev et al. �4� derived the

following result for the EIT linewidth: �EIT=�P�C /4�0,
where �P is the Rabi frequency of the probe field.

For EIT in a room-temperature gas, the decay of two-
photon �Raman� coherence is caused by several mechanisms,
such as transit-time broadening, population exchange, and
atom-atom and atom-wall collisions. Insight into the most
significant decoherence mechanism can be gained by mea-
suring the width of the EIT resonance as a function of the
coupling field intensity. An existing theoretical treatment of
EIT in Doppler-broadened gases �5�, assuming the popula-
tion exchange between the lower levels to be the main source
of decoherence, predicts a nonlinear dependence of the EIT
width �EIT on the coupling beam intensity for weak coupling
powers. In the limit of very large coupling intensity, it is
shown to reduce to the power-broadening case. Javan et al.
�5� considered a closed atomic model scheme and argued
that such a model gives a description almost equivalent to
the one for an open system in which atoms decay �out of the
interaction region� with the rate �R and atoms come into the
interaction region with equally populated lower levels.
Though it is a theory for EIT in a Doppler-broadened me-
dium, the role of collisions is completely neglected in Ref.
�5�.

Most existing experiments in atomic vapors �6–8� have
shown the dependence of the width of the EIT resonance on
the coupling field intensity ���C

2 � to be linear even for weak
coupling powers �with the exception of the work by Ye and
Zibrov �9� which was performed without a buffer gas and
with a very small beam diameter�. As an example, we focus
on the data of our recent demonstration �8� that metastable
4He �He�� at room temperature is a simple system capable of
yielding EIT and slow light. For the coupling field strengths
used, �EIT is expected to evolve linearly with �C according
to Ref. �5�, with a slope depending on �R. The lower-level
relaxation in a gas is mainly determined by the transit time of
the atoms through the laser beam—different beam sizes
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would lead to different transit times and hence different val-
ues of �R. Our experimental results �8� have clearly shown
that �i� �EIT evolves quadratically with �C and �ii� the slope
of this evolution is the same for different beam sizes, i.e., for
different values of �R. The suggestive role played by colli-
sions between metastable and ground-state atoms in yielding
this experimental result is not described by the theory in Ref.
�5�.

If all the atoms across the entire Doppler profile are as-
sumed to be initially optically pumped by the coupling beam
to the probe ground level, a calculation �7� of the response of
the medium up to first order in the probe field leads to a
linear dependence of the EIT linewidth on the coupling beam
intensity �10�. To obtain this result, one also supposes that
the decoherence in the lower states is caused by pure dephas-
ing, contrary to the assumptions of population exchange in
Ref. �5�. In a realistic situation, the special initial condition
of the entire atomic population being in the probe ground
level does not hold good—the population is equally likely to
be in the probe and the coupling ground levels initially. Thus,
population exchange between the two lower levels cannot be
ignored. Also, a treatment in first �linear� order in the probe
field cannot possibly give results when the coupling field is
small, viz., of the order of the probe field.

In this paper, we address this deficiency in the existing
theory of EIT and slow light in a hot atomic vapor and at-
tempt a practical and complete analysis taking into account
all the relevant decoherence processes, for arbitrary strengths
of the probe and the coupling fields, and without assump-
tions of any special initial condition. We consider the influx
of fresh atoms in the lower levels and the outflux from all the
levels at a diffusive transit rate in the gas. We allow for
unequal rates of influx in the lower levels to take into ac-
count optical pumping by the control field and return of co-
herently prepared atoms into the interaction region. The
phase-interrupting and velocity-changing collisions �VCCs�
of active atoms are also modeled effectively.

Apart from the transparency width discussed so far, there
are other features of interest associated with EIT. For non-
zero detunings of the coupling field from the center of the
Doppler-broadened transition frequency, the transmitted in-
tensity profiles become asymmetric about the two-photon
resonance �Raman detuning=0� �11,12�. This Fano-like fea-
ture is a signature of the two-photon process of EIT and
emerges naturally from our model. The narrow spectral hole
in the absorption profile of the EIT medium is accompanied
by a strong dispersion of the index of refraction according to
the Kramers-Kronig relations, inducing a low group velocity.
The evolutions of the peak transmission and the group delay
with the coupling beam intensity predicted from our analysis
faithfully reproduce the experimentally observed behaviors.

The paper is organized as follows. In Sec. II, all the dif-
ferent relaxation processes for EIT in a three-level � system
are discussed. The fraction of atoms that come back to the
beam from outside being still coherently prepared is suitably
modeled. In Sec. III, VCCs are dealt with separately, and the
density-matrix equations are written with various relaxations
including that due to VCCs. The steady-state solutions for
the density-matrix elements are presented in the strong-
collision approximation with a model for the VCCs under

rapid VCC coverage. This is followed by our theoretical re-
sults in Sec. IV on the Doppler-averaged Fano-like EIT pro-
files, the variation in the EIT width, the peak transmission,
and the group delay with the coupling intensity, all of which
agree very well with the experimental data for the He� sys-
tem. The general dependence of these features on the VCC
parameter, the unequal atomic influx parameter, the Raman
decoherence rate, and the initial transmission are also
probed. The conclusions are presented in Sec. V.

II. EIT SCHEME WITH RELAXATION PROCESSES

A. Level scheme for EIT

Consider a � atomic system as in Fig. 1. Levels �a� and
�b� are coupled by a weak probe field, the interaction energy
being given by its Rabi frequency �P. Another strong cou-
pling field of Rabi frequency �C couples the same excited
level �a� with level �c� along the other arm of the �. Both
fields are treated classically. The probe detuning is

�P = �P − �ab,

with �P as the probe frequency, and likewise, the coupling
field detuning is

�C = �C − �ac,

with �C as the coupling frequency. The Raman detuning is

�R = �P − �C = �P − �C − ��ab − �ac� .

The probe and the coupling fields propagate in the same
direction, and the frequency difference ��ab−�ac� is small
enough so that the residual Doppler shift �kP−kC�v can be
ignored �13�. For EIT, the system should be prepared by
optical pumping so that the initial population is entirely con-
centrated in the dark state �b�. The coupling field creates a
quantum interference between the probability amplitudes of
transition �b�→ �a� via two different channels, �i� a direct
absorption process from �b� to �a� and �ii� an indirect stimu-
lated Raman process from �b� to �a� to �c� to �a�. Under the
appropriate condition of two-photon resonance �R=0, the
medium becomes effectively transparent �zero absorption�
for the probe field, leading to EIT.

In the example of 4He, the first excited state 2 3S1 is a
metastable state with a lifetime of approximately 8000 s. The
transition between 2 3S1 and the second excited state 2 3P at

FIG. 1. �Color online� Three-level � scheme for EIT.
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a gap of 277 THz or 1083 nm is conveniently used. The
levels 2 3S1 and 2 3P1 are each split into three sublevels with
mJ=−1, 0, and 1. Out of these six levels, a � system is
carved out by optical pumping �with the help of proper
choice of polarization of light, selection rule, and allowed
stimulated/spontaneous transitions� �14�, with mJ=−1 and 1
of 2 3S1 forming the two lower levels and mJ=0 of 2 3P1
forming the upper level. At zero magnetic field the lower
levels are degenerate and �ab=�ac. In a real system, the
optical pumping cannot be 100% efficient, and we also have
decays to levels outside the � that makes the system “open.”

B. Relaxation processes

The dispersion and absorption of the medium with respect
to the probe field of Rabi frequency �P are determined by
the off-diagonal element 	ab of the atomic density matrix.
This describes the atomic coherence or the atomic polariza-
tion. Hence, it is important to investigate the different relax-
ation processes affecting the optical coherence as well as the
Raman coherence of the two lower levels that lead to the
dark state and EIT. It is known that collisions of active at-
oms, which only perturb the phase or amplitude of an oscil-
lating atom without changing its velocity, lead to homoge-
neous line broadening and a shift of its line center. But
collisions can also result in changes in the velocity of active
atoms, in addition to being phase interrupting, and affect
atomic coherences of the system under consideration �15�.

The present theoretical analysis examines the density-
matrix equations for a three-level � system interacting with
two fields in the presence of the following different sources
of relaxation:

�1� The spontaneous decay from the excited state �a�
transfers atoms to the ground states with equal decay rates
�0 /2.

�2� The transit of the atoms through the laser beam at a
rate �t replaces atoms �in all states� in the laser interaction
region by fresh atoms arriving �only in the lower states� from
the volume outside that region. The transit rate depends on
the pressure �diffusion coefficient� of the gas. All the popu-
lations and coherences are affected because of this motion.
But it is the lower-state relaxation that is mainly determined
by the transit rate �t.

�3� The collisions �phase interrupting� damp the atomic
polarizations and coherences.

�4� The collisions also change velocities of the active at-
oms without changing their internal state.

In our example of the He� system, the atom-wall colli-
sions are not very significant for the dynamics. De-excitation
of He� on collision with cell walls leaves inert He atoms in
the ground state �1 1S0�, which cannot be detected: there are
no background atoms to contribute to noise, unlike experi-
ments which use true ground-state atoms such as the alkali
metals. Thus, with our system, there is an advantage of col-
lisions of the active atoms with the walls of the cell which
result in quenching.

The decay for the optical coherences is

�

2
=

�0

2
+

�coll

2
+ �t , �1�

where �coll is the collisional dephasing due to pressure, and
the Raman coherence decay for 	̃cb�v� is

�R = �t + �coh
p + �B, �2�

where �coh
p is the collisional term proportional to gas pres-

sure and �B is the dephasing due to inhomogeneity in re-
sidual magnetic field and other possible dephasing mecha-
nisms.

The mean free path of the He� atoms is, in a hard sphere
model, of the order of 0.1 mm. If we consider that the atoms
cross the beam in a one-dimensional �1D� random walk, we
can see that, at 300 K, they experience about 104 collisions
during their trip across a 1-cm-diameter beam, leading to a
diffusive transit time �t

−1 of the order of 0.5 ms. According to
a rigorous calculation by Fitzsimmons �16�, the diffusion
constant at 1 Torr and 300 K is D=500 cm2 /s. Thus, in a 1D
diffusion model, the variance in the displacement is ��x�2

=2Dt. For �x=1 cm, we again obtain the transit time, t
=1 ms. For metastable helium at room temperature and
pressure of 1 Torr inside a cylinder shielded with 
 metal to
avoid stray magnetic fields, the various decay rates are typi-
cally

�0 = 107 s−1,

�coll = 1.33 � 108 s−1,

�t � 103 s−1,

�R = 104 – 105 s−1.

The coherences between the lower levels may benefit
from the fact that the atoms can diffuse out of the interaction
region and return before decohering. The rates at which the
atoms return to the lower states �b� and �c� are not likely to
be equal since inside the beam, the populations in these two
states are made unequal by the control-field optical pumping
from �c� to �b� and hence the population diffusing outside is
also likely to be unbalanced. The rate of return from outside
cannot be a constant but would depend dynamically on the
population difference, �	bb−	cc�. This feature is incorporated
by using unequal influx rates,

�d	bb

dt
�

in
=

�t

2
�1 + ��	bb − 	cc�� ,

�d	cc

dt
�

in
=

�t

2
�1 − ��	bb − 	cc�� ,

while maintaining a single departure rate of �t from the
beam in all the states. A value of �=1 would indicate that all
atoms going back to the beam are prepared for EIT in the
dark state �b�. On the other hand, �=0 would indicate that
equal number of atoms enter the beam in states �b� and �c�.
The overall atomic population is, of course, conserved. A
physical picture of � can be thought as arising from the
treatment of the atomic motion outside the laser beam in a
diffusion equation by assuming a random distribution of the
durations spent by the atoms outside the interaction region
�17�.
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III. ATOMIC DENSITY-MATRIX FORMULATION

A. Velocity-changing collisions

VCCs which shuffle atoms between different velocity
classes represent an important source of relaxation for the
lower states. It can modify the atomic velocity without af-
fecting the atomic coherence in the lower states: in this case
the atoms prepared by the laser radiation in a dark state are
transferred to other velocity classes �18�. If this transfer ap-
plies with high efficiency, all the atomic velocity classes are
pumped into the dark state either by direct pumping or by
VCC �8�.

Our active atoms are in a three-level � configuration. It is
taken that collisions do not possess sufficient energy to in-
duce transitions between the upper and the lower levels. This
assumption effectively allows one to treat the scattering of
each active atom separately, such that one can apply standard
quantum mechanical scattering theory using a different total
energy for each active atom level.

We use the impact approximation in which the active
atom-perturber atom collisions are viewed to occur instanta-
neously, i.e., the duration c of the typical collision is as-
sumed to be much less than the various time scales in the
problem �with the exception of the optical period 2� /�,
where � is a transition frequency�. In particular, the assump-
tion that c is much lesser than the time Tc between collisions
is called the binary collision approximation. In our example
of metastable 4He, the buffer or perturber atoms are the 4He
atoms in the ground �1 1S0� state. Typically, Tc	10−7 s at
1.0 Torr of buffer gas pressure and c	10−12 s. The binary
collision approximation is thus valid easily up to a gas pres-
sure of 500 Torr in this example. The implications of the
impact approximation are easily understood. Each collision
produces a change in the density matrix 	 associated with
active atoms. Between collisions, the external field produces
a time rate of change for the density matrix. Since changes
produced by the external fields during collision are assumed
to be negligible, the impact approximation allows one to rep-
resent the contributions to d	 /dt as arising independently
from the collisions and external radiation fields. In this way,
one obtains a “master” or transport equation for 	 �19�.

The influence of VCC on EIT is formally treated by writ-
ing the equations for the density-matrix elements 	ij�v� for
each velocity class of atoms and introducing in those equa-
tions the probability for VCC between different classes
�19,20�. The contribution of VCCs to the density-matrix
equations for the populations and coherences, in general, is

d

dt
�	ij�v��VCC = − �ijVCC	ij�v� +
 Kij�v� → v�	ij�v��dv�.

�3�

Here the VCC process is described in terms of the collisional
relaxation rates �ijVCC, and the associated collisional kernels
are Kij�v�→v�. The collision kernel Kii�v�→v� �of the di-
mension of inverse length� gives the probability density per
unit time that a collision changes the velocity of an active
atom in state i from v� to v. Changes in v occur at some

average rate �ijVCC, which is related to the kernel in the
following way �21�:

�ijVCC�v� �
 dv�Kij�v → v�� . �4�

The first term on the right-hand side in Eq. �3� can be viewed
as the “out term” resulting from collisions that remove active
atoms in state i from the velocity subclass v and the last term
is the “in term” bringing atoms from other velocity sub-
classes into the subclass v. Kii is related to the differential
scattering cross section and �iiVCC is related to the corre-
sponding total scattering cross section.

Since the collision interaction depends on the internal
atomic states of the atoms, a complete description requires
a separate collision kernel for each atomic state population
and each coherence. In general, an excited atom has a
slightly larger collisional cross section than a ground-state
atom because excited atoms are bigger than the ground-state
atoms, and therefore the excited atoms suffer a stronger col-
lisional damping of speeds. The opposite holds true for the
case of active alkali atoms colliding with neon where an
excited atom has a slightly lower collisional cross section
than a ground-state atom. However, in a low-pressure regime
where the decay rate � �	108 s−1� at the optical transition
��a�→ �b� or �a�→ �c�� is larger than the collision rate �0,1VCC
�	107 s−1�, the transport of coherence in the optical transi-
tion from one velocity group to another is of not much im-
portance. For the lower-state coherence, the situation is dif-
ferent, as the effective lower-state relaxation �	104 s−1� is
smaller than the collision rate. We can thus assume that the
collision kernel is zero for the optical coherences, is approxi-
mately the same for all populations, and is different for the
lower-state coherence,

Kab�v → v�� = Kac�v → v�� = 0,

Kaa�v → v�� = Kbb�v → v�� = Kcc�v → v�� � K0�v → v�� ,

Kbc�v → v�� � K1�v → v�� . �5�

Thus, for the three-level � system, the added VCC contribu-
tions are

d

dt
�	ii�v��VCC = − �0VCC	ii�v� +
 K0�v� → v�	ii�v��dv�

�i = a,b,c� , �6�

d

dt
�	̃cb�v��VCC = − �1VCC	̃cb�v� +
 K1�v� → v�	̃cb�v��dv�,

�7�

where �iiVCC��0VCC, �bcVCC=�cbVCC��1VCC, and �abVCC
=�baVCC=0. Here we have further neglected the velocity de-
pendence of the collision rate �0,1VCC because it is usually a
slowly varying function of velocity.

B. Complete set of density-matrix equations with relaxations

We first convert the usual density-matrix elements 	ij to
slowly varying variables 	̃ij in order to remove the fast opti-
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cal oscillations by using the following transformations:

	ab = 	̃abe−i�Pt, �8�

	ac = 	̃ace
−i�Ct, �9�

	cb = 	̃cbe−i��P−�C�t. �10�

Taking into account the various relaxations mentioned above,
including the dynamic atomic influx into the beam and in-
corporating the effect of VCCs expressed in Eqs. �6� and �7�,
the evolution of the slowly varying density-matrix elements
	̃ij�v� for atoms with velocity v may be written under the
rotating-wave approximation as

d	aa�v�
dt

= − ��0 + �t + �0VCC�	aa�v� − i
�P

2
�	̃ab�v� − 	̃ba�v��

− i
�C

2
�	̃ac�v� − 	̃ca�v�� +
 K0�v� → v�	aa�v��dv�,

�11�

d	bb�v�
dt

=
�0

2
	aa�v� − ��t + �0VCC�	bb�v� +

�t

2
�W�v�

+ ��	bb�v� − 	cc�v�� + i
�P

2
�	̃ab�v� − 	̃ba�v��

+
 K0�v� → v�	bb�v��dv�, �12�

d	cc�v�
dt

=
�0

2
	aa�v� − ��t + �0VCC�	cc�v� +

�t

2
�W�v�

− ��	bb�v� − 	cc�v�� + i
�C

2
�	̃ac�v� − 	̃ca�v��

+
 K0�v� → v�	cc�v��dv�, �13�

d	̃ab�v�
dt

= − ��

2
− i��P − kv��	̃ab�v� + i

�C

2
	̃cb�v�

− i
�P

2
�	aa�v� − 	bb�v�� , �14�

d	̃ca�v�
dt

= − ��

2
+ i��C − kv��	̃ca�v� − i

�P

2
	̃cb�v�

+ i
�C

2
�	aa�v� − 	cc�v�� , �15�

d	̃cb�v�
dt

= − ��R + �1VCC − i�R�	̃cb�v� − i
�P

2
	̃ca�v�

+ i
�C

2
	̃ab�v� +
 K1�v� → v�	̃cb�v��dv�.

�16�

Note that the total atomic population in state i at a time t is
given by

	ii = 

−�

�

	ii�v�dv �17�

and �i=1
3 	ii�t�=1 for a closed system. 	̃ij�v�’s have the di-

mensions of inverse speed. Equations �11�–�16� are to be
solved for 	̃ab to get the susceptibility at �P.

C. Strong-collision approximation

These integrodifferential equations can be solved using
iterative techniques which may be taken up in future. The
solution can be worked out for various limiting forms of the
collision kernel, and here we follow the strong-collision
model, in which v�t� is a jump process. The effect of colli-
sions is “strong,” i.e., it washes out the memory of the pre-
collision value of the velocity. A single collision, on average,
thermalizes the velocity distribution. The rate of collisions is
taken as an average rate given by the inverse of the mean
free time between collisions. The collision kernel is then
greatly simplified and can be approximated by

K0,1�v� → v� = �0,1VCCW�v� , �18�

where W�v� is the Maxwell-Boltzmann distribution for the
velocity vector in one direction given by

W�v� =
1

��u
e−�v/u�2

, �19�

where u is the most probable speed,

u =�2kBT

m
, �20�

and m being the mass of an atom. For a temperature of 300
K, the most probable speed of He atoms is about 1100 ms−1.
In the presence of light of wave number k, the 1 /e Doppler
half width is ku. For our system, with a laser at a frequency
�P,C=1.74�1015 rad /s �or wavelength �P,C=1.083 
m�,
the Doppler HWHM WD /2�=0.9 GHz.

Note that under the assumption that the left-hand side of
Eq. �18� is independent of the initial velocity v�, the right-
hand side is the only allowed form, consistent with the de-
tailed balance of transitions,

W�v��K0,1�v → v�� = W�v�K0,1�v� → v� ,

and the conservation of probability with the equality sign in
inequality �4�.

D. Steady-state solutions

1. Conditions for rapid VCC coverage

The excitation by a single-mode laser is velocity selec-
tive. In the absence of VCCs, optical pumping with a single-
mode laser polarizes only a small portion of the thermal ve-
locity distribution.

In strong thermalizing VCCs, the root-mean-square veloc-
ity change �v is much larger than the width of the resonant
velocity “bin” ��v�� /k, with � as the homogeneous line-
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width�. To ensure rapid thermalization to access the entire
velocity profile, the number of VCCs occurring during the
lower-state orientation relaxation time 1 /�R must be large
compared to the total number of velocity bins ��0,1VCC /�R
�2ku /�� �22�.

Also, when the photon absorption rate ���v� is large com-
pared to the rate of diffusion of atoms across the laser beam
����v���t� but small compared to the rate of VCCs
����v���0,1VCC�, the redistribution of atoms in the different
velocity classes rebuilds the Maxwell-Boltzmann velocity
distribution �i.e., VCCs thermalize the lower-state velocity
distributions rapidly compared to an absorption-emission
cycle�. This leads to a velocity-independent type of optical
pumping �23�. Since atoms jump from one velocity class to
another, when the number of VCCs occurring per cycle is
much greater than the number of pump photons, the pumping
spreads over the entire Doppler distribution in each optical
pumping cycle. The laser is depleting a single velocity bin at
a rate ���v�, but since the rate �0,1VCC at which the VCCs are
replenishing it with atoms from the entire Doppler distribu-
tion is so much faster, the velocity distribution stays thermal-
ized even during the pumping process.

Under the above conditions and considering the broaden-
ing due to the thermal velocity distribution of the atoms, we
rewrite the density-matrix equations �18� with

	ii�v,t� = W�v�Rii�t� ,

	̃ij�v,t� = W�v�Rij�t�, i � j . �21�

Here Rij�t�’s are dimensionless and �iRii�t�=1 for a closed
system without dissipation. The simplified assumption �Eq.
�21�� would imply that the effect of the VCCs is to bring
about a complete redistribution of the population over all the
velocity classes such that the inhomogeneous media are
similar to a homogeneous one but with a width given by the
inhomogeneous Doppler-broadened width. Hence, the prob-
lem effectively reduces to that of a homogeneous system
with a Doppler-broadened pumping rate.

2. Decoherence by VCC

However, VCCs affect populations and coherences in a
slightly different manner. Though there is a redistribution of
the atomic population over the entire inhomogeneous width,
VCCs can still lead to a decay of the Raman coherence. In
order to take account of any depolarization because of colli-
sions that leads to a decoherence of the prepared EIT me-
dium, we additionally modify the collision kernel in Eq. �18�
for the lower-state coherence �18� with strong thermalizing
VCCs by inserting a depolarization ratio � as

K1�v� → v� = ��1VCCW�v� , �22�

with ��1 from Eq. �4�. We define the parameter ��1−� as
a deviation from complete coherence preservation. 1��
�0 would imply a loss of coherence by VCCs and hence a
loss of coherently prepared dark-state atoms from the
Maxwell-Boltzmann distributed system. �=0 corresponds to
a complete redistribution of population over the Doppler
width by VCC, without any loss of polarization.

The VCC contribution gets added to the transit-time de-
cay �and hence the Raman coherence relaxation� rate as
��1VCC �with �	0�. The populations in the lower levels are
aided by the influx of fresh atoms at the dynamic transit rate
�a part of which has no contribution from the VCC�, yielding
the inhomogeneity in the density-matrix equations in the
steady state, necessary for nontrivial solutions.

The steady-state solutions of Eqs. �11�–�16� with particu-
lar combinations such as 	aa, �	bb�	cc�, and �	̃cb�	̃bc� are
considered. Using Eqs. �21� and �22� and integrating the rel-
evant equations over velocity, we obtain the following:

− ��0 + �t�Raa − ��X4�� + �R���Raa − Rbb�

− �X3����Raa − Rcc� + ��X1�� + �R� + �X1����

��Rcb + Rbc

2
� + i��Y1�� + �R� − �Y1�����Rcb − Rbc

2
�

= 0, �23�

�0Raa − �t�Rbb + Rcc� + �t + ��X4�� + �R���Raa − Rbb�

+ �X3����Raa − Rcc� − ��X1�� + �R� + �X1����

��Rcb + Rbc

2
� − i��Y1�� + �R� − �Y1�����Rcb − Rbc

2
�

= 0, �24�

− ��1 − ���t��Rbb − Rcc� + ��X4�� + �R���Raa − Rbb� − �X3���

��Raa − Rcc� − ��X1�� + �R� − �X1�����Rcb + Rbc

2
�

− i��Y1�� + �R� + �Y1�����Rcb − Rbc

2
� = 0, �25�

− �2�R + 2��1VCC + �X3�� + �R� + �X4�����Rcb + Rbc

2
�

+ i�2�R − �Y3�� + �R� + �Y4�����Rcb − Rbc

2
�

+ �X1�� + �R��Raa − Rbb� + �X1����Raa − Rcc� = 0,

�26�

− �2�R + 2��1VCC + �X3�� + �R� + �X4�����Rcb − Rbc

2
�

+ i�2�R − �Y3�� + �R� + �Y4�����Rcb + Rbc

2
�

+ �Y1�� + �R��Raa − Rbb� − �Y1����Raa − Rcc� = 0.

�27�

Here the different Doppler-broadened rates have the follow-
ing forms:

�X1��� = ��C�P

2
�VX��� , �28�
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�X2��� = ��C
2 + �P

2

2
�VX��� , �29�

�X3��� = ��C
2

2
�VX��� , �30�

�X4��� = ��P
2

2
�VX��� , �31�

�Y1��� = ��C�P

2
�VY��� , �32�

�Y2��� = ��C
2 − �P

2

2
�VY��� , �33�

�Y3��� = ��C
2

2
�VY��� , �34�

�Y4��� = ��P
2

2
�VY��� , �35�

where

VX��� =
�/2
��u



−�

� e−v2/u2
dv

��/2�2 + �� − kv�2

=
��

ku
�1 − erf�p��e�p2−q2���� cos�2pq���� , �36�

VY��� =
1

��u



−�

� �� − kv�e−v2/u2
dv

��/2�2 + �� − kv�2 , �37�

with p=� / �2ku� and q���=� / �ku�.
From the above set of equations using these Doppler-

broadened rates, we finally obtain the steady-state value of
Rab which yields 	ab,

Re�Rab� = −
�X3�� + �R�

�C
Im�Rcb� −

�Y3�� + �R�
�C

Re�Rcb�

+
�Y4�� + �R�

�P
�Raa − Rbb� , �38�

Im�Rab� =
�X3�� + �R�

�C
Re�Rcb� −

�Y3�� + �R�
�C

Im�Rcb�

−
�X4�� + �R�

�P
�Raa − Rbb� , �39�

where Re�Rcb�= �Rcb+Rbc� /2 and Im�Rcb�= �Rcb−Rbc� /2.
The susceptibility for the Doppler-broadened medium is

given as

� = ARab, �40�

where A is the normalization constant, which is obtainable
from the initial probe transmission at resonance in the ab-
sence of the coupling field.

IV. RESULTS

We now test the validity of our theory by comparing our
predictions against known experimental results in hot vapors,
viz., in a He� cell �8�. For He�, collisions are expected to
play a favorable role through five different effects: �i� VCCs
enable one to span the entire Doppler profile quickly and
efficiently during optically pumping; �ii� collisions aid in the
feeding distortion in pumping back more atoms in �b� com-
pared to that in �c� when they are entering the beam; �iii�
collisions increase the transit time of the atoms through the
beam and hence the Raman coherence lifetime �16�; and �iv�
this is possible because collisions involving He atoms in the
zero spin and angular momentum ground state do not depo-
larize the colliding He� �24�; and �v� Penning ionization
among identically polarized He� atoms is almost forbidden
�25�.

We probe the general dependence of various features of
interest—Doppler-averaged Fano-like transmission profiles,
the variation in the EIT width, the peak transmission, and the
group delay with the coupling intensity—on the following
system characteristics: the VCC parameter �, the unequal
atomic influx parameter �, the Raman decoherence rate �R,
and the initial transmission T0 which carries the information
about the number density of the participating atoms. In our
model, the effect of collisions is incorporated through colli-
sional dephasing of both the optical and Raman coherences
given in Eqs. �1� and �2�, the collision-induced diffusive �as
opposed to ballistic� transit rate �t of the atoms, a complete
redistribution of the atomic population over all velocity
classes leading to a velocity-independent optical pumping
under rapid VCC coverage, and the VCC decoherence rate
�1VCC entering when the VCC parameter ��0. For the He�

system, we find that the decoherence due to VCC is very
small. As � is a deviation from the complete polarization
conservation by VCC, it should not depend on the beam size.
We choose a value of �=10−4, which helps us to obtain good
fits to the measured evolutions with the coupling intensity for
each of EIT width, peak transmission, and group delay for all
the measured beam diameters, with �1VCC=107 s−1, which is
simply the number of collisions per second as mentioned
earlier. The excess incoming rate ���t /2��	bb�v�−	cc�v�� to
state �b� over �c� also has a distinct impact on the various
features. In particular, the parameter �=0.1 gives satisfac-
tory results in comparing the theoretical results with the ex-
perimentally measured evolutions. With the precisions of our
measurements in He�, a constant value of � is found to fit
well for all beam diameters. The choice of the best-fit values
of the parameters � and � for the He� system has been elabo-
rated using the group delay plots in Sec. IV D below.

There was a slight overestimation of the initial transmis-
sion T0 for the EIT experiments in He�, reported in Ref. �8�,
directly from the measured values, which included an effect
of partial saturation by the probe power. This has been ad-
justed in the present paper.

A. Doppler-broadened Fano-like profiles

When the coupling beam frequency is no longer at the
center of the Doppler profile, transmitted intensity profiles
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become asymmetric. This is similar to the Fano profiles ob-
tained in the case of EIT in a homogeneously broadened
medium and which have been shown to be due to interfer-
ences between a direct process and stimulated Raman scat-
tering in the overall transition probability �11,12�. However,
here, these profiles are modified by the fact that they have to
be convoluted with the inhomogeneous Doppler profile. Fig-
ure 2 shows the evolution of the transmission versus Raman
detuning �R for different values of the detuning � of the
coupling beam with respect to the center of the Doppler pro-
file. On the left-hand side, the measured values through a
He� cell with initial transmission at resonance T0=0.56 for a
beam diameter of 1.5 cm, a coupling power of 11 mW, and a
probe power of 140 
W are reproduced from Ref. �8�. The
base of the symmetric �black� curve at resonance corre-
sponds to a transmission higher than 0.56 because of partial
saturation of the medium by the probe intensity.

Theoretically, the transmission profiles are generated from
the imaginary part of the susceptibility at different detunings
� of the coupling beam with respect to the center of the
Doppler profile mentioned above. The corresponding plots
on the right-hand side of Fig. 2 are obtained for a beam
diameter of 1.5 cm corresponding to different values of �,
with the same initial transmission, coupling, and probe pow-
ers as in the experiment, using �R /2�=4.3 kHz, �t /2�
=0.41 kHz, �=10−4, and �=0.1. The transmission profiles
at all values of � increase slightly with an increase in �. This
is also seen in the behavior of peak transmission shown in
Sec. IV C. This has been checked for a range of � from 0 to
0.1. There is a distinct and sensitive dependence on �, as the
tip of each profile decreases slightly with an increase in �,
and the effect is the largest on the resonant profile. As a
result, there is also a change in the relative placement of the
profiles. This has been checked for a range of values of �
from 10−3 to 0. The reason for this is simple. Since a devia-
tion of the value of � from 0 indicates a loss of coherence,
the transmission at resonance will be greater for � closer to 0

because the system is more coherent as � approaches 0. Ad-
ditionally, the effect will be more pronounced when the
atomic system is in resonance with the two fields, which is
the condition for a perfect EIT. We thus find that the predic-
tions from our model indeed agree very well with the experi-
mental results. The quantitative agreement is indeed very
striking within the precision of the reported measurements,
limited by variations in the density of atoms due to uncon-
trolled variations in the discharge power. The best-fit values
of Raman coherence decay rate �R, transit rate �t, VCC pa-
rameter �, and unequal atomic influx parameter � emerging
from the above data sets for He� are used in all the other
features of EIT probed below.

B. EIT width

The mechanism of decoherence in EIT in a room-
temperature gas can be probed by measuring the width of the
EIT resonance as a function of the coupling beam intensity.
As mentioned in Sec. I, the theoretical treatment of EIT in
Doppler-broadened gases �5�, assuming the population ex-
change between the lower levels to be the main source of
decoherence, predicts a nonlinear dependence for weak cou-
pling powers: the EIT width is expected to evolve with the
coupling beam Rabi frequency �C �26� according to

�EIT �
�C

2

4�eff
, �41�

where �eff gives the effective width over which the atoms are
pumped into the probe ground state for a fixed value of �C.
In the case when �C��inhom=2�2�R /�WD, �eff is depen-
dent on �C and �R:�eff=�C

��0 /8�R, and the coherent
population trapping is shown to be velocity selective, i.e., it
occurs only for those atoms whose frequencies are close to
resonance with the coupling field. In the opposite regime,
when �C��inhom, Javan et al. �5� predicted that �eff=WD,

FIG. 2. �Color online� Evolution of the transmission versus Raman detuning �R for different values of the detuning � of the coupling
beam with respect to the center of the Doppler profile: on the left-hand side, the measured values through a He� cell with T0=0.56 for a beam
diameter of 1.5 cm, a coupling power of 11 mW, and a probe power of 140 
W with �a� �=0 �black, triangles�, �b� �=0.4 GHz �magenta,
open circles�, �c� �=1.0 GHz �green, diamonds�, �d� �=1.4 GHz �blue, crosses�, and �e� �=2.1 GHz �orange, open squares� are repro-
duced from Ref. �8�. On the right-hand side, theoretical evolutions of the transmission versus Raman detuning �R, corresponding to those
obtained experimentally, are shown with �a� �=0 �black�, �b� �=0.4 GHz �magenta�, �c� �=1.0 GHz �green�, �d� �=1.4 GHz �blue�, and
�e� �=2.1 GHz �orange�, using �R /2�=4.3 kHz, �t /2�=0.41 kHz, �=10−4, and �=0.1.
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i.e., in the limit of very large intensity, it is reduced to the
power-broadening case.

In contrast, in Ref. �7� it is assumed that all the atoms
across the Doppler profile are initially optically pumped by
the coupling beam to the probe ground level, and the deco-
herence in the lower states is caused by pure dephasing and
not population exchange. Then the response of the medium
up to first order in probe field yields the following linear
dependence of the EIT linewidth on the coupling beam in-
tensity:

�EIT = 2�R +
�C

2

2WD + �
. �42�

An example of the evolution of the EIT width versus the
intensity of the coupling beam is displayed in Fig. 3�a�. In
the experiment with He� �8�, the logarithm of the transmitted
intensity is calculated and its full width at half maximum
�FWHM� is then measured in order to determine precisely
the width of the susceptibility � of the medium. The mea-
sured subnatural ���� widths for a beam diameter of 1.5 cm,
a probe power of 100 
W, and an initial transmission T0

=0.46 are shown as dots. Theoretically, the imaginary part of
the susceptibility is fitted with a Lorentzian to obtain the
FWHM corresponding to a particular coupling intensity. The
continuous line in Fig. 3 is the best fit from our model with
the same parameters as in the experiment, using �R /2�
=4.3 kHz, �t /2�=0.41 kHz, �=10−4, and �=0.1. The EIT
width �EIT is seen to evolve linearly with the coupling beam
intensity, i.e., quadratically with the coupling beam Rabi fre-
quency �C.

With the experimental parameters ��=1.4�108 s−1 at 1
Torr, �R=104–105 s−1, and WD /2�=0.9 GHz� �8�, one ob-
tains 108 rad /s��inhom�4�108 rad /s. Since the maxi-
mum Rabi frequencies �C used in the experiment are smaller
than 5�107 rad /s, the measurements are in the first regime
in �5�, where �C��inhom. Thus �EIT is predicted to evolve
linearly with �C �5�, with a slope depending on �R, but these
predictions are violated in the experiment. If we use Eq. �41�
to fit the linear evolution of �EIT versus the coupling inten-
sity, we obtain �eff /2�=0.5 GHz, which is of the same order
of magnitude as WD /2�, showing that a major part of the
Doppler profile takes part in the EIT process.

FIG. 3. Evolution of the EIT window width versus coupling beam intensity for a beam diameter of 1.5 cm with a probe power of
100 
W: �a� the experimentally measured values for T0=0.46, reproduced from Ref. �8�, are shown as dots along with the theoretical best
fit �continuous line� from our model using �=10−4, �=0.1, �R /2�=4.3 kHz, and �t /2�=0.41 kHz. �b� Predictions from our model for
different values of the Raman decoherence rate: �i� �R /2�=3.2 kHz �dashed�, �ii� �R /2�=4.3 kHz �continuous�, and �iii� �R /2�
=5.2 kHz �dotted�, with the rest of the parameters the same as in �a�. �c� Predictions from our model for different values of the VCC
parameter: �i� �=10−3 �dashed�, �ii� �=10−4 �continuous�, and �iii� �=0 �dotted�, with the rest of the parameters the same as in �a�. �d�
Predictions from our model for different values of the optical coherence decay rate: �i� � /2�=0.1 MHz �dashed�, �ii� � /2�=22.3 MHz
�continuous�, and �iii� � /2�=150 MHz �dotted�. The continuous line is the same in all the figures.
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In our model we achieve the straight line feature of �EIT
versus coupling intensity as in Ref. �7� but without any as-
sumptions of special initial conditions. Moreover, if the data
are fitted to the straight line given by Eq. �42�, the resulting
estimate of �R /2� does not reproduce accurately the mea-
sured evolutions of the peak transmission and delay �8,27�.
Our present model fits the straight line data for atomic 87Rb
vapor at temperatures of 60–100 °C given in Ref. �7�, with
appropriate values of the parameters for the optically thick
system.

Keeping all other parameters constant, a change in the
initial transmission T0, and hence in the number density of
the participating atoms in the cell, does not affect the evolu-
tion of the EIT width with coupling intensity in our model.
Likewise, a change in the unequal feeding parameter � does
not produce any visible change in the EIT width. This has
been checked for a range of values of �=0–0.5. This is
understandable as these two parameters do not affect the Ra-
man coherence lifetime but affect the pumping efficiency
�e.g., the fraction of atoms that participate in the EIT phe-
nomenon�.

Figure 3�b� shows the variation in the EIT width with the
coupling intensity from our model for different values of the
Raman decoherence rate �R around the best-fit value, keep-
ing �, �, and T0 constant. It clearly shows that the slope of
the evolution is the same for different values of �R. Note that
different laser beam diameters would lead to different transit
times of the atoms through the beam and hence different �t.
The motion of the atoms through the beam is assumed to be
diffusive, as stated previously, because of the large number
of collisions they undergo. The Raman decoherence rate �R
given by Eq. �15� thus contains a variable �t plus other
terms. For the He� measurements, we estimate that ��R
−�t� /2�	4 kHz for a low pressure of 1 Torr and an ambi-
ent magnetic field inhomogeneity. This is obtained by esti-
mating first �t for a particular beam diameter and then �R
from the best fit of �primarily� the EIT-width data. In the
experiment, the beam diameters are generally not precisely
known because the beam emerging from the acousto-optic
modulators is not perfectly Gaussian. This affects the precise
determination of the transit times as well as beam intensities
�the probe and coupling powers measured before the He� cell
were, of course, their average values� and Rabi frequencies.
We have, however, checked that the experimental data for
different beam sizes yield the �t values following the diffu-
sive transit scenario.

Figure 3�c� shows the variation for different values of the
VCC parameter �. The slope of the evolution is the same for
different values of � but the intercept increases with an in-
crease in �. From Figs. 3�b� and 3�c�, the width intercepts at
�C=0 are seen to depend on the parameters �R and �, yield-
ing a narrower resonance for a lower �R or a lower �. How-
ever, the lines do not fit Eq. �42�, with �R in Ref. �7� simply
replaced here by �R+��1VCC. As pointed out earlier, in the
density-matrix equations, the VCC contribution gets added to
the transit-time decay �and hence the Raman coherence re-
laxation� rate as ��1VCC, except in the inhomogeneous term
signifying atomic influx in the populations in the lower lev-
els at the transit rate �t which has no contribution from the
VCC. It is therefore not surprising that the net effect of �
cannot be taken care of by �t or �R.

Figure 3�d� shows the variation in the EIT width with the
coupling intensity from our model for different values of the
optical coherence decay rate �. The slope of the line changes
inversely with changes in the values of WD and �.

C. Peak transmission

We next consider the maximum probe transmission at
resonance ��=0� corresponding to different coupling inten-
sities. Figure 4�a� shows the evolution of the cell transmis-
sion versus coupling beam intensity. The measured values
�dots� through a He� cell for a beam diameter of 1.5 cm are
reproduced from Ref. �8�. The corresponding continuous
curve is obtained from our theory by calculating the trans-
mission at two-photon resonance �R=0, with �=10−4, �
=0.1 at the same initial transmission and probe power as in
the experiment: probe power of 70 
W, T0=0.46, �R /2�
=4.3 kHz, and �t /2�=0.41 kHz.

Using the same hypotheses as for the derivation of Eq.
�42� �7�, the peak transmission is predicted to evolve as �8�

ln�T� =
ln�T0�

1 +
�C

2

2�R�2WD + ��

. �43�

It is seen that there is a better agreement of the experimental
result with our present theory than what was obtained using
Eq. �43� in Ref. �8� with the value of �R deduced from the
EIT-width data, in spite of the fact that we do not assume
	bb�t=0�=1, i.e., a system perfectly prepared by optical
pumping at t=0 as in Ref. �7�, which is redundant here in the
presence of rapid VCC coverage.

Figure 4�a� also shows the variation in the peak transmis-
sion with the coupling intensity from our model for different
values of the VCC parameter �. The dotted and the dashed
plots correspond to �=0 and 10−3, respectively. It can be
thus inferred that the peak transmission increases with a de-
crease in �. This also has support from the effect of � on the
Doppler-broadened profiles in Fig. 2 for the same reason.
The best-looking fit for �=10−4 emphasizes that the depolar-
ization due to VCCs is a small effect, as expected from the
work of Shlyapnikov et al. �25�.

Figure 4�b� shows the variation in the peak transmission
with the coupling intensity from our model for different val-
ues of the Raman decoherence rate �R around the best-fit
value when �, �, and T0 are kept constant �28�. It is clear
that a lower decoherence rate �R leads to a more coherent
system, and thus �R /2�=3.2 kHz �dashed curve� yields the
highest peak transmission compared to the rest shown in this
plot. Thus the evolutions from our model are consistent with
our physical understanding. Also note that Figs. 4�a� and 4�b�
show that an increase in �R has a similar effect as an increase
in �.

Figure 4�c� shows the same for different values of the
unequal feeding parameter � from the theory. The effect of �
here is clearly very distinct. As � increases, there are more
atoms entering the laser beam in the dark state �b�. Thus, the
peak transmission at two-photon resonance will also increase
as the transparency is more when more atoms can participate
in the EIT phenomenon.
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Figure 4�d� shows the effect of different values of the
initial transmission T0. It is obvious that a higher initial
transmission T0 would lead to a higher peak transmission for
nonzero coupling intensities.

D. Group delay

Figure 5�a� shows the measured evolution of the group
delay �through a He� cell of length 2.5 cm� versus coupling
beam intensity for a beam diameter of 1.5 cm �dots�, repro-
duced from Ref. �8�. The results have been obtained with
Gaussian probe pulses of duration of 70 
s with a peak
power of 35 
W and with the coupling and probe beam
frequencies at the center of the Doppler profile ��=�R=0�.

In the slow-light experiments performed with He�, re-
ported in Ref. �8�, the measured delays for nonzero coupling
intensities were slightly overestimated as the reference used
was the probe pulse in the absence of a coupling beam.

Theoretically, the group delay is calculated from the de-
rivative of the real part of the susceptibility with respect to
frequency at two-photon resonance for the experimentally

used parameters. The continuous curve in Fig. 5�a� is the best
fit obtained from our model with �R /2�=4.3 kHz, �t /2�
=0.41 kHz, �=10−4, and �=0.1 for the same probe power
of 35 
W and the same initial transmission T0=0.46 as in
the experiment.

The group velocity derived �8� from the susceptibility in
Ref. �7� leads to a group delay at the line center ��=�R
=0� given by

g = − ln�T0�
�2WD + ���C

2

�2�R�2WD + �� + �C
2 �2 . �44�

The maximum value of the group delay is reached for �C
2

=2�R�2WD+�� and its value is −ln�T0� /8�R. Again, there is
a better agreement of the experimental results with our
present theory than what was obtained in Ref. �8� using Eq.
�44�, with the value of �R deduced from the EIT-width data.

Figure 5�a� also shows the comparison of the group delay
profiles from our theory for different values of �=10−3

�dashed curve� and 0 �dotted curve� around the best-fit value

FIG. 4. Evolution of the cell transmission versus coupling beam intensity for a beam diameter of 1.5 cm with a probe power of 70 
W
and T0=0.46: �a� the experimentally measured values through a He� cell, reproduced from Ref. �8�, are shown as dots, along with the
theoretical best fit �continuous curve� from our model using �=10−4, �=0.1, �R /2�=4.3 kHz, and �t /2�=0.41 kHz. Also shown are the
predictions from our model for different values of the VCC parameter: �=10−3 �dashed� and �=0 �dotted�. �b� Predictions from our model
for different values of the Raman decoherence rate: �i� �R /2�=3.2 kHz �dashed�, �ii� �R /2�=4.3 kHz �continuous�, and �iii� �R /2�
=5.2 kHz �dotted�, with the rest of the parameters the same as in the continuous fit in �a�. �c� Predictions from our model for different values
of the unequal feeding parameter �: �i� �=0 �dashed�, �ii� �=0.1 �continuous�, and �iii� �=0.5 �dotted�, with the rest of the parameters the
same as in the continuous fit in �a�. �d� Predictions from our model for different values of the initial transmission: �i� T0=0.4 �dashed�, �ii�
T0=0.46 �continuous�, and �iii� T0=0.6 �dotted�, with the rest of the parameters the same as in the continuous fit in �a�. The continuous curve
is the same in all the figures.
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corresponding to �=10−4 �continuous curve� for the 1.5 cm
diameter beam. The magnified part shown in the inset justi-
fies the choice of the VCC parameter value of �=10−4 for
the measured data for He�, which is distinct from that of �
=0. As mentioned earlier, the measured data were overesti-
mated and a good fit running slightly below the data points
would require a sensitive adjustment of ��0 �as shown�.

Figure 5�b� shows the comparison of the group delay pro-
files from the theory for different values of �R around the
best-fit value for the 1.5 cm diameter beam. �R indeed has a
great impact on the delay which is clear because the lower
the value of �R �for example, the dashed curve for �R /2�
=3.2 kHz�, the more the coherence is, hence the higher the
delays achieved in the system.

Figure 5�c� shows the same as above for different values
of � around the best-fit value for a range of � from 0 to 0.5.
We see that with an increase in �, the delays at different
coupling intensities decrease. On comparison with the plots
of peak transmission for different values of � in Fig. 4�c�,

one deduces that the effects of � on these two characteristics
are opposite. We can understand this as follows. If an in-
crease in � increases the peak transmission �as seen and
explained above�, then from the relationship of resonant peak
transmission and delay, it becomes clear that an increased
transmission would lead to a decrease in the group delay.
This is also manifested in Eqs. �43� and �44�. The inset at a
magnified scale shows the comparison of the plots for �=0
and �=0.1 with reference to the measured data points—it is
clear that �=0.1 provides a distinctly better fit than �=0.

Figure 5�d� shows the comparison of the group delay pro-
files from the theory for different values of T0 around the
best-fit value for the 1.5 cm diameter beam. The group delay
increases with a decrease in T0 and the effect is also sup-
ported by Eq. �44�. A decrease in the initial transmission in
the absence of the coupling field signifies a proportionate
increase in the number of participating atoms. T0, however,
does not affect the EIT width. Thus the delay-bandwidth
product, which is a figure of merit for a delay or storage

FIG. 5. Evolution of the group delay with the coupling intensity for a beam diameter of 1.5 cm, with a probe power of 35 
W and
T0=0.46: �a� the experimentally measured values through a He� cell, reproduced from Ref. �8�, are shown as dots, along with the theoretical
best fit �continuous curve� from our model using �=10−4, �=0.1, �R /2�=4.3 kHz, and �t /2�=0.41 kHz. Also shown are the predicted
variations from our model for different values of the VCC parameter: �=10−3 �dashed� and �=0 �dotted�. �b� Predictions from our model
for different values of the Raman decoherence rate: �i� �R /2�=3.2 kHz �dashed�, �ii� �R /2�=4.3 kHz �continuous�, and �iii� �R /2�
=5.2 kHz �dotted�, with the rest of the parameters the same as in the continuous fit in �a�. �c� Predictions from our model for different values
of the unequal feeding parameter �: �i� �=0 �dashed�, �ii� �=0.1 �continuous�, and �iii� �=0.5 �dotted�, with the rest of the parameters the
same as in the continuous fit in �a�. �d� Predictions from our model for different values of the initial transmission: �i� T0=0.4 �dashed�, �ii�
T0=0.46 �continuous�, and �iii� T0=0.6 �dotted�, with the rest of the parameters the same as in the continuous fit in �a�. The continuous curve
is the same in all the figures.
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medium, turns out to be proportional to the number density
of the medium.

In comparison to the width and the peak transmission
plots shown in Figs. 3 and 4, respectively, we note that �R,
�, �, and T0 have a greater impact on the delay as seen from
Fig. 5, especially in determining the peak of the delay curve.

V. CONCLUSIONS

We have presented an analysis of EIT and slow light in a
hot atomic vapor, taking into account all the relevant deco-
herence processes, for arbitrary strengths of the probe and
the coupling fields, and without assuming any special initial
condition. We have considered the influx of fresh atoms in
the lower levels and the outflux from all the levels at a transit
rate in the gas. Unlike the theory for EIT in a Doppler-
broadened medium in Ref. �5� in which the role of collisions
is completely neglected, our analysis includes phase-
interrupting collisions of active atoms as well as velocity-
changing collisions, modeled effectively in the strong-
collision limit. We have demonstrated the role of VCCs in
redistributing the atomic population over all velocity classes
and hence a velocity-independent optical pumping. The ini-
tial condition of 	bb=1, i.e., a system perfectly prepared by
optical pumping at t=0 in Ref. �7�, is redundant here in the
presence of rapid VCC coverage.

The steady-state solutions for the atomic density-matrix
elements are presented in the strong-collision approximation
with a model for the VCCs under rapid VCC coverage. A
value of the VCC parameter ��0 indicates a loss of coher-
ence by VCCs. As observed from the results, all the EIT
characteristics have a sensitive dependence on �. In our ex-
ample of the He� system �8�, it was found that a small value
of �=10−4 gives the best fits for all the measured character-
istics for different beam sizes.

For He�, the motion of the atoms through the beam is
assumed to be diffusive because of the large number of col-
lisions they undergo. Further, because of diffusion and favor-
able collisions outside the interaction region, we have al-
lowed a slightly greater fraction of atoms to enter the beam
prepared in state �b� than those in state �c� using a parameter
�. The best fit value of ��0 supports this fact. For all sys-
tems in which other decoherence effects are small so that
atoms can diffuse out of the interaction region and return
before decohering, the unequal feedback fraction would
model such a positive contribution to the coherence, similar
in effect to a decrease in the number density or an increase in
the initial transmission T0. A constant value of � is found to
fit different beam sizes, given the precision of the reported
measurements.

For nonzero detunings � of the coupling field from the
center of the Doppler-broadened transition frequency, the
transmitted intensity profiles become asymmetric about the
two-photon resonance �Raman detuning �R=0�. This Fano-
like feature is a signature of the two-photon process of EIT
and emerges naturally from our model. The EIT width �EIT,
simulated from our model, shows a linear dependence on the

coupling beam intensity, i.e., a quadratic dependence on the
coupling beam Rabi frequency �C, as observed in experi-
ments. The evolutions of the peak transmission and the group
delay with the coupling beam intensity predicted from our
analysis faithfully reproduce the experimentally observed be-
haviors. Note that one needs to use the same values of the
parameters �, �, and �R for the fits of each of EIT width,
peak transmission, and group delay evolutions. Of these, the
group-delay plots are seen to have a very sensitive depen-
dence on the parameters, and the best-fit values are thus cho-
sen by trial and iteration over each measured feature. In the
evolution of all these features of interest, an increase in the
Raman decoherence rate �R seems in general to have a simi-
lar effect as an increase in the VCC parameter �. But what-
ever the beam diameter, � should remain constant, while �t
and hence �R should decrease when the beam diameter in-
creases �keeping �R−�t constant�.

The fitting parameters in our theory are � for characteriz-
ing the decoherence due to velocity-changing collisions and
� for the unequal atomic influx in the two lower states. The
other relaxation parameters �for optical coherence and tran-
sit� should be known for the system concerned. In order to
determine the Raman decoherence rate �R, the collisional
and environmental dephasing rates may also be adjusted or
estimated from the theoretical best fits. All these rates would
be different for different systems. However, the general fea-
ture of the linear dependence of the EIT width on the cou-
pling intensity, as seen in �6–8�, emerges from our theory,
without any special assumptions, and as such, our model
would be applicable to all such cases, with appropriate val-
ues of the parameters chosen for specific samples.

EIT has recently found applications in white-light cavities
�29� for use in gravitational wave detection. For applications
of slowing of light for use in quantum-information process-
ing, and in particular, in quantum memory, the medium
needs to be optically dense. Our model would work for such
systems of hot atomic vapor, which are attractive candidates
for practical applications requiring large-bandwidth control-
lable delays, for example, for signal processing at the appro-
priate wavelength. The system can be generalized to model
tripodlike systems �30� in hot vapor.
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