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rigorous output density operator representations and their trace distance bounds are developed for classical and
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work on quantum illumination is discussed as an example of our no-go approach.
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I. INTRODUCTION

Electromagnetic fields are widely used for communica-
tion, sensing, and precision measurement including the on-
going efforts on the detection of gravitational radiation. The
quantum states of the electromagnetic fields that are com-
monly produced from conventional sources are either the
coherent states or their random mixtures, which constitute
the class of classical states of the radiation fields. It has long
been known that states outside this class, the nonclassical
states such as squeezed states �1,2� and photon number
eigenstates, could lead to dramatic performance improve-
ment in the ideal limit for the above-mentioned applications.
This happens for just a single space-time field mode with a
given average energy, so that the total excited field is still
fully space-time coherent. On the other hand, it is also well
known �1,2� that noise and especially loss puts a serious limit
on the advantage of nonclassical states compared to classical
ones.

Recently, the effects of quantum entanglement have
aroused a great deal of interest in the area of quantum infor-
mation. An entangled quantum state of the radiation field is
necessarily nonclassical. It offers the possibility that one
component of the two entangled subsystems may avoid, at
least in the ideal limit, the action of noise and loss by being
retained locally, while the other component would be sent
out to the environment with loss necessarily introduced into
it and perhaps noise also. A prime example is a �monostatic�
radar system in which one component of the entangled state
is transmitted for target detection. A main question is the
following: can such an entangled system provide significant
advantage when only the transmitted mode is significantly
corrupted by loss and noise?

The answer to this question is clearly quantitative and
also depends on the specific performance criterion under
consideration. If the loss and noise is very small, we would
expect large advantage comparable to the ideal lossless and
noiseless limit, and if they are sufficiently big, we would
expect no meaningful advantage. In this paper, we try to

quantify the answer generally by comparing the density op-
erator of the total received state from a nonclassical trans-
mitted state to that obtained from a classical transmitted state
of comparable energy. For the case of one or two field
modes, and when the total received state is classical, we give
explicit trace distance bounds between these two density op-
erators, which in turn quantify the performance difference
for any criterion of interest. In the general multimode case,
we delineate conditions under which the two density opera-
tors described above fall into the same equivalence class, in
practice at least, so that a practical no-go result is obtained
which indicates no meaningful performance advantage can
be obtained from the use of entangled and also nonclassical
states in general—this no-go applies when the transmittance
��1 in all the modes.

The results of Sec. IV are obtained under the condition
that the total received state is classical as a result of noise
added to the nonclassical transmitted state. Note that a re-
ceived state that is classical from channel loss and noise does
not imply that it can be obtained from a classical transmitted
state. A striking example is the case of “quantum illumina-
tion” discovered recently �3,4�, where our general no-go ap-
proach applies, even though the loss is not large in the modes
held at the transmitter. A practical no-go obtains at optical
frequencies and below, as detailed in Sec. V, since one pho-
ton per mode translates into a small power at such frequen-
cies. Except in the case of high loss in all modes to which
our practical no-go applies, the general question of advan-
tage obtainable from the use of nonclassical states is open—
viz., there is no definite rigorous result that would show
whether or not significant advantage can be obtained.

In Sec. II we review some basic facts of particular rel-
evance from quantum optics. The classicalization theorem,
which indicates how close to classical any quantum state
becomes in the presence of loss and noise, is established in
Sec. III. In Sec. IV rigorous trace distance bounds for the
receiver states obtained from classical versus nonclassical
transmitted states are derived. In Sec. V general arguments
are presented that identify such receiver states as “equiva-
lent” at least in practice and the quantum illumination ex-
amples are discussed. Concluding remarks are given in Sec.
VI.*yuen@eecs.northwestern.edu

PHYSICAL REVIEW A 80, 023816 �2009�

1050-2947/2009/80�2�/023816�7� ©2009 The American Physical Society023816-1

http://dx.doi.org/10.1103/PhysRevA.80.023816


II. CLASSICAL VERSUS NONCLASSICAL STATES

For m bosonic modes described by a tensor product H=
� i=1

m Hi of infinite-dimensional Hilbert spaces Hi, let ��� �
=�i��i� be the coherent states of the modes, with ai��i�
=�i��i� for the ith modal annihilation operator ai. A joint
state � on H is a classical state if it can be represented as

� =� P��� ���� �	�� �d2�� , �1�

where P��� � is a true probability density function. Otherwise,
the state is nonclassical. A classical state is necessarily un-
entangled because Eq. �1� provides a separable form for it.
However, the marginal states, say the state of the signal or
idler mode—�s= tr i�si or �i= tr s�si—of an entangled �hence
nonclassical� state may be classical, as is the case for the
output of a downconversion process.

The following basic facts of quantum optics may be re-
called, which are of course applicable to any frequency. A
quantum state � is completely characterized by its character-
istic functions. The three common ones are the normally or-
dered, antinormally ordered, and symmetrically ordered
�Weyl� characteristic functions, which for a single mode are
defined as

�N��� = tr �e−�a†
e��a,

�A��� = tr �e��ae−�a†
,

�W��� = tr �e−�a†+��a. �2�

They are related by

�N��� = e���2/2�W��� = e���2�A��� . �3�

The Fourier transform of �W��� is the Wigner distribution
W���, that of �A��� is the Q function
Q���
	������ /�—both exist in the usual L1 sense. The
Fourier transform of �N��� is the P��� of Eq. �1� and exists
only in a subtle distributional sense. While Q��� is a smooth
true probability density, W��� is smooth but can take nega-
tive values. All these notions generalize immediately to the
multimode case for a canonical set of modal operators �ai�
with �ai ,aj

†�=�ij.
We have the following important result from Eq. �3�. The

characteristic function of a classical additive Gaussian noise
�AGN, here assumed to be zero mean and circularly symmet-
ric on the complex plane� random variable of variance n̄ is
�n̄���=e−n̄���2. In the Heisenberg picture, AGN can be repre-
sented as

b = a + n , �4�

where b is the output annihilation operator and n is a
c-number complex-valued random variable with the above
characteristic function. From Eqs. �3� and �4� it follows that
the addition of AGN with variance 1 is sufficient to turn any
state classical, which is a crucially important fact.

Lemma 1. For an arbitrary input state, the output state
after addition of Gaussian noise of variance 1 is classical.

Proof. Using the fact that the a and n modes in Eq. �4� are

statistically independent, we find that �N
b ���=�N

a ���e−���2

=�A
a��� from Eq. �3�, so that Pb���=Qa���	0. �
Lemma 2. If a state has a non-negative Wigner distribu-

tion W���, the output state after addition of Gaussian noise
of variance 1/2 is classical.

Proof. In this case we have Pb���=Wa���	0 by assump-
tion. �

This result shows that for states with non-negative W���
only 1/2 AGN noise photon per mode is sufficient to turn it
classical. It is easily verified that multimode generalizations
of lemmas 1 and 2 hold when statistically independent AGN
of variance 1 and 1/2, respectively, is added to each mode.

III. CLASSICALIZATION OF NONCLASSICAL
STATES IN LOSS AND NOISE

The usual linear loss is very detrimental to nonclassical
states as stressed in the beginning for squeezed states �1�, the
same being true for number states of large photon number
and indeed any nonclassical states. This can be seen easily
from the linear loss representation �1,2� between the output
annihilation operator b and the input annihilation operator a
of a loss map with transmittance �,

b = 
�a + 
1 − �c , �5�

where the joint state �ac=�a � �c with �c= �0�c	0�, the vacuum
state in the case of no added background noise. In Eq. �5�,
we have skipped the “�” for a=a � I, etc. on Ha � Hc, as
usual. For ��1, Eq. �5� shows that the mode b is largely
made up of the mode c in vacuum which is a classical state.
We will denote the linear loss completely positive �CP� map
by L�, so that �b=L��a.

From Eqs. �2� and �5�, the antinormally ordered charac-
teristic function �A

b��� of L�� is, for �a=� and �c= �0�c	0�,

�A
b��� = �A

a�
���e−�1−�����2. �6�

We use Gn to denote the CP map corresponding to Eq. �4�
with AGN of variance n. If an AGN of variance � is added to
L��, we have, for �o=G�L��,

�N
�o��� = �A

�o���e���2 = �A
��
��� , �7�

where the second equality follows on using Eq. �6�. In the
multimode case, let � be an arbitrary m-mode state, L�� the
linear loss CP map with transmittance �� = ��1 , . . . ,�m�, and
GN� the AGN CP map with noise variance N� = �N1 , . . . ,Nm�,
and again �o=G��L���. The noise probability density function
is again assumed to be zero mean and circularly symmetric
in each mode. We calculate as before that

�N
�o��� � = �A

��
�1�1, ¯ ,
�m�m� . �8�

The following theorem then asserts that in the presence of
transmittance vector �� , an AGN of variance N� =�� turns any �
classical, viz.:

Theorem 1 (classicalization theorem). The state �o
=G��L��� is classical for any state � and has the P represen-
tation
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P�o
��� � = ��

i=1

m
1

�i
�Q�� �1


�1

, . . . ,
�m


�m
� . �9�

Proof. Take the Fourier transform on both sides of Eq. �8�. �
Intuitively, a linear loss 1−� in each mode couples in an

AGN of variance N=1−�, which with the addition of a fur-
ther AGN of variance � furnishes enough noise to turn the
state classical, since any state becomes classical when an
AGN N=1 corresponding to the heterodyne vacuum fluctua-
tion level is added, as formalized in lemma 1. Thus, any
multimode � after a large loss �i�1, i� �1, . . . ,m� in each
mode is nearly classical differing from one such state �o
=G��L��� by an AGN map of variance only �� . This fact is the
ghost that haunts the use of any novel quantum state in any
situation with significant loss. In view of lemma 2, only an
AGN of variance �� /2� is needed when the input state � has
a non-negative Wigner distribution.

The application of the classicalization theorem to a sens-
ing problem that uses a nonclassical transmitter state � is as
follows. The sensor performance is determined by the re-
ceived state �out=L��, considering for now only a pure loss
channel L�. Consider transmitting instead the classical state
�̃=G1� of lemma 1. The received state in this case is

L��̃ = L�G1� = G�L�� = G��out 
 �̃out. �10�

The penultimate equality follows from the relation L�GN
=G�NL� which can be verified by following the Heisenberg
picture mode transformations given in Eqs. �4� and �5�. Thus,
the performance difference in the two cases is characterized
by the difference between the density operators �out and
�̃out=G��out. If � is small, the performance cannot be ex-
pected to be very different. In Sec. IV, the difference is quan-
tified using the trace distance in sensors for which additional
system noise makes �out classical.

IV. CLASSICAL VERSUS NONCLASSICAL STATE
COMPARISON VIA TRACE DISTANCE

We are interested in delimiting the parameter regions in
which nonclassical transmitted states could not lead to sig-
nificant performance gain compared to classical states. In
this section, strong quantitative results in the form of suffi-
cient conditions are provided in the case of a single transmit-
ted “signal” mode with or without entanglement to an “idler”
mode kept at the transmitter or receiver. These results are
obtained by developing trace distance bounds on the two
output states corresponding, respectively, to the nonclassical
transmitted state and a classical one containing one added
signal photon at the transmitter.

The trace distance bound can quantify the performance
difference of the two states in general as follows. For any
given positive operator valued measure �POVM� X corre-
sponding to a quantum measurement, let X�
� be the POVM
element representing the measurement result x�
 where 

is a Borel set on Rn. The probability of such a result when
the state is � is given by P��x�
�= tr �X�
�. Since �5�

�tr �X� � ���1�X� �11�

for any trace-class operator � with trace norm ���1 and
bounded operator X with the usual operator norm �X�, we
have the following:

Lemma 3. Let two states �1 and �2 have ��1−�2�1��.
Then the probability of any measurement result x�
 differs
at most by � for the two states, i.e.,

�P�1
�x � 
� − P�2

�x � 
�� � � . �12�

Proof. As P�i
�x�
�= tr �iX�
�, i=1,2, Eq. �12� follows

from Eq. �11� since �X�
���1 for any POVM element X�
�.
�

It is easy to see that any performance criterion of a system
in state � is a function of the probability P��x�
�. For typi-
cal criteria which do not diverge hugely for small differences
in P��x�
�, a sufficiently small � in Eq. �12� would guar-
antee the practical equivalence of �1 and �2.

Consider a nonclassical state �in which in loss 1−� and
AGN at the receiver leads to a received state �out which is
classical. In our notation, �out=GNL��in is classical. Such a
classical �out is not in general obtainable from a classical
transmitted state due to the fact that both G and L are one-
to-one maps on the space of density operators. This follows
from noting that the transformations of the characteristic
functions given in lemma 1 and Eq. �6� corresponding to G
and L are both one-to-one, so that only one input state cor-
responds to a given output state. �The mathematical invert-
ibility of the maps does not of course imply that the inverse
can be physically implemented.� Since an AGN of variance
=� turns the state L��in classical, we could compare �̃out
=G��out=GNG�L��in to �out. The former can be obtained from
a classical transmitted state �̃in=G1�in as mentioned before.
These two input states are related by

P�̃in
��� = Q�in

��� �13�

from the classicalization theorem. From Eq. �13�, the average
photon number in �̃in is greater than that in �in by one photon
per mode,

tr �̃ina
†a = 1 + tr �ina

†a . �14�

If the operating frequency is below x-ray frequency, one pho-
ton per mode corresponds to a tiny power that is negligible
though we will return to this issue later. Assuming for now
that the replacement of �in by �̃in is justified, we must now
compare �out to �̃out. This is achieved by the following:

Theorem 2. Let � be a single-mode classical state. Then

�� − GN��1 � 2�N/�N + 1��1/2. �15�

Proof. We have the following triangle inequality for any
norm � · � and a scalar function f�
�,

�� f�
�A�
�d
� �� �f�
���A�
��d
 , �16�

which follows from the integral as the limit of an infinite
sum and the preservation of inequality under limit. From
Eqs. �1� and �16� we have
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�� − GN��1 �� P�������	�� − GN����	����1d2� . �17�

From the Uhlmann upper bound �6� on trace distance we
have

����	�� − GN����	����1 � 2�1 − 	��������1/2, �18�

where ��=GN����	��� has Q��� given by �7�

Q����� =
1

��N + 1�
e−�� − ��2/N+1. �19�

Bound �15� follows from Eqs. �16� and �17�. �
It is clear from Eqs. �12� and �15� that there can be no

significant advantage with single-mode nonclassical states
for N=��1. It is also possible to compare the case where an
AGN of variance N at the receiver turns the state L��in clas-
sical already. In such a situation, we would be comparing
GN� and GN+�� for �=L��in. For the case N is not small, we
may use the following:

Theorem 3. For a classical state �,

��GN1
− GN2

���1 �
2�N1 − N2�

N2
, �20�

where we take N1	N2.
Proof. For � with P representation P���,

��GN1
− GN2

���1 =� d2�P����GN1
− GN2

�����	��� �21�

and so from Eq. �16�,

��GN1
− GN2

���1 �� d2�P�����GN1
− GN2

�����	����1.

�22�

From Eqs. �16� and �1�,

��GN1
− GN2

�����	����1 �� d2�

�
� 1

N1
e−�� − ��2/N1

−
1

N2
e−�� − ��2/N2� . �23�

By writing 1 /N1=1 /N2−� so that �=N1−N2 /N1N2, the
right-hand side of Eq. �21� is itself less than

� d2�

�N2
�e−�� − ��2/N1 − e−�� − ��2/N2� + �� d2�

�
e−�� − ��2/N1.

�24�

Bound �20� follows from evaluation of the integrals in Eq.
�24�. �

For the two-mode case, similar to the derivation in theo-
rem 3, we have the following:

Theorem 4. Let � be a two-mode classical state and N� a

= �N1
a ,N2

a� and N� b= �N1
b ,N2

b� be two-mode noise variance vec-
tors with N� a	N� b componentwise. We then have

��GN� a − GN� b���1 � 2�N1
a − N2

a

N2
a +

N1
b − N2

b

N2
b

+ 2
�N1

a − N2
a��N1

b − N2
b�

N2
aN2

b � . �25�

Consider the case of a two-mode entangled sensor where the
idler mode 2 is assumed perfectly preserved but there is loss
and noise in the signal mode 1 so that �� ��� ,1�, ��1, and
N� = �N ,0�. When the total received state is classical, bound
�25� yields the difference between �out and �̃out via

�GN� L����in − �̃in��1 � 2�/N , �26�

which shows that there can be no significant performance
improvement for any signal level.

In the multimode case, one may expect the trace distance
to increase as the states become more distinguishable. The
following multimode generalization of Eq. �15� can be ob-
tained via the following:

Lemma 4. For any operators A ,B ,C ,D and the operator
norm � · �,

�A � B − C � D�1 � �B��A − C�1 + �C��B − D�1. �27�

Proof. From A � B−C � D= �A−C� � B+C � �B−D�, we
have Eq. �27� from the triangle inequality and Eq. �11� where
� · � is the usual operator norm. �

If we apply Eq. �27� to ����	��−GN����	����1 and use the
bound ����1 for any state �, we obtain the following:

Theorem 5. Let � be an m-mode classical state. Then

�� − GN� ��1 � 2�
i=1

m � Ni

Ni + 1
�1/2

, �28�

where GN� is the multimode AGN map with vector variance
N� .

Note that the trace distance between any two states satis-
fies 0� ��1−�2�1�2, 0 when �1=�2 and 2 when �1 and �2
have orthogonal ranges. Thus, bound �28� is useful in the
case Ni�1 only when the sum on the right-hand side is less
than 1. For Ni�N�1, this is equivalent to a “bandwidth”
condition m�N−1/2. Thus, theorem 5 has the following im-
plication for sensors where �i���1 and an AGN of Ni
	� is present: for m��−1/2, one cannot expect any signifi-
cant improvement over classical states by transmitting quan-
tum states. This is because if the classical state satisfying Eq.
�13� is transmitted instead, the output GN̄� is little different
from the output � using whatever quantum state from Eq.
�26�.

One may expect that there may not be a generally useful
tight trace distance upper bound in the multimode case as
follows. Even without entanglement, the Hilbert-Schmidt in-
ner product of two multimode states � i�i and � i�i is
�itr �i�i, which tends to zero for a large number of modes
since tr ���1 for any ���. Thus, a small difference be-
tween � and � could be magnified arbitrarily by increasing
the number of modes as the total states become asymptoti-
cally orthogonal at least in the pure state case. In such a case,
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�� i�− � i��2→2. From the inequality �A�1	 �A�2, it follows
that the trace distance also tends to its maximum value 2.
However, this kind of “law of large numbers” effect also
occurs classically and is clearly not the kind of performance
improvement we are looking for from nonclassical states,
e.g., the large improvement possible with squeezed states for
just a single mode. On the other hand, the possibility of
multimode entanglement complicates the situation and there
is much to be learnt and quantified on the problem of clas-
sical versus nonclassical state comparison. In the following,
we present a different type of no-go argument via the notion
of a “practical equivalence class” of states that is applicable
to the multimode situation.

V. PRACTICAL NO-GO THEOREM

We employed the following no-go strategy in Sec. IV. If
the system output suffers an AGN at least as large as �� , then
it is a classical state given by Eq. �1� which can be obtained
from a transmitted classical state with one more photon per
mode due to the change from Q� · � to P� · � in Eq. �9�. We
asserted that this is an insignificant energy difference. The
output of such a classical transmitted state differs from the
output of an input � by just an AGN of variance �� . We
bounded the trace distance between these two outputs which
provides a universal quantitative bound on the probabilities
obtainable from any measurement on the two different states.
The results given in theorems 3–5 are not strong enough to
cover all relevant multimode possibilities. This is partly due
to the possibility of accumulating small advantages over
many modes to get a large one in an essentially classical
way.

However, for ��1, say ��10−10, it is intuitively clear
that an AGN of variance �� has no “practical meaning” in that
the system model is never accurate enough to make a noise
as small as the fraction � / �1−���� relative to the vacuum
fluctuation meaningful. States differing only by G�� for such
small �� can then not be experimentally distinguished and
thus fall in the same practical equivalence class. Perhaps
equally important is that it is difficult to give a meaningful
performance criterion that would depend on such a small
noise difference. Indeed, if such a situation is found to be
practically important, one must obtain the corresponding
mathematical system model to such a high accuracy first.
Thus, we find the following argument sufficient for no-go
with quantum sensors in the region �i�1 for all the modes.

�A� An increase in one photon per mode at the transmitter
can be seen to be a practically irrelevantly small amount at
optical frequencies and below for any one of the following
reasons:

�A1� It translates to a power of −10 dBm at 
�1 �m
even for the maximum bandwidth of W�1015 Hz and is
thus easily obtained from laser sources.

�A2� The amplitude fluctuation of a laser also by far ex-
ceeds one photon per mode for easily available moderate
source power.

�A3� It is hard to envisage scenarios in which one needs
to exclude such small increases in source power �although
they cannot be absolutely ruled out, as discussed below�.

Indeed, in a meaningful classical versus quantum compari-
son, the transmitter energy or power constraint itself is ex-
pressed by

NS � Nmax or PS � Pmax �29�

for per mode signal energy NS or total power PS, where the
Nmax and Pmax are determined by what can readily be
achieved in practice and can be tolerated for the given appli-
cation. Artificial restriction to smaller values would not re-
flect the true classical capability available.

�B� An AGN of variance ��1 is practically irrelevantly
small because it is a very small fraction of the vacuum fluc-
tuation noise 1−� introduced by way of the channel loss.
The system model does not have such accuracy in practice
and the system performance is not expected to vary markedly
under such a small change in the noise variance.

To elaborate and justify these points, we note regarding
�A1� that the average power PS and pulse duration � are
related via PS=��0NS /�, for NS the average photon number
per pulse. The total number of modes is M =TW, where W is
the signal bandwidth and T�� is the total signaling time. For
the best possible case of transform-limited pulses with �W
�1, we have

PS = ��0NSW . �30�

Note that the bandwidth W satisfies W��0 for carrier fre-
quency �0 and that the total number of pulses in time T is
T /�=M. For Ns�1, this gives a very small power at the
transmitter at optical frequencies and below, but could be
considerable at much higher frequencies. At 
�1 �m, 1 W
of power corresponds to �1019 photons per sec. With pico-
second pulses, Ns�1 corresponds to −40 dBm while a diode
laser used for optical fiber transmission already puts out 0
dBm or 1 mW. Clearly, this one-photon power is thus a tiny
fraction of what readily available laser sources give. Indeed,
the intensity fluctuation of such a source, i.e., the excess
noise in the parameter ���2 over and above the coherent state
quantum fluctuation, is typically a few percent, which is
many times this small power—this is our point �A2�. Note
also that for given P, NS cannot be made smaller than what
the bandwidth W allows, from Eq. �30�. Note also that at
x-ray frequencies and above, one photon per mode starts to
become a significant power so that �A� may not hold any-
more.

Our point �A3� states that the energy or power constraint
should be given by what is readily available from a classical-
state source and readily tolerated in the application of inter-
est, and NS and PS should not be restricted to an artificially
small range. It is important to note that it is source power
that one is concerned with in typical applications, and other
quantities of interest, including the total energy, scale propor-
tionately with the power for a fixed time interval T. If one
extends the total energy from small Ns in Eq. �30� with non-
classical source and long time interval T, one should com-
pare it with a classical state for the same T but an Nmax of Eq.
�29� that is much bigger as long as this extra energy is
readily available and readily tolerated by the system. With
that said, the numerical values of Nmax or Pmax depend on the
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application. It is conceivable that there may be scenarios
where Nmax and Pmax need to be smaller than the increases
stipulated by our classicalization theorem either for tactical
or physical reasons. We exclude such scenarios from the
scope of our no-go theorem.

In view of these considerations, we conclude that at opti-
cal frequencies and below, the difference of one photon per
mode at the transmitter that is needed for the equivalent in-
put classical state �̃in compared to �in is not relevant in typi-
cal practice. Indeed, we would argue that it is not relevant in
principle either so long as Nmax�1 in Eq. �29�. Physically
one cannot give a precise meaning to such a small fraction in
reality, and indeed the situation requires a fundamentally
more precise description if it is sensitive to such small
changes.

A similar consideration applies to point �B�. It is hardly
“physically” meaningful to consider an AGN of variance �
�1 to be relevant in the presence of another AGN of vari-
ance 1−� from either a practical point of view or from that
of a mathematical model of reality. As a consequence of �A�
and �B�, we argue the following:

Practical no-go on nonclassical transmitter in loss. If �i
�1 for all i, there is no practical difference between L��� and
G��L���, the latter being obtainable from a classical transmit-
ted state which has no practical difference in average power
from that of �.

Of course, the problem is, exactly speaking, quantitative.
When � is not too small, say ��10−1, the point �B� above
gets shaky while it is clearly valid for ��10−10. However, if
there is already some AGN with N� ��� in the system, the
argument is sufficiently strong for any value of �� because the
received state is classical for N� ��� . Even in the absence of
precise bounds as provided under more restrictive conditions
in Sec. IV, the AGN required for classicalization is just too
small to make any difference with the vacuum fluctuations
from loss already present. In fact, the above no-go is quan-
titative in that one can judge in any particular problem how
negligible AGN of variance � is in the background of an-
other AGN of variance 1−�.

In the case of entangled transmitter states where the kept
idler modes are assumed to suffer no noise or loss, the above
no-go theorem does not apply. If the total received state turns
out to be classical in such a case, it is because the noise
added to the receiver signal mode is sufficient to make the
total signal plus idler state classical. This occurs in the case
of the “quantum illumination” Gaussian state �4�, specifically
for the downconverter state that we call QI-DC here, where

��� = 
1 − �
�2�
n


n�n�a�n�b, 
 =
 Ns

Ns + 1
. �31�

In this case, it turns out that the addition of a single AGN
photon to the signal mode alone is actually sufficient to turn
the total signal plus idler state classical. Since state �31� is
Gaussian, the classicality of the state with one added signal
AGN photon may be verified by checking that its Wigner
covariance matrix is positive semidefinite.

For this entangled transmitter state scenario where the to-
tal received state is classical, a no-go can be formulated even

though the idler �i�1. Because one added photon in the
form of AGN to the signal mode makes state �31� classical,
the output received state for this classical input state is iden-
tical to the received state from the entangled transmitted state
�31� except for an additional AGN of variance=�s, the
signal-mode transmittance. Thus the points �A� and �B� of
this section imply a similar no-go for state �31� for �s�1.

This no-go bears directly on the results of �3,4�. The per-
formance gain in �3� obtained under rather general quantum
illumination states is predicated on single photon detection
which is not a realistic limitation for a receiver as pointed out
in �8�. More remarkable performance gain is reported in �4�
for QI-DC in the presence of large signal-mode receiver
noise NB�1 but small signal-mode energy Ns�1 per mode,
as compared to the performance of classical transmitted
states of the same Ns. Since theorem 4 or Eq. �25� precludes
such performance gain for a single pair of Eq. �31�, the per-
formance advantage is obtained in the multimode situation.
On the other hand, theorem 5 leads to a useless bound �28�
since the right-hand side is bigger than 2 for the case of large
m�105 and Ni�20 in the signal modes.

The QI-DC performance is surprising and is perhaps in-
dicative of the power of a multimode quantum receiver, but
is not totally surprising because Ns�1 is really a “micro-
scopic” quantum limit, and the advantage of QI-DC disap-
pears as Ns increases beyond 1. For a fixed Ns, arbitrary
advantage cannot be gained by increasing the total energy
N=MNs because the available mode number M is limited by
the bandwidth. Our practical no-go says that there is no ad-
vantage if the power corresponding to Ns=1 per mode is
negligible, which we have argued is indeed the case for vari-
ous reasons for realistic classical-state sources. The key rea-
son that no-go applies in the case of quantum illumination is
that AGN of small variance at the signal mode alone turns
the transmitted state classical. In a practical scenario where
power �30� corresponding to Ns�1 is required, perhaps be-
cause one wants to minimize the power hitting a target, re-
striction to such small Ns is difficult to reconcile with the fact
that the QI-DC advantage already requires NB�1. Indeed, it
seems to us that the small numerical value of Eq. �30� for
Ns�1 at optical frequencies and below suggests that it could
not make any real difference at the transmitter and much less
so at the target due to the large attenuation by �. However,
we leave open the possible advantages of QI-DC in scenarios
where Nmax is constrained to be small.

VI. CONCLUSION

We have developed some rigorous quantitative bounds
and density operator representations that differentiate the
performance that one may obtain by employing nonclassical
or entangled transmitter states as compared to classical ones.
The no-go results presented in Sec. IV are quite general and
criterion independent, except that they depend on the as-
sumption that the total received state is classical. In Sec. V, a
practical no-go theorem is enunciated that holds when there
is large loss in all modes. A similar result covers the sce-
narios involving the recent quantum illumination states. The
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general case of nonclassical transmitted states for moderate
loss and noise is very significant and is yet to be investigated
thoroughly. This is especially so for true multimode en-
tanglement that is not just a statistical accumulation of en-
tanglements between two modes.
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