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A theory of quantum damped oscillator with arbitrary time dependence of the frequency and damping
coefficient, based on the Heisenberg-Langevin equations with delta-correlated stochastic force operators, is
applied to the case of the dynamical Casimir effect in a cavity with a periodically photo-excited semiconductor
boundary. Accompanying results for the mean number of created photons, its variance, and the photon distri-
bution function are given. In the asymptotical regime, the field mode goes to the so-called superchaotic
quantum state.
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I. INTRODUCTION

Almost 40 years ago, Moore �1� showed that the motion
of neutral boundaries could result in a creation of quanta of
the electromagnetic field from the initial vacuum state. Since
then, this phenomenon, which is frequently called nowadays
as the dynamical Casimir effect �DCE�, was a subject of
numerous theoretical studies. However, the effect is ex-
tremely small, if the velocities of boundaries are much less
than the velocity of light. A possibility of its enhancement
inside cavities with oscillating boundaries under the condi-
tions of parametric resonance was pointed out in �2�, and
calculations performed in the frameworks of different ap-
proaches �3–6� confirmed this idea �extensive lists of publi-
cations related to the DCE can be found in �7–9��. Namely, it
was shown that a significant amount of photons could be
created from vacuum, if boundaries of a high-Q cavity per-
form small oscillations at a frequency which is multiple of
some cavity eigenfrequency. In particular, if a plane bound-
ary of a three-dimensional cavity performs harmonical oscil-
lations with an amplitude a at the frequency �w=2�0, where
�0 is the eigenfrequency of the lowest electromagnetic mode
in the cavity with fixed dimensions, then the mean number of
photons created from vacuum in this mode is given by the
formula �3�

�n��t� = sinh2���0t�3� , �1�

where �=a /� is the maximal relative displacement with re-
spect to the wavelength �=2�c /�0 and �=� / �2L0��1 is a
numerical coefficient, which depends on the cavity geometry
�L0 is the average distance between vibrating walls�. Under
realistic conditions, the value of � cannot exceed �3� �max
�10−8 for the lowest cavity mode with the frequency �0
�c� /L0, which makes an experimental observation of DCE
with really moving boundaries an extremely difficult task.

On the other hand, what one really needs to create pho-
tons from a vacuum is the possibility to change the reso-
nance frequency in a periodical way. This can be achieved
not only by changing the geometry, but by changing the elec-
tric properties of the walls or some medium inside the cavity.
Hence the idea of simulating “nonadiabatic Casimir effect”

and other quantum phenomena using a medium with a rap-
idly decreasing in time refractive index �“plasma window”�
was formulated by Yablonovitch �10�, who also pointed out
that fast changes of electric properties can be achieved in
semiconductors illuminated by laser pulses. Similar ideas
were discussed in �11�. Only recently was the possibility of
creating an effective “plasma mirror” in a semiconductor
slab confirmed experimentally �12�. This confirmation sup-
ported a proposal �called the motion-induced radiation �MIR�
experiment� �13,14� to simulate a motion of a boundary, us-
ing an electron-hole “plasma mirror,� which can be created
periodically on the surface of a semiconductor slab �attached
to some part of the superconducting wall of a high-Q cavity�
by illuminating it with a sequence of short laser pulses. The
amplitude of effective displacements is determined in such a
case by the thickness of the semiconductor slab, which can
be made up to a few millimeters, thus giving an effective
parameter ��10−2, instead of 10−8 for mechanically driven
mirrors.

The aim of this paper is to calculate statistical properties
of the quantum state of a selected mode of electromagnetic
field, created inside a cavity with a time-dependent semicon-
ductor mirror after many periodical pulses. Namely, the main
goal is to calculate the photon distribution function, the mean
number of photons and its variance in the selected mode. The
paper is organized as follows. In Sec. II, a model of a quan-
tum damped oscillator with arbitrary time-dependent param-
eters, based on the Heisenberg-Langevin approach, is consid-
ered. General formulas for the mean number and variance of
created quanta are derived in Sec. III. They show that the
field mode goes asymptotically to the so-called “supercha-
otic” quantum state. The photon distribution function is con-
sidered in Sec. IV. A simple universal formula, describing
highly excited asymptotical states, is found. The special case
of periodical changes of parameters is analyzed in Sec. V,
where analytical formulas for the mean number of quanta are
obtained as functions of the number of pulses and other pa-
rameters. The last Sec. VI contains a brief discussion of re-
sults.

II. QUANTUM DAMPED OSCILLATOR WITH TIME-
DEPENDENT PARAMETERS IN THE

HEISENBERG-LANGEVIN APPROACH

The model used in this paper is based on the idea of an
effective Hamiltonian, proposed in �15� and developed by*vdodonov@fis.unb.br
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other authors, especially in the papers �16,17� �for other ref-
erences see �7��. In brief, the scheme is as follows. Suppose
that the set of Maxwell’s equations in a medium with time-
independent parameters and boundaries can be reduced to an
equation of the form

K̂��L	�F��r;�L	� = ��
2��L	�F��r;�L	� , �2�

where �L	 means a set of parameters, including, e.g., the
distance L between the walls, ����L	� is the eigenfrequency
of the field mode, labeled by the number �or a set of num-
bers� �, and F��r ; �L	� is some �in general, vector� function,
whose knowledge enables one to calculate all components of
the electromagnetic field �e.g., the vector potential, dual po-
tential, Hertz vector, etc.�. In the simplest cases, Eq. �2� is

reduced to the Helmholtz equation, and operator K̂��L	� is

reduced to the Laplace operator. Usually, the operator K̂��L	�
is self-adjoint, and the set of functions {F��r ; �L	�} is or-
thonormalized and complete in some sense.

Now suppose that parameters �L	 become time dependent
�for example, a part of the boundary is a plane surface mov-
ing according to a prescribed law of motion L�t� or the di-
electric function depends on time in some region inside the
cavity�. If one can satisfy automatically the boundary condi-
tions, expanding the field F�r , t� over “instantaneous” eigen-
functions,

F�r,t� = 

�

q��t�F�„r;�L�t�	… �3�

�this is true, e.g., for the fixed boundaries and time-
dependent properties of a medium inside the cavity—the
case considered in this paper�, then the field dynamics is
described completely by the generalized coordinates q��t�,
whose equations of motion can be derived from the effective
time-dependent Hamiltonian �16�

H =
1

2

�

�p�
2 + ��

2�L�t��q�
2	 +

L̇�t�
L�t� 


���

p�m��q�, �4�

m�� = − m�� = L� dV
�F��r;L�

�L
F��r;L� . �5�

In a generic case of arbitrary time-dependent frequencies
�� and coefficients m��, finding solutions of the Schrödinger
or Heisenberg equations corresponding to Hamiltonian Eq.
�4�, which contains the generalized coordinate and momen-
tum operators of an infinite number of coupled modes, is an
extremely difficult problem. However, it can be simplified in
some special cases of practical importance. Namely, having
in mind that the eigenfrequency spectra of realistic three-
dimensional cavities are nonequidistant, one may suppose
that for periodical perturbations satisfying some resonance
conditions, different modes practically do not interact in the
long-time limit, and one can consider only some single mode
�marked by the label “�0”�, which is in resonance with the
perturbation. Then the problem is reduced to a simple model
of a one-dimensional quantum oscillator with a time-
dependent frequency ��t�, which is determined by the instan-
taneous geometry of the cavity and the dielectric function

inside it �3�. If this problem is solved, then the field distri-
bution inside the cavity is given �in the long-time limit, when
the contribution of nonresonant modes can be neglected� by
Eq. �3�, where one can consider the resonance mode function
F�0(r ; �L�t�	) only �or a few coupled modes in some special
cases �17,18��.

It is worth emphasizing an important point, that the “un-
coupling” of different modes was demonstrated in �3� for the
harmonical motion of the boundary. It is assumed in this
paper that the interaction between different modes can be
neglected for more or less arbitrary periodical motions of
boundary. Although such an assumption seems reasonable
from the point of view of physical intuition, a strict proof is
absent, and this problem needs and deserves a further inves-
tigation �actually, it is supposed that all higher harmonics of
different modes are out of resonance�. After these remarks,
let us assume that the one-dimensional quantum harmonic
oscillator with some time-dependent effective frequency can
serve as a reasonable model for the description of the process
of photon creation from vacuum in a three-dimensional non-
degenerate cavity with time-dependent parameters.

As was told in the introduction, one of the most simple
and practical ways to change the cavity eigenfrequency is to
put some thin dielectric slab inside it. Quantum effects
caused by a time dependence of properties of thin slabs in-
side resonance cavities were studied by several authors
�19–21�. However, only very simple models of the media
were considered: lossless homogeneous dielectrics with
time-dependent permeability �21�, ideal dielectrics or ideal
conductors, suddenly removed from the cavity �19�, or infi-
nitely thin conducting slabs, modeled by 	 potentials with
time-dependent strength �a “plasma sheet”� �20�.

Unfortunately, these models, as well as estimations of the
photon generations rate based on the simple formula �1�,
cannot be applied to the MIR experiment, because they are
based on the assumption that the time-dependent dielectric
function of the slab �or an equivalent delta potential in the
plasma sheet model� is real. To see the realm of validity of
this assumption, remember that a simple Drude model gives
the following dependence of the dielectric function on the
circular frequency in the semiconductor material �in the
Gauss system of units�


��� = 
a +
4�i�0

��1 − i���
, �0 = ne2�/m , �6�

where a real constant 
a describes the contribution of
bounded electrons and ions, n is the concentration of free
carriers �created by laser pulses in the case involved� with
charge e, m is their effective mass, and � the relaxation time
�time between collisions�. The imaginary part of Eq. �6� can
be neglected under the condition ��1, which means that
the low-frequency mobility b= �e�� /m �related to the low-
frequency conductivity �0 as �0=n�e�b� must be much bigger
than b����= �e� / �m��. For the optical frequencies, ��3
�1015 s−1, and for m�me �the mass of free electron� one
has b�����5�10−5 m2 V−1 s−1, so that the condition
bb� can be easily fulfilled. However, to perform an experi-
ment on the DCE at optical frequencies is an extremely dif-
ficult task, and the available schemes are designed for the
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microwave frequencies. For example, the resonance fre-
quency of the cavity used in the MIR experiment is about 2.3
GHz, which is equivalent to �1.4�1010 s−1. For this fre-
quency one obtains b�����10 m2 V−1 s−1, whereas the re-
ported values of the mobility in the highly doped GaAs
samples used in this experiment do not exceed
0.5 m2 V−1 s−1 �14�, and hardly the mobility can be in-
creased by two orders of magnitude �maintaining the neces-
sary very small recombination time� to satisfy the condition
bb�. Consequently, the dielectric function which should be
used in the analysis of realistic DCE experiments with semi-
conductor time-dependent mirrors has the form 
���=
a
+4�i�0 /�=
1+ i
2, where the imaginary part 
2 is respon-
sible for losses inside the semiconductor slab. Although these
losses can be neglected if 
2�1 �an almost ideal dielectric�
or 
21 �an almost ideal conductor�, they become very im-
portant in the intermediate regime, when the high concentra-
tion of carriers in the excited semiconductor returns continu-
ously to the initial �almost zero� value during the
recombination process �22�. These observations show that
without taking into account inevitable losses inside the semi-
conductor slab during the excitation-recombination process
one cannot predict the results of the realistic DCE experi-
ments even qualitatively.

This paper is based on the assumption, that even in the
presence of dissipation and nonmonochromatic periodical
variations, the field problem still can be reduced approxi-
mately to the dynamics of a single selected mode, described
in the classical limit as a harmonic oscillator with time-
dependent complex frequency �c�t�=��t�− i��t�, which can
be found from the solution of the classical electrodynamical
problem by taking the instantaneous geometry and material
properties �as was done in the nondissipative case in
�20,21��. Our calculations are based on the quantum noise
operator approach, first proposed in �23,24� for systems with
time-independent parameters and generalized to the case of
arbitrary time dependence of the frequency and damping co-
efficient in �8,22�. The field noise operators have been
widely used in studying different problems of the cavity
QED: see, e.g., Refs. �25–32�. Following this approach, we
assume that effects of dissipation can be described by means
of the Heisenberg-Langevin operator equations. For the
model considered in this paper, these equations can be writ-
ten as

dx̂/dt = p̂ − �x�t�x̂ + F̂x�t� , �7�

dp̂/dt = − �p�t�p̂ − �2�t�x̂ + F̂p�t� . �8�

Here x̂ and p̂ are the dimensionless quadrature operators of
the selected mode, normalized in such a way that the mean
number of photons equals ��=1�

N =
1

2
�p̂2 + x̂2 − 1� . �9�

In other words, ��t� and � j�t� are the frequency and damping
coefficients, normalized by the initial frequency �i. It is
worth emphasizing that x̂ here is a dimensionless canonical
“coordinate” operator, which has nothing in common with

the real coordinates inside the cavity: x̂�t� corresponds to the
coefficient q�0�t� at the resonant field mode in the field op-
erator decomposition Eq. �3� over instantaneous modes of

the cavity. Two noncommuting noise operators F̂x�t� and

F̂p�t� �with zero mean values� are necessary to preserve the
canonical commutator �x̂�t� , p̂�t��= i between the Heisenberg
operators describing the quantum dynamics of the selected

resonant mode �24,30,33� �it is supposed that F̂x�t� and F̂p�t�
commute with x̂ and p̂�. Physically, the meaning of operators

F̂x�t� and F̂p�t� is the replacement of complicated dissipative
processes inside a thin dielectric �semiconductor� slab at-
tached to one of the cavity walls. In the phenomenological
model used in this paper, the net result of all those processes
is encoded in the correlators of the noise operators �see Eqs.
�25� and �27� below�. Again, these operators act in the cor-
responding Hilbert spaces, which have no relations to the
coordinates of any point inside the cavity.

At first glance, the presence of two extra terms, −�x�t�x̂
+ F̂x�t�, in Eq. �7� could seem unusual �from the point of
view of the classical theory of Brownian motion�. However,
these terms arise quite naturally in quantum optics, for ex-
ample, if one rewrites the standard Heisenberg-Langevin
equation of motion for the annihilation operator �24�,
dâ /dt= �−i�−��â+ F̂a, in terms of quadrature components.

The system of linear Eqs. �7� and �8� can be solved ex-
plicitly for arbitrary time-dependent functions �x,p�t�, ��t�,
and F̂x,p�t�. It is convenient to represent the solutions as sums
of two commuting operators,

x̂�t� = x̂s�t� + X̂�t�, p̂�t� = p̂s�t� + P̂�t� , �10�

where the first terms represent solutions of homogeneous
parts of Eqs. �7� and �8�:

x̂s�t� = e−��t��x̂0 Re���t�� − p̂0 Im���t��	 , �11�

p̂s�t� = e−��t��x̂0 Re���t�� − p̂0 Im���t��	 . �12�

Here x̂0 and p̂0 are the initial values of operators at t=0
�taken as the initial instant�, and

��t� = �
0

t

����d�, ��t� =
1

2
��x�t� + �p�t�� . �13�

Function ��t� is a special solution to the classical oscilla-
tor equation

�̈ + �ef
2 �t�� = 0, �14�

where

�ef
2 �t� = �2�t� + 	̇�t� − 	2�t� , �15�

	�t� =
1

2
��x�t� − �p�t�� . �16�

This special solution is selected by the initial condition ��t�
=exp�−it� for t→−�, which is equivalent to fixing the value
of the Wronskian
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��̇� − �̇�� = 2i . �17�

The function ��t� is defined as

��t� = �̇�t� + 	�t���t� . �18�

It satisfies the identity following from Eq. �17�,

Im���t����t�� � 1. �19�

The operators X̂�t� and P̂�t� have the form

�X̂�t�

P̂�t�
� = e−��t��

0

t

d�e����A�t;���F̂x���

F̂p���
� , �20�

where the 2�2 matrix

A�t;�� = �ax
x�t;�� ax

p�t;��
ap

x�t;�� ap
p�t;��

� �21�

consists of the following elements:

ax
x = Im���t�������, ax

p = Im����t������ , �22�

ap
x = Im���t�������, ap

p = Im����t������ . �23�

It seems natural to identify the functions ��t� and ��t� in
Eqs. �8�, �13�, and �15� with the real and imaginary parts of
the instantaneous complex cavity eigenfrequency, �c�t�
=��t�− i��t�. An immediate consequence of Eqs. �10�–�12�
and �19� is the formula

�x̂�t�, p̂�t�� = ie−2��t� + �X̂�t�, P̂�t�� . �24�

Using Eqs. �19� and �20�, one can verify that the commutator
�x̂�t� , p̂�t��= i is preserved exactly for arbitrary functions ��t�
and ��t�, if one assumes that the noise operators are delta
correlated �the Markov approximation� with the following
commutation relations:

�F̂x�t�,F̂p�t��� = 2i��t�	�t − t�� , �25�

�F̂x�t�,F̂x�t��� = �F̂p�t�,F̂p�t��� = 0. �26�

Indeed, under these conditions one obtains

�X̂�t�, P̂�t�� = e−2��t��
0

t

2i��t�e2����d� = i�1 − e−2��t�� .

In contrast to the classical Langevin equations, which con-
tain a single stochastic force, in the quantum case one must
use two noise operators, otherwise the canonical commuta-
tion relations cannot be saved �24,30,33�. The Markov ap-
proximation implies the relations

�F̂j�t�F̂k�t��� = 	�t − t��� jk�t�, j,k = x,p . �27�

Strictly speaking, the noise coefficients � jk�t� must be de-
rived from some “microscopical” model, which takes into
account explicitly �i� the coupling of the field mode with
electron-hole pairs inside the semiconductor slab and �ii� the
coupling of electrons and holes with phonons or other qua-
siparticles, responsible for the damping mechanisms. Unfor-

tunately, it seems that no model of this kind was studied up
to now. Nonetheless, some conclusions on the relations be-
tween the noise coefficients can be made, if one calculates
the second-order moments of the quadrature operators

� f̂ ĝ� = � f̂ sĝs� + 

�,�=x,p

Ifg
��, �f ,g = x,p� , �28�

Ifg
���t� = e−2��t��

0

t

d�e2����af
��t;��ag

��t;�������� . �29�

Let us consider the case of time-independent frequency,
�=�i=1, and time-independent damping and noise coeffi-
cients. Assuming that ��1 �small damping� one can neglect
the correction 	2��2 in function �ef�t� Eq. �15� and use the
solution ��t�=exp�−it�. Then all integrals in Eq. �29� can be
calculated exactly. Supposing that �x,p�� and � jk�� �in
accordance with the fluctuation–dissipation theorem�, one
can obtain the following mean values at t→� �when contri-
butions from x̂s and p̂s disappear�

�x̂2�� =
1

4�
��xx + �pp + 2�p�s� + O��2� , �30�

�p̂2�� =
1

4�
��xx + �pp − 2�x�s� + O��2� , �31�

�x̂p̂ + p̂x̂�� =
1

2�
��x�pp − �p�xx� + O��2� , �32�

where �xp+�px=2�s�t�. Expressions �30�–�32� coincide with
the thermodynamical equilibrium values,

�x̂2�eq = �p̂2�eq = 1/2 + �n�th, �x̂p̂ + p̂x̂�eq = 0 �33�

�where �n�th is the mean number of quanta in the thermal
state�, with the accuracy of the order of �2, provided the
noise coefficients are chosen as follows,

�s = 0, �xx = �xG, �pp = �pG , �34�

G = 1 + 2�n�th = coth���i/�2kB��� , �35�

where � is the temperature of the reservoir.
The main assumption made in this paper is that relations

Eq. �34� hold for time-dependent functions, �x,p, �xx, and
�pp. Perhaps, it is not very important, but it greatly simplifies
calculations and the analysis of results, reducing the number
of independent functions and parameters. Namely, the con-
dition �s=0 simplifies calculations due to the identities

Iab
px + Iba

xp � 0, a,b = x,p , �36�

which result, in particular, in the simple formulas

�P̂2� = Ipp
xx + Ipp

pp, �X̂2� = Ixx
xx + Ixx

pp. �37�

Identity Eq. �19� leads to the relations

Ixp
px + Ixp

xp = − Ipx
xp − Ipx

px =
i

2
��t� , �38�
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��t� � 1 − exp�− 2��t�� , �39�

so that

�X̂P̂� = �P̂X̂�� = Ixp
xx + Ixp

pp +
i

2
� . �40�

Let us introduce the “asymmetry parameter” y according
to the relations

y =
�p − �x

�p + �x
, �p = ��1 + y�, �x = ��1 − y� . �41�

Then �using the notation f t� f�t��

�P̂2�t�� = ��t�2Jt − Re��t
�2J̃t� , �42�

�X̂2�t�� = ��t�2Jt − Re��t
�2J̃t� , �43�

�X̂P̂�t =
i�

2
+ Re��t�t

�Jt − �t
��t

�J̃t� , �44�

Jt =
G

2
e−2��t��

0

t

d�e2�������������2 + ����2 + y�����2 − ����2�� ,

�45�

J̃t =
G

2
e−2��t��

0

t

d�e2�����������
2 + ��

2 + y���
2 − ��

2�� . �46�

III. MEAN NUMBER AND NUMBER VARIANCE OF
QUANTA

Formula �9� for the mean number of quanta can be split-
ted in two parts,

N�t� = Ns�t� + Nr�t� , �47�

where the first term depends on the initial state �“signal”�,
and the second term is determined by the interaction with the
reservoir. From Eqs. �42� and �43� one obtains

Nr�t� = EtJt − Re�Ẽt
�J̃t� , �48�

Et =
1

2
���t�2 + ��t�2�, Ẽt =

1

2
��t

2 + �t
2� . �49�

In the special case of the initial coherent state ��� �which
corresponds to the initial “classical” signal in the cavity�, the
“signal” contribution is given by the formula

Ns
�coh��t� = e−2��t���Re����t��	2 + �Re���̇�t��	2 +

1

2
E�t�� −

1

2
.

�50�

For the initial thermal state one has

Ns
�th��t� =

1

2
�G0e−2��t�E�t� − 1	 . �51�

Note that coefficients G and G0 can be different. One should
remember that formulas �48�, �50�, and �51� have sense for

sufficiently big values of time t, when the normalized fre-
quency ��t� returns to its initial unit value.

Fluctuations of the number of created quanta are charac-
terized by the variance

�N = �N̂2� − �N̂�2, N̂ =
1

2
�p̂2 + x̂2 − 1� . �52�

The quantity �N̂2� contains combinations of various products
of four operators p̂ and x̂. Calculations can be significantly
simplified in the case of initial GAUSSIAN states of the field
�which include, as special cases, thermal, coherent, and
squeezed states�. Indeed, it is well known �24,34� that the
description of open quantum systems by means of the
Heisenberg-Langevin equations with delta-correlated sto-
chastic force operators is equivalent to the description in the
Schrödinger picture by means of the master equation for the
statistical operator. In the case of linear operator equations of
motion, such as Eqs. �7� and �8�, the corresponding master
equations contain only quadratic terms �various products of
two operators p̂ and x̂� �24,34–36��. Consequently, any initial
GAUSSIAN state remains GAUSSIAN in the process of evolu-
tion. But it is well known that for GAUSSIAN states, all
higher-order statistical moments of operators p̂ and x̂ can be
expressed in terms of products of moments of the second
order. I consider here only the simplest case of zero mean
values of the first-order moments, �x̂�= �p̂�=0. Then the fol-
lowing formula is valid:

�âb̂ĉd̂� = �âb̂��ĉd̂� + �âĉ��b̂d̂� + �âd̂��b̂ĉ� , �53�

where a ,b ,c ,d=x , p �and the order of operators should be
maintained�. Using Eqs. �10� and �53�, one can write

2�N = �P̂2�2 + �X̂2�2 + �P̂X̂�2 + �X̂P̂�2 + �p̂s
2�2 + �x̂s

2�2 + �p̂sx̂s�2

+ �x̂sp̂s�2 + 2�p̂s
2��P̂2� + 2�x̂s

2��X̂2� + 2�p̂sx̂s��P̂X̂�

+ 2�x̂sp̂s��X̂P̂� . �54�

Using Eqs. �42�–�44� and the relation �Re������2= ����2−1,
following from Eq. �19�, one can obtain the following for-
mula for the initial thermal state, characterized by parameter
G0 �which can be different from the reservoir factor G�

�N = �2E2 − 1��J +
G0

2
e−2��2

+ E2�J̃�2 −
1

4

+ Re�Ẽ2J̃�2 − 4EẼJJ̃� − 2G0EẼ�J̃e−2�� . �55�

The correctness of formula �55� can be verified in the special
case of relaxation from one temperature �characterized by
parameter G0� to another �with parameter G� without chang-

ing the frequency �=const=1. If y=0, then E�1, Ẽ= J̃�0,
J�t�=G��t� /2, so that one obtains, for an arbitrary function
��t�,

�N�t� =
1

4
�Gef

2 �t� − 1� � N�t��N�t� + 1� , �56�

where
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Gef�t� = 1 + 2N�t� = G��t� + G0�1 − ��t�� , �57�

as it must be for thermal states.
Comparing Eq. �55� with Eqs. �48� and �51�, one can

obtain the formula �using the identity E2− �Ẽ�2= �Im������2

�1�

�N − 2N2 = 2N + �J̃�2 − �J +
G0

2
e−2��2

+
1

4
. �58�

I am interested here in the case, when the number of quanta
exponentially grows with time due to the effect of parametric
amplification, so that N1. This happens if four functions,

E�t�, Ẽ�t�, J�t�, and J̃�t�, assume big values. In such a case,
the right-hand side of Eq. �58� has the same order of magni-
tude as N, i.e.,

�N = 2N2 + O�N� if N 1. �59�

This means that the field mode goes asymptotically to the
so-called superchaotic �37� quantum state, whose statistics is
essentially different from the statistics of the initial thermal
state, characterized by formula �56�.

IV. ASYMPTOTICAL PHOTON STATISTICS

The photon statistics in the most general mixed GAUSSIAN

states was studied in �38–41�. If the mean values of the
quadrature operators �or electric and magnetic fields in the
cavity mode� are equal to zero, then this statistics is deter-
mined completely by two parameters

� = �xx + �pp � 1 + 2N , �60�

� = �xx�pp − �px
2 � 1/�4�2� , �61�

where �xx and �pp are the variances of the quadrature opera-
tors, �xp=�px is their covariance, and ��Tr��̂2� is the purity
of the GAUSSIAN quantum state of the field mode described
by the statistical operator �̂. The photon distribution function
f�m���m��̂�m� �i.e., the probability to detect m quanta in the
state �̂� can be expressed in terms of the Legendre polyno-
mials as follows �38–41�:

f�m� =
2

�1 + 2� + 4�
�1 + 4� − 2�

1 + 4� + 2��m/2

� Pm� 4� − 1
��4� + 1�2 − 4�2� . �62�

Formula �62� is exact. However, if the number of photons is
big �say, m�N�1000�, then it is more convenient to find an
asymptotical form of Eq. �62� for m1. Note that the argu-
ment of the Legendre polynomial in Eq. �62� is always out-
side the interval �−1,1�, being equal to unity only for ther-
mal states with �=2��. Therefore it is convenient to use the
following asymptotical formula �42�:

Pm�cosh ��  � �

sinh �
�1/2

I0��m + 1/2��� �63�

�where I0�z� is the modified Bessel function�, because it
holds even for complex values of variable �, provided Re �
�0 and �Im ����. The parameter � equals

� = ln�4� − 1 + 2��2 − 4�
��4� + 1�2 − 4�2 � . �64�

The variance of the photon number distribution for an
arbitrary GAUSSIAN state �with zero quadrature mean values�
is given by the formula �40,41�

�N =
1

2
�2 − � −

1

4
. �65�

Comparing this formula with Eqs. �48�, �51�, and �58� one
gets

� = �J +
G0

2
e−2��2

− �J̃�2. �66�

Consequently, � /��� /N=O�1� if ��N1. This means
that parameter � is of the order of unity in the case con-
cerned. Then function I0�x� in Eq. �63� can be replaced by its
asymptotical form I0�x��2�x�−1/2exp�x�, because its argu-
ment x= �m+1 /2�� is much bigger than unity. Using Eq. �64�
to calculate sinh���, one can obtain an approximate formula

f�m�  ���m + 1/2���2 − 4��−1/2

� �4� − 1 + 2��2 − 4�

4� + 1 + 2�
�m+1/2

. �67�

Obviously, one can neglect the term 4���2 in the first fac-
tor. Using the Taylor expansion ��2−4�=�−2� /�+O�1 /��,
one can simplify the fraction in the second factor as follows:

4� − 1 + 2��2 − 4�

4� + 1 + 2�
= 1 −

1

�
+ O�1/�2� .

Replacing �1−x�mexp�−mx� for x�1, one can transform
Eq. �67� to the following simple form:

f�m� 
exp�− �m + 1/2�/��

����m + 1/2�


exp�− �m + 1/2�/�2N��
�2�N�m + 1/2�

.

�68�

Equation �68� holds under the conditions �2N1 and m
1. Using the Euler-MacLaurin summation formula, one
can verify that the distribution function �68� has the correct
normalization with an accuracy O��−1/2�



m=0

�

f�m�  �
0

�

f�m�dm + O„f�0�…  �
0

� exp�− x/��
���x

dx

+ O��−1/2� = 1 + O��−1/2� .

With the same accuracy, the moments of the distribution
function are given by the formula
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�mk� � 

m=0

�

mkf�m�  �
0

�

xkexp�− x/��
���x

dx = �k �2k − 1� !!

2k

 Nk�2k − 1� !! . �69�

For k=2, Eq. �69� reproduces the result Eq. �59�: �N= �m2�
− �m�22N2.

V. MEAN NUMBER OF QUANTA FOR PERIODICAL
VARIATIONS OF PARAMETERS

Having in mind applications to the dynamical Casimir
effect, let us suppose that functions ��t� and ��t� have the
form of periodical pulses with the periodicity T �so that the
kth pulse begins at tk= �k−1�T, t1=0�, separated by intervals
of time with �=1 and �=0 �I neglect the damping of the
field between pulses, supposing that the quality factor of the
cavity is big enough�. Then integrals in Eqs. �45� and �46�
are reduced to sums of n �the total number of pulses� inte-
grals taken between the initial and final time moments of
each pulse. In the interval between the kth and �k+1�th
pulses the solution to Eq. �14� can be written as

�k�t� = ake
−it + bke

it, a0 = 1, b0 = 0, �70�

where ak and bk are constant coefficients. During these inter-

vals, functions E�t� and Ẽ�t� assume constant values

Ek = �ak�2 + �bk�2, Ẽk = 2akbk. �71�

The pairs of the nearest coefficients, �ak−1 ,bk−1� and �ak ,bk�,
are related by means of a linear transformation

�ak

bk
� = Mk�ak−1

bk−1
�, Mk = � f g�e−2itk

ge2itk f� � ,

where complex coefficients f and g can be expressed through
two complex amplitude reflection coefficients and two com-
plex amplitude transmission coefficients, which connect
“plane waves” exp��it� coming from the “left” and from the
“right.” It is important that matrix Mk is unimodular

det Mk = �f �2 − �g�2 � 1. �72�

Actually, this condition is equivalent to the Wronskian iden-
tity Eq. �17�. One can verify the relations

�an

bn
� = �†n��M1�n�a0

b0
�, � � �eiT 0

0 e−iT � .

Since det��M1�=1, one can use the formula for powers of a
two-dimensional unimodular matrix S �see, e.g., �43��

Sn = Un−1�z�S − Un−2�z�E, z �
1

2
Tr S , �73�

where E means here the unit matrix and Un�z� is the Tche-
byshev polynomial of the second kind. In the case involved
one has z= 1

2Tr��M1�=Re�f exp�iT��. An amplification can
happen if �z��1. Thus it is convenient to use the parametri-
zation

1

2
Tr��M1� = Re�f exp�iT�� = cosh��� . �74�

If Re�f exp�iT���1, then � is real positive parameter. If
Re�f exp�iT���−1, then �= �̃+ i�, where �̃ is real and posi-
tive. The maximal values of �Re�f exp�iT��� correspond to
the cases of strict resonance with

T = Tres =
1

2
T0�m −  /�� , �75�

where f = �f �exp�i �, T0 is the period of oscillations in the
selected field mode and m=1,2 , . . . �even values of m corre-
spond to Re�f exp�iT���1, whereas odd values of m corre-
spond to Re�f exp�iT���−1�. One can check the fulfillment
of the identity �an�2− �bn�2�1 as a consequence of the initial
identity �f �2− �g�2�1.

I consider here only the simplest case of the strict reso-
nance, T=Tres, when exp�−iT�=exp�i +m��. Then �f �2
=cosh2��� and �g�2=sinh2���, so that �8�

ak = cosh�k��e−ikT, bk = sinh�k��eiT�k−1�+i! �76�

�where ! is the phase of complex number g�,

Ek = cosh�2k��, Ẽk = sinh�2k��ei�!−T�. �77�

To calculate the integrals Eqs. �45� and �46�, one needs an
explicit form of functions ��t� and ��t� during the pulse, i.e.,
when ��t����t�−1�0 and ��t��0. But ���t���1 and
��t��1 �in the dimensionless variables� under realistic con-
ditions of the DCE experiments. Consequently, as a matter of
fact, the exact function ��t� is very close to the form Eq. �70�
even during the action of pulses, and not only in the intervals
between them �see �9� for a detailed analysis�. This means, in
particular, that one can neglect the term 	�t�� in Eq. �18�,
writing simply ��t� �̇�t� �this formula is exact if y=0�.
Therefore the functions E�t� and Ẽ�t� are close to constant
values Eq. �71� for tk−1" t" tk, with small corrections of the
order of �max��max. Neglecting these corrections, one can
calculate the integrals over the duration of each pulse ex-
actly, if parameter y does not depend on time �since ��t�
=d� /dt�.

Let us do this first in the symmetrical case y=0. After n
pulses one has

Jn � J�nT� =
G

2
e−2#n�1 − e−2#�


k=1

n

e2#kEk �78�

and a similar formula for J̃n, where Ek is replaced by Ẽk.
Here

# = �
ti

tf

����d� , �79�

ti and tf being the initial and final moments of each pulse.
Numerical evaluations confirmed a high accuracy of the ap-
proximate formula �78�. Using Eq. �77� one can obtain the
following explicit formulas:

Jn = An
�+� + An

�−�, J̃n = ei�!−T��An
�+� − An

�−�� , �80�
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An
��� =

G#

4�#� ��
�e�2n� − e−2n#� . �81�

It is taken into account that # ,��1. Besides, 1−exp�−2#�
is replaced by 2#. The coefficient � in Eq. �81� is determined
by the equivalent relations �taking into account Eq. �72� and
the resonance conditions�

cosh��� = �f �, sinh��� = �g� . �82�

In view of Eqs. �48�, �77�, and �80�, the mean number of
“noise” quanta created after n pulses in the resonance case is
given by a simple formula

Nrn = An
�+�e−2n� + An

�−�e2n�, �83�

where Nrn stands for the value Nr�t� of the function �48� at
the moment t=nT. Adding to the quantity Eq. �83� the ex-
pression �51�, one obtains the total number of quanta, created
from the initial thermal state

Nn = e2n��An
�−� +

G0

4
e−2#n� + e−2n��An

�+� +
G0

4
e−2#n� −

1

2
.

�84�

Only the first term in the right-hand side of Eq. �84� grows
with the number of pulses n. So one obtains the following
asymptotical formula for 2n�1:

Nn =
1

4
e2n��−#��G0 +

G#

� − #
� + O�1� . �85�

It shows that the mean number of photons grows exponen-
tially as function of the number of pulses, if ��#.

The mean number of quanta in the case when the period-
icity of pulses T is different from the optimal value Tres
given by Eq. �75� was calculated �for y=0 only� in �22,44�.
The general expressions become rather cumbersome in this
case, but the asymptotical behavior for 2n�1 is similar to
that given by Eq. �85�. The main difference is that the coef-
ficient � in the argument of the exponential function in Eq.
�85� should be replaced by the smaller coefficient �	
=��2−	2, where 	=�0�T−Tres�. Besides, some changes in
the pre-exponential coefficients should be made �but they are
not very significant�.

Additional terms in Eqs. �45� and �46�, proportional to the
asymmetry coefficient y, cannot be calculated explicitly in a
general case, because they contain integrals of
exp�2��������� multiplied by Re�akbk

� exp�−2i��� or
ak

2 exp�−2i��+bk
2 exp�2i��. But it was shown in �8,22,44�,

that the condition ��# can be fulfilled only for very short
pulses of functions ��t� and ��t�, whose duration Td �deter-
mined mainly by the recombination time Tr in the semicon-
ductor material� is much smaller than the period of field os-
cillations T0 �which equals 2� in the dimensionless
variables�. Hence, a good approximation consists in replac-
ing functions exp��2i�� in the integrals for the kth pulse by
constant values exp��2itk�. Then the integrals can be calcu-
lated explicitly, and one can obtain the following corrections

to the coefficients Jn and J̃n, given by Eq. �80�

	Jn = y Re�e−i$�Cn
�+� − Cn

�−��� , �86�

	J̃n = yei$�Re�e−i$�Cn
�+� + Cn

�−��� + 2i Im�e−i$Dn�	 , �87�

where

Cn
��� =

G#

4�# + 2i � ��
�e4in �2n� − e−2n#� , �88�

Dn =
G#

4�# + 2i �
�e4in − e−2n#� , �89�

and the phases are defined as follows,

f = �f �ei , g = �g�ei!, $ =  + ! . �90�

The resonance relation exp�−2iT�=exp�2i � was also taken
into account. The correction to the mean number of photons
is �the term with Dn drops out�

	Nn = y Re�e−i$�Cn
�+�e−2n� − Cn

�−�e2n��� , �91�

so that for n1 one gets

	Nn 
y

4
e2n��−#� Re�G# exp�− i$�

# − � + 2i 
� + O�1� . �92�

Simple approximate formulas for the coefficients g and f
in the case of small variations of frequency and damping
coefficients, ���t��, ��t��1, were given in �8� �see also �9�
for details�. Neglecting the terms of the order of �2 in Eq.
�15� and assuming that the asymmetry coefficient y Eq. �41�
does not depend on time, one can write an effective relative
frequency shift �ef�t� as �ef =��t�−y�̇�t� /2. Then �supposing
that the pulse starts at ti=0�

g�y�  i�
0

tf

���t� − y�̇�t�/2�e−2itdt = i�
0

tf

���t� − iy��t��e−2itdt

�93�

�the second equality is obtained from the first one by inte-
grating by parts; remember that ��ti�=��tf�=0�,

f = �1 +
1

2
�g�2�ei ,  = − �

ti

tf

��t�dt . �94�

Note that neither  nor # depend on the asymmetry coeffi-
cient y. On can check an accuracy of formulas �93� and �94�,
considering the case of “rectangular” pulse with �=const
and �=0. The difference between exact coefficients g or f
and their approximate expressions �93� and �94� can be seen
only in terms of the order of �2. Other consequencies of Eqs.
�79�, �93�, and �94� are the inequality �g�y=0��" � � and the
relation

g�y�  y# − i if Td � 1. �95�

For cavities with photo-excited semiconductor slabs, the
functions ��t� and ��t� can be approximated by the following
analytical expressions �in the simplest case of very short la-
ser pulses and in the absence of surface recombination�
�8,22,44�:

��t� =
�mA0

2 exp�− 2t/Tr�
A0

2 exp�− 2t/Tr� + 1
, �96�
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��t� =
��m�A0 exp�− t/Tr�
A0

2 exp�− 2t/Tr� + 1
, �97�

where Tr�T0 is the recombination time and dimensionless
parameter A0 is proportional to the energy of a single laser
pulse. Note that both functions, ��t� and ��t�, contain the
same maximal amplitude factor �m �which can be positive or
negative depending on the cavity shape�. Both the functions
equal zero for t�0 �they are continuous, as a matter of fact,
but their exact dependence on time in the beginning of the
process turns out to be insignificant, so that it can be ap-
proximated by an instantaneous “jump” at t=0�. Using func-
tions �96� and �97�, one can obtain the following expressions
for the parameters # and  �8� �the upper limit of integration
tfTr is replaced by � due to the rapid convergence of in-
tegrals�:

# = ��m�Tr tan−1�A0�,  = −
�m

2
Tr ln�1 + A0

2� . �98�

Consequently, � � is several times bigger than # in the case
of A01 �when �−#�0 �8,22��. Noticing that the phase  
is proportional to �m�1, whereas the phase ! does not de-
pend on �m, one can write exp�−i$�exp�−i!�=g� / �g�. If
Td�Tr�1, then ��g�y��� � for A01. Using these rela-
tions, one can obtain a rough evaluation of the maximal pos-
sible ratio of the correction 	Nn Eq. �92� to the term Nn Eq.
�85� as �	Nn� /Nn� �y� /2 �if GG0�, and concrete numerical
calculations give even smaller values for this ratio. This
means that the contribution of the correction Eq. �92� to the
total mean number of created quanta can be not very essen-
tial, even if y is close to unity. Nonetheless, the influence of
y on Nn can be significant, because y enters formula �93� for
the coefficient g and ��g�.

In the case of functions �96� and �97�, the integral in
Eq. �93� can be expressed in terms of the Gauss hypergeo-
metric function F�a ,b ;c ;z�, if one makes the substitution x
=exp�−2� /Tr� and uses an integral representation �45�

F�a,b;c;z� =
��c�

��b���c − b��0

1 xb−1�1 − x�c−b−1

�1 − xz�a dx .

The answer is

g/�m =
iTrA0

2

2�1 + iTr�
F�1,1 + iTr;2 + iTr;− A0

2�

+
yTrA0

1 + 2iTr
F�1,

1

2
+ iTr;

3

2
+ iTr;− A0

2� .

Numerical calculations show that the difference �−# is posi-
tive and not too small, only if A01. Therefore it is conve-
nient to use one of Kummer’s formulas, connecting Gauss
hypergeometric functions with the arguments z and z−1. In
the special case concerned �c=b+1 and a=1� the required
relation is �45�

F�1,b;b + 1;z� =
b

z�1 − b�
F�1,1 − b;2 − b;z−1�

+
�b

sin��b�
�− z�−b.

Thus one can obtain �see �44� for a more general case�

g/�m =
1

2
F�1,− iTr;1 − iTr;− A0

−2�

−
yTr

A0�1 − 2iTr�
F�1,

1

2
− iTr;

3

2
− iTr;− A0

−2�
−
�Tr exp�− 2iTr ln A0�

2 sinh��Tr�
�1 − y tanh��Tr�� . �99�

If A01, then the hypergeometric functions in �99� can be
replaced by unit values. For example, taking Tr=0.2 and
A0=20, which are reasonable values, according to numerical
calculations done in �8� �in dimension variables, Tr in Eq.
�99� should be replaced by �0Tr, where �0=2� /T0 is the
frequency of the field mode in s−1�, one obtains from
Eq. �99� the following numerical values of g̃=g /�m for y=

−1,0 ,1 �in this case, #̃=# /�m0.31 and
 ̃= /�m−0.60�: g̃�−1�0.24+0.69i, g̃�0�0.33+0.44i,
and g̃�1�0.42+0.19i. The corresponding values of the am-

plification coefficient F̃= g̃− #̃ are

F̃�− 1�  0.42, F̃�0�  0.24, F̃�1�  0.15.

These numbers show that the influence of the parameter y on

the coefficient F̃ can be significant. Achievable values of the
coefficient �m in cavities with semiconductor layers are of
the order of 10−2. Therefore creating many thousands of
quanta after a few thousand laser pulses seems to be quite
realistic.

VI. SUMMARY AND DISCUSSION

One of main results of this study is a new asymptotical
formula �68� for the distribution function of quanta, gener-
ated in the parametric amplification process in the presence
of damping. This asymptotical distribution depends only on
the mean number of quanta N �provided this number is big
enough�, being insensitive to concrete values of damping co-
efficients and correlation coefficients of the noise operators
�at least under the conditions Eq. �34�, which, perhaps, are
not necessary�. But damping plays an important role, be-
cause in its absence the quantum purity is preserved, and the
distribution function has well known oscillations �studied in
many papers �38–41��, whereas formula �68� shows a
smooth behavior. The asymptotical “superchaotic” statistics
of quanta is highly superPoissonian, with �N2N2.

Another result consists in new analytical formulas for the
mean number of quanta, showing explicitly its dependence
on many parameters, especially on the coefficient y Eq. �41�,
which accounts for the asymmetry between damping coeffi-
cients. Knowledge of this coefficient is important for predict-
ing the number of quanta, which could be created due to the
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DCE in cavities with semiconductor slabs. Unfortunately,
phenomenological models cannot deduce the value of y from
some general principles.

On the one hand, the value y=0 seems to be distinguished
�and the most attractive� for several reasons. For example, if

y=	�0, then ��t�� �̇�t� and the effective frequency in Eq.
�15� coincides exactly with ��t�. For this special set of co-
efficients, the stationary asymptotical values of the second-
order statistical moments coincide exactly with the equilib-
rium values Eq. �33� for an arbitrary �not necessarily small�
function ��t� �if �=const�. Moreover, all formulas are
greatly simplified if y=0. Other reasonings are related to the
fact that the noise and damping coefficients cannot be quite
arbitrary and independent. Namely, they must obey the re-
striction �pp�xx−�s

2��2, which prevents from possible vio-
lations of the positivity of the density matrix during the evo-
lution �35,41�. Consequently, the inequality

G2�x�p � ��x + �p�2/4 �100�

must hold in the case of Eq. �34�. At zero temperature of the
reservoir �G=1�, inequality Eq. �100� can be satisfied only
for �x=�p=�, i.e., for y=0. For reservoirs with nonzero tem-
perature �G�1�, the positivity of the density matrix can be
preserved for unequal damping coefficients �x and �p. How-
ever, in this case a temperature-dependent restriction y2"1
−G−2=cosh−2���i / �2kB��� must be imposed on the asym-
metry coefficient.

There are also some arguments in favor of the value y
=0, based on the analysis of different “microscopical” mod-

els, describing an interaction of a selected harmonic oscilla-
tor �field mode� with an “environment” by means of multi-
dimensional quadratic Hamiltonians of the most general
form. Namely, it was shown �35,36� that time-independent
damping and noise coefficients, satisfying all the require-
ments �i.e., not allowing violations of the positivity of the
density matrix�, arise in these models in the only case: when
the coupling between the selected oscillator and the “bath”
has the so-called “rotating wave approximation” form

 jâb̂j

†+H.c. �this special kind of coupling is considered in all
textbooks on quantum optics, see, e.g., �46��. Under this re-
striction, the models of this kind result in the set of coeffi-
cients �xx=�pp=�G and �s=0.

However, it is worth remembering that a usual justifica-
tion for the exclusion of “antirotating” terms âb̂j +H.c. from
the interaction Hamiltonian is based on reasonings that such
terms give rapidly oscillating corrections to the equations of
motion, whose influence becomes small after averaging over
many periods of the field mode oscillations. The problem is
that the duration of laser pulses in the MIR experiment is
much smaller than the period of the field oscillations. Thus
one cannot exclude a possibility that antirotating terms can
give an essential contribution under realistic experimental
conditions. These observations show a need in constructing a
rigorous microscopical theory of the dynamical Casimir ef-
fect in dissipative media with time-dependent parameters.
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