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Regular arrays of electromagnetic resonators, in turn coupled coherently to individual quantum two-level
systems, exhibit a quantum phase transition of polaritons from a superfluid phase to a Mott-insulating phase.
The critical behavior of such a Jaynes-Cummings lattice thus resembles the physics of the Bose-Hubbard
model. We explore this analogy by elaborating on the mean-field theory of the phase transition and by
presenting several useful mappings which pinpoint both similarities and differences of the two models. We
show that a field-theory approach can be applied to prove the existence of multicritical curves analogous to the
multicritical points of the Bose-Hubbard model, and we provide analytical expressions for the position of these
curves.
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I. INTRODUCTION

Quantum phase transitions in interacting systems com-
posed of particles of more than one species have recently
produced a lot of interest. A host of problems in condensed-
matter physics fall into this category, prime examples being
heavy fermions in Kondo lattices �1�, multicomponent sys-
tems of ultracold atoms in optical lattices �2–4�, and the
ensemble of two-level atoms interacting with a bosonic
mode described by the Dicke model �5,6�.

A recent addition to this list of systems is the Jaynes-
Cummings �JC� lattice model �see Fig. 1�. It describes an
array of electromagnetic resonators, each coupled coherently
to a single quantum-mechanical two-level system �also re-
ferred to as “atom” or “qubit”�. Recently, this JC coupling
�7� has been studied extensively in the context of quantum
computation and quantum optics �8,9�. The interplay of
Jaynes-Cummings interaction, observable in experiments as
a photon blockade �10�, and the transfer of photons between
nearest-neighbor resonators within the array render this prob-
lem nontrivial and open a new route to study strongly corre-
lated photon physics and quantum phase transitions of light
�11–14�. Similar to ultracold-atom systems, the Jaynes-
Cummings lattice could provide a novel quantum simulator
of condensed-matter Hamiltonians.

Previous work on the JC lattice model has so far explored
several aspects of its theory and has provided the first valu-
able hints toward possible realizations of the model in ex-
periments. The early mean-field treatment �15,16� has pro-
vided evidence for a phase transition from Mott-insulating
phases to a superfluid phase of polaritons, resembling in
large parts the physics known from the Bose-Hubbard model
�17�. Both numerical and analytical methods have subse-
quently been employed to extract the phase boundaries be-
yond the mean-field approximation �18–22� and to study the
critical behavior �20–22�, the spectrum of excitations
�19,21,22�, and the physics in the limit of only a few coupled
cavities �23�. For a more comprehensive review of the rela-
tively young field, we refer the reader to the excellent paper
by Hartmann et al. �24�.

The prime motive of the present paper is to clarify the
nature of the correspondence between Bose-Hubbard model

and Jaynes-Cummings lattice model. After the introduction
of the specific model in Sec. II, we provide a systematic
discussion of the asymptotic behavior of the JC lattice model
in several useful limits �Sec. III�. The knowledge of these
asymptotics aids our discussion in the subsequent three main
sections of our paper. The mean-field treatment is revisited in
Sec. IV, where we provide analytical expressions for the
phase boundary for general atom-photon detuning and elabo-
rate on several issues with previous mean-field treatments.
The correspondence beyond the mean-field level is explored
in Secs. V and VI, where we discuss several useful mappings
of the model and formulate the field-theoretic treatment of
the Jaynes-Cummings lattice model. The latter approach al-
lows the existence proof of multicritical curves analogous to
the multicritical points present in the critical behavior of the
Bose-Hubbard model. We conclude our paper with a sum-
mary and outlook of relevant future research directions in
Sec. VII.

II. JAYNES-CUMMINGS LATTICE MODEL

The Jaynes-Cummings lattice model is described by the
Hamiltonian ��=1�,

H = �
j

Hj
JC + Hhop − �N , �1�

where

FIG. 1. �Color online� Schematic of the Jaynes-Cummings lat-
tice system, consisting of an array of electromagnetic resonators
�see �a��, with a coupling between nearest-neighbor lattice sites due
to photon hopping. Each resonator is coherently coupled to a two-
level system shown in �b�.
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Hj
JC = �aj

†aj + �� j
+� j

− + g�aj
†� j

− + � j
+aj� �2�

denotes the Jaynes-Cummings Hamiltonian on site j. �A suc-
cinct summary of this model, exactly solvable for one site
and well known in quantum optics, is given in Appendix A.�
The operator aj �aj

†� annihilates �creates� a photon in the
resonator at site j, in a mode with frequency �. Each reso-
nator hosts a single two-level atom, whose transition fre-
quency is given by �. Adopting the �pseudo�spin language,
the corresponding lowering and raising operators are denoted
by the Pauli matrices � j

�. The atom-photon coupling of
strength g allows for the coherent interconversion between
photonic and atomic excitations within each resonator. We
note that for most systems, the JC Hamiltonian �2� is only
obtained when invoking the rotating wave approximation
�RWA�. The contributions from counter-rotating terms be-
come significant when the coupling strength g is of the same
order as the resonator or atom frequency—a fact neglected in
several recent publications, where g=� was used �19,20�.

The hopping of photons between nearest-neighbor cavi-
ties is described by

Hhop = − ��
�i,j�

�ai
†aj + aj

†ai� , �3�

where the hopping strength is parametrized by �, so that the
overall lifetime of each resonator is given by �zc��−1, zc be-
ing the coordination number of the lattice.

The chemical-potential term in Eq. �1� is in accordance
with our treatment of the system within the grand canonical
ensemble. The chemical potential � couples to the �con-
served� number of polaritons N=� j�aj

†aj +� j
+� j

−� and as usual
plays the role of a Lagrange multiplier fixing the mean total
number of polaritons on the lattice �N�. By contrast to the
situation in ultracold-atom systems, it is important to empha-
size that for the physical realizations of the JC lattice system
proposed so far �24�, the chemical potential � is not a di-
rectly accessible “knob.” Instead, appropriate preparation
schemes have to be devised to access states with different
mean polariton numbers �see, e.g., Ref. �23��.

III. ASYMPTOTIC BEHAVIOR OF THE JC LATTICE
MODEL

Similar to the situation encountered in the study of the
Bose-Hubbard model �17�, the JC lattice model is not gener-
ally amenable to an exact solution. In the following, we dis-
cuss two particularly simple limits: the atomic limit and the
hopping-dominated limit where � /g	1 and � /g
1, respec-
tively. The understanding of these limits serves as a useful
building block and sets the stage for our subsequent study of
the more intricate and interesting regimes of the JC lattice
model.

A. Atomic limit: � Õg™1

In this limit, the photon hopping Hhop may be treated per-
turbatively. To the leading order, the Hamiltonian decouples
in the site index and reduces to pure Jaynes-Cummings phys-
ics described by the Hamiltonian Hj

JC−�nj and identical for

each site j. Consequently, the ground state of the lattice sys-
tem corresponds to a product state ���� j = ��� j=1 � ���2
�¯ of the ground states of each Hj

JC. �To simplify notation,
we drop the site index j for the remainder of this section.�

The eigenstates of the JC Hamiltonian correspond to
polaritons—quasiparticles consisting of both photonic and
atomic excitations. Their spectrum shifted by the chemical
potential according to E0

�=E0−�n and En�
� =En�−�n com-

poses the usual “dressed-state ladder” of the JC model: E0
=0 and

En� = n� + �/2 � ���/2�2 + ng2�1/2�n  1� . �4�

�For details, see Appendix A.� Here and in the following,
�	�−� denotes the detuning between the two-level atom
and the resonator frequency. The polariton states �n�� are
simultaneous eigenstates of HJC and of the polariton number
n=�+�−+a†a. �Note that while the symbol “N” refers to the
polariton number on the entire lattice, “n” denotes the polar-
iton number on a single site.� Each parity doublet � is adia-
batically connected to the symmetric and antisymmetric su-
perposition of atomic and photonic excitation �n��
= ��n↓�� ��n−1�↑�� /
2, which form the eigenstates in the
resonant case �=0.

To specify the ground state of the system for given chemi-
cal potential �, we must find the state �n�� with minimal
energy, i.e.,

En�
� = min�E0

�,E1�
� ,E2�

� , . . .� . �5�

Immediately, one can rule out all symmetric states �n+� as
ground states since En+

� En−
� . Hence, the ground state is ei-

ther the zero-polariton state �0� or one of the antisymmetric
states �n−�. To further specify the ground state, first consider
the limit ��−��
g, ���. �Both � and g are assumed to be
non-negative.� In this case, the first term of Eq. �4� domi-
nates over the second term, and the lowest energy is reached
for the zero-excitation state �0�. By decreasing the quantity
��−��, one reaches a point where admitting an excitation to
the system becomes energetically favorable. This happens
precisely when E0

�=E1−
� . Repeating this argument, one finds

an entire set of such degeneracy points determined by En−
�

=E�n+1�−
� . The full set of degeneracy points is given by

�� − ��/g = 
n + ��/2g�2 − 
n + 1 + ��/2g�2, �6�

where n=0,1 , . . ., which reduces to ��−�� /g=
n−
n+1 in
the resonant case. Our results for the atomic limit depicted in
Fig. 2�a� are consistent with results previously presented by
Greentree et al. �15�.

As shown in Fig. 2�a�, the spacing between degeneracy
points becomes closer as ��−�� is increased toward zero.
More precisely, by inspection of Eq. �6� one finds that for
n→�, ��−�� tends to zero, independent of the detuning �.
In other words, the point ��−��=0, where the chemical po-
tential is tuned to exactly compensate the resonator fre-
quency, plays the role of an accumulation point. In Sec. IV
below, we will demonstrate that the existence of this accu-
mulation point necessitates extra care in the numerical analy-
sis when approaching ��−��=0.
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This leaves the question of what happens for ��−���0.
In this case, the system becomes unstable: adding more po-
laritons to the system always lowers the total energy. This
behavior, if not accompanied by an additional mechanism
that would ultimately limit the polariton number, is unphysi-
cal. Hence, we restrict ourselves to values of �� �−� ,�� in
the following. We will encounter a similar instability in the
following section describing the limit of large photon hop-
ping.

B. Hopping-dominated limit: � Õgš1

For large photon hopping � /g
1, the Hamiltonian Hhop

overwhelms the atom-photon coupling, and the latter may be
treated perturbatively. As a crude approximation, we con-
sider the order g0, i.e., atom-photon coupling is dropped and
the atomic and photonic systems decouple completely. The
ground-state energy then consists of the atomic contribution
�all atoms occupying their respective ground states� and the
photonic contribution from the bosonic tight-binding model

Htb = �� − ���
i

ai
†ai − ��

�i,j�
�ai

†aj + aj
†ai� . �7�

As usual, the tight-binding model may be diagonalized in
terms of single-particle Bloch waves. For the relevant cases
of a two-dimensional �2D� cubic lattice and a 2D honeycomb
lattice, the resulting energy dispersions are given by

��k� = �� − �� − 2� �
i=x,y

cos�kia� �8�

for the cubic lattice �25�, and

���k� = �� − �� � ��1 + e−ikxa + e−i�kx−ky�a� �9�

for the honeycomb lattice �a denotes the lattice constant�
�26�. In the energy dispersion of the honeycomb lattice, the
two signs refer to the lower and upper �� and ��� bands.
Independent of the specific lattice type, the bosonic ground
state is obtained by N-fold occupation of the k=0 ��� state
with corresponding energy

FIG. 2. �Color online� Properties of the JC lattice model in the resonant case �=0. �a� Ground states of the JC lattice system in the atomic
limit �=0 as a function of detuning �. The ground state of the system is given by a product state of Jaynes-Cummings eigenstates on each
lattice site j. Depending on the chemical potential, the system assumes either the state �0�� j or one of the antisymmetric states �n−�� j.
Degeneracies between �n−� and ��n+1�−� mark the onset of superfluidity, occurring for finite photon hopping ��0. The onset points, for
zero detuning located at ��−�� /g=
n−
n+1, become dense as � approaches �. For ���, the system becomes unstable. Degeneracies
occur at the same chemical potential for negative and positive detunings � �solid curves�, except for the lowest degeneracy between �0�� j and
�1−�� j where the ��0 case is given by the dashed curve. �b� Mean-field phase diagram of the resonant JC lattice system as a function of
the effective chemical potential �−� and photon-hopping strength �. The color/gray scale shows the magnitude of the order parameter �
= �a�. The value of � reveals the Mott-insulating phases �denoted “MI”� with �=0 and fixed number n=0,1 , . . . of polaritons per site, and
the superfluid phase �“SF”� with ��0. The phase boundary can be obtained analytically �cf. Eq. �20�� and is marked by a black curve. For
sufficiently large photon-hopping strength, the system becomes unstable with respect to the addition of polaritons. A crude estimate of the
onset of instability is given by ��−��=zc� depicted by the white dashed curve. In the hatched region close to �−�=0, numerical results are
unreliable when using a fixed cutoff for the maximum photon number. �c� Improved numerical results near �−�=0 �range of �−� and �
as marked by the rectangle in panel �b�� can be obtained by employing a “sliding” truncation �see text� centered at the photon occupation
number obtained in the atomic limit.
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E0 = N�� − �� − Nzc� . �10�

This result reveals the presence of an instability at large
photon-hopping strength: for zc���−� the ground-state en-
ergy becomes negative and can be made arbitrarily small by
increasing the polariton number N. �We note that a similar
instability formally exists for the Bose-Hubbard model in the
region of negative chemical potential.� This instability is al-
ready present in a mean-field treatment of the JC lattice sys-
tem, where its presence has apparently been overlooked in
Refs. �15,27�.

C. Effective Hubbard U in the dispersive regime?

A prime motive of the present paper is the analysis of
differences and similarities between the Bose-Hubbard
model and the Jaynes-Cummings lattice model. As we shall
demonstrate based on the mean-field theory �MFT�, exact
and approximate mappings, as well as field-theoretical meth-
ods, there exist strong parallels between the two models. We
find, however, that the direct comparison of the two models
in terms of an “effective Hubbard U” is generally not appro-
priate. Correcting for a missing factor of 1 /n in Ref. �15�,
one may attempt to define such an effective Hubbard U via
the relation

Un� = �E�n+1��
� − En�

� + ��/n . �11�

As argued by Greentree et al., this effective U approaches
zero in the limit of large polariton numbers n per resonator—
consistent with the predominance of the superfluid phase in
this regime. By contrast, we find that the system does not
approach a constant Hubbard U in the large detuning limit
�as stated in Ref. �15�� when using the correct expression
�11�. To see this, we consider the dispersive regime g /�
	1 with polariton numbers below the critical photon number
n	nc=�2 /4g2. In this case, the dressed-state ladder decom-
poses into two nearly harmonic ladders shifted by the detun-
ing �,

En�
�  n�� − �� +

�

2
�

���
2

, �12�

i.e., photons and atoms are effectively decoupled. This situ-
ation is not correctly captured by a Bose-Hubbard model
and, indeed, we find that the effective interaction Un�

=� /n would need to be strongly polariton-number depen-
dent in this case.

IV. MEAN-FIELD THEORY

The MFT of the Jaynes-Cummings lattice model has pre-
viously been discussed by Greentree et al. �15� It reveals a
second-order phase transition from a superfluid phase of po-
laritons to Mott-insulating phases. We revisit this treatment,
pointing out several important issues not addressed in Ref.
�15�.

Starting from the JC lattice Hamiltonian �Eqs. �1�–�3��,
the MFT is constructed by a decoupling of the lattice sites.
We apply the general prescription of replacing an interaction
term involving two operators A and B by its mean-field ex-

pression AB→ �A�B+A�B�− �A��B� to the photon-hopping
term in the Jaynes-Cummings lattice model. This yields

Hhop = ��
�i,j�

�ai
†aj + aj

†ai� = ��
i

�
j�NN�i�

ai
†aj

→ ��
i

�
j�NN�i�

��ai
†�aj + ai

†�aj� − �ai
†��aj�� , �13�

where NN�i� denotes the set of sites that are nearest neigh-
bors to site i. Translation invariance implies that the expec-
tation values are actually site independent. Introducing the
order parameter as �=zc��ai� �28�, the mean-field Hamil-
tonian reads HMF=� jhj

MF with

hj
MF =

1

2
�� − ��� j

z + �� − ��aj
†aj + g�aj

†� j
− + � j

+aj�

− �aj�
� + aj

†�� +
1

zc�
���2. �14�

Here, zc is the coordination number of the lattice. It is useful
to note that the dimension and precise geometry of the spa-
tial lattice underlying the JC lattice model enter the mean-
field theory only through zc. Moreover, a change in the co-
ordination number is equivalent to a rescaling of the photon-
hopping strength. Specifically, within MFT the substitution
zc→rzc has the same effect as the rescaling �→r� while
keeping zc fixed.

Throughout this paper, we focus on the quantum phase
transition of the JC lattice model at zero temperature. In this
case, the order parameter is determined by minimization of
the ground-state energy E0��� of the mean-field Hamiltonian
hMF. Figure 2�b� presents numerical results from this analy-
sis. Consistent with numerical results previously published
by Greentree et al. �15�, our phase diagram shows lobes
where the order parameter � vanishes. These lobes, which
are the analogs of the Mott-insulator �MI� phases in the
Bose-Hubbard model �17�, border on a superfluid phase with
nonzero order parameter ����0. The onset of superfluidity is
continuous, in line with the assumption of a second-order
phase transition.

In addition to the Mott-insulating and superfluid phases
discussed by Greentree et al., our results also reveal the onset
of the polariton-number instability expected for the hopping-
dominated regime �see Sec. III B above�. The unstable re-
gion can be identified by the darkest coloring in Fig. 2�b�. In
the numerical analysis of the mean-field equations, the insta-
bility manifests itself in solutions with excessively large val-
ues of the order parameter �. More specifically, in the un-
stable region, the value of the order parameter is entirely
determined by the photon cutoff, i.e., the truncation of the
photon Hilbert space necessary in the numerical treatment.
When truncating this Hilbert space at some maximum pho-
ton number nmax, one can confirm that the order parameter
obeys the relation ��nmax

1/2 in the unstable region. This insta-
bility appears to be present in the numerical results obtained
by Greentree et al. �15� and very likely also in qualitatively
similar results obtained by Lei and Lee for the Dicke-Bose-
Hubbard model �27�. In both references, the instability is not
mentioned, and it has not been discussed elsewhere to the
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best of our knowledge. A rough estimate for the border of the
instability region may be obtained from the hopping-
dominated limit by setting the ground-state energy �10� to
zero. This leads to the relation ��−��=−zc� shown as the
dashed curve in Fig. 2�b�, which is in reasonable agreement
with the numerical results.

There exists a second region in the phase diagram which
is highly sensitive to the specific photon truncation scheme.
This region close to �−�=0, marked by hatching in Fig.
2�b�, appears to suggest the emergence of a large Mott-
insulating phase reaching from �−�−0.1 all the way into
the �−��0 region. This feature, present also in all mean-
field phase diagrams of Refs. �15,27�, turns out to be a pure
artifact of the truncation of Hilbert space at some maximum
photon number. Indeed, its presence would be rather difficult
to reconcile with the atomic-limit prediction of an infinite
number of MI phases with �−�=0 being an accumulation
point and with the region �−��0 being unstable.

To illustrate this point, we have employed an alternative
“sliding” truncation scheme based on the number of excita-
tions in the atomic limit. Specifically, if the ground state in
the atomic limit is given by �n−�� j, we take into account a
total of 2�n photon Fock states, with numbers n� within

max�0,n − �n� � n� � n + �n. �15�

The results from this sliding truncation scheme presented in
Fig. 2�c� uncover that the results from the maximum photon
number truncation scheme are unreliable in the hatched re-
gion. As expected from the atomic limit, the sliding trunca-
tion scheme shows no large Mott-insulating region close to
�−�=0 but only the sequence of ever smaller MI phases
approaching this chemical-potential value.

The phase boundary between MI and superfluid phases
can be determined in a way similar to the procedure for the
Bose-Hubbard model �17,29�. In the critical region, the su-
perfluid order parameter � is small and the terms in hMF

involving � may be treated perturbatively. This leads to an
expansion of the ground-state energy in powers of �,

E0��� = E0
MF + r���2 +

1

2
u���4 + O����6� . �16�

Note that the invariance of hMF under the global gauge trans-
formation

� → �ei�, aj → aje
−i�, � j

− → � j
−e−i� �17�

implies that all odd-order terms in the expansion �16� vanish.
Equation �16� represents the standard situation of a qua-

dratic plus quartic potential, ubiquitous in the study of mean-
field phase transitions. The resulting mean-field critical ex-
ponents are �=1 /2 for the critical exponent of the order
parameter �� �̄� and �=0 for the exponent of the com-
pressibility defined by �s� �̄−� �30�. Here, �̄= ��−�c� /�c
measures the relative chemical-potential difference from the
critical value. Other critical exponents can be established via
scaling and hyperscaling relations and we discuss the role of
the dynamical critical exponent z in Sec. VI.

As usual, the phase boundary is specified by the condition
r=0 �assuming that u�0�. The quadratic expansion coeffi-
cient r can be expressed as r=Rn+ �zc��−1, where Rn can be
obtained from the second-order perturbation theory in the
photon hopping. In the resonant case ��=0�, the contribu-
tions are given by

Rn=0 =
1

2 �
�=−1,+1

1

� − � + �g
, �18�

Rn�0 =
1

4 �
�=−1,+1

� �
n + �
n − 1�2

− �� − �� − �
n − �
n − 1�g

+
�
n + 1 + �
n�2

�� − �� − �
n − �
n + 1�g
� , �19�

where n=0,1 , . . . enumerates the sequence of Mott-
insulating lobes. For nonzero detunings, the lengthier expres-
sions for the quantities Rn are relegated to Appendix B. The
full phase boundary is then obtained analytically as the set of
curves defined by

�n =
1

zcRn
, �20�

shown for the resonant case as black curves in Fig. 2�b�, and
for finite detunings in Fig. 3. We will return to the question

FIG. 3. �Color online� Mean-field phase boundary as a function
of effective chemical potential ��−�� and atom-resonator detuning
�. The cross section shows the Mott-insulating lobes at zero detun-
ing �in orange/light gray�. With an exception of the �0� lobe, all
lobes become narrower when increasing the detuning �. Arrows
and curves in red/dark gray mark the positions of multicritical lines
where the system switches from the universality class of the generic
superfluid–Mott-insulator transition to the universality class of the
soft-spin �d+1�-dimensional XY model.
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of phase boundaries in Sec. VI, where the presence of mul-
ticritical lines will be discussed.

V. USEFUL MAPPINGS FOR THE JC LATTICE MODEL

The qualitative similarity in the phase diagrams of the
Jaynes-Cummings lattice model and the Bose-Hubbard
model has been one of the main driving forces in recent
studies of the JC lattice problem. Both models display a
quantum phase transition from a superfluid phase to Mott-
insulating phases. Yet, as discussed in Sec. III C, it is in
general not possible to view the JC lattice model as a simple
Bose-Hubbard model with an effective Hubbard interaction
U. Instead, the composite system of interacting photons and
atoms can be mapped to a two-component Bose-Hubbard
model or a general polariton model, which reduces to the
spin-1/2 quantum-XX model in the vicinity of the degeneracy
points between adjacent Mott lobes. We present the corre-
sponding mappings and discuss their implications in the fol-
lowing three subsections.

A. Mapping to a two-component Bose-Hubbard model

As the first useful reformulation of the JC lattice model,
we explore its mapping to a two-component Bose-Hubbard
model. For this mapping, the annihilation and creation op-
erators for spin waves are identified as cj =� j

−, cj
†=� j

+. As
usual, these operators are neither bosonic nor fermionic:
while on each individual site, the cj obey anticommutation
relations, cj’s from different sites commute,

�cj,cj� = 0, �cj,cj
†� = 1, �21�

�ci,cj� = �ci,cj
†� = 0 for i � j . �22�

This deficiency may be cured by the Jordan-Wigner transfor-
mation �31� and its generalizations �32,33�, which yield a
proper fermionic description. Here, we instead employ the
simple equivalence between spin-1/2 systems and hard-core
bosons, valid for lattices in arbitrary dimension �34�. Accord-
ing to this equivalence, the energy spectrum of the spin
Hamiltonian H�� j

+ ,� j
−� is identical to the set of finite

eigenenergies of the hard-core boson model,

H� = H�bj
†,bj� + lim

U→�

U

2 �
j

bj
†bj�bj

†bj − 1� , �23�

where the first term is obtained from the Hamiltonian H by
replacing all spin operators with boson operators according
to � j

+→bj
†, � j

−→bj. In our case, the resulting two-component
Bose-Hubbard model reads as

H� = �
j
��� − ��aj

†aj + �� − ��bj
†bj +

U�

2
nbj�nbj − 1�

+ g�aj
†bj + bj

†aj�� − ��
�i,j�

�aiaj
† + ajai

†� , �24�

where nbj =bj
†bj is the number operator for the b bosons on

site j, and U� is a shorthand for the large-U limit �cf. Eq.
�23��. Such two-component Bose-Hubbard models are also

of interest in systems of ultracold atoms in optical traps
�2,3�. In that context, the two components correspond either
to different species of atoms or to two internal states of one
atom species. We note that for ultracold atoms, the two-
component Bose-Hubbard model has mainly been studied in
the limit of negligible intercomponent conversion, i.e., in our
notation g=0. The relevance of atom-photon coupling in the
JC lattice model serves as a motivation to explore the phys-
ics of the two-component Bose-Hubbard model in the regime
of g�0 and large repulsion U� for one of the two compo-
nents. We note that the hopping-dominated regime is easily
obtained from Eq. �24� by treating intercomponent conver-
sion perturbatively, such that atoms and photons effectively
decouple. This results in a superfluid of photons only weakly
dressed by atomic excitations.

B. Polariton mapping

The polariton mapping of the JC lattice model was previ-
ously discussed by Angelakis et al. �23� In that work, the
mapping was considered for the situation close to resonance
�0. Here, we extend the mapping to the general case of
nonzero detuning.

The idea of the polariton mapping is to diagonalize the
local Jaynes-Cummings Hamiltonian Hj

JC for each site j and
to rewrite the remaining photon hopping Hhop in the form of
polariton hopping between nearest-neighbor sites. Hence, the
starting point for this mapping is the atomic limit, where the
system’s eigenstates are dressed-state polaritons of the form

�n, �� = an��n↓� + bn���n − 1�↑� . �25�

For n1, the coefficients read as

an� = � sin �n, � = +

cos �n, � = −
, bn� = � cos �n, � = +

− sin �n, � = − ,
��

�26�

while for the nondegenerate ground state n=0 we introduce
the conventions �0−�	�0↓� and �0+�=0, i.e., a0−=1, a0+
=b0�=0. �For the definition of the mixing angles �n, see
Appendix A.� With this, the linear relations between the ba-
sis states may be written compactly as

��n+�
�n−�

� = �an+ bn+

an− bn−
�� �n↓�

��n − 1�↑�
� , �27�

with inverse

� �n↓�
��n − 1�↑�

� = �an+ an−

bn+ bn−
���n+�

�n−�
� . �28�

As required, the JC part of the Hamiltonian is now diagonal,

�
j

Hj
JC − �N = �

j
�
n=0

�

�
�=�

En�
� Pj,n�

† Pj,n�. �29�

Here, we have introduced the polariton operators in the same
way as defined in Ref. �23�, namely,

Pj,n�
† 	 �n�� j�0−� j �30�

and their Hermitian conjugates. The operator Pj,n�
† maps the

polariton ground state �0−� j on site j to another polariton
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state �n�� j on the same site. Note that these operators do not
satisfy the canonical commutation relations of creation and
annihilation operators.

To rewrite the hopping contribution in the polariton basis,
we observe that the effect of a photon annihilation operator
can be expressed in the polariton basis via

aj��n+� j

�n−� j
� = aj�an+ bn+

an− bn−
�� �ng�

�n − 1,e�
� �31�

=�tn,++ tn,+−

tn,−+ tn,−−
���n − 1,+ �

�n − 1,− �
� , �32�

where the conversion amplitudes are

tn,�+ = 
nan�an−1,+ + 
n − 1bn�an−1,−, �33�

tn,�− = 
nan�bn−1,+ + 
n − 1bn�bn−1,−. �34�

As a result, the representation of the photon annihilation op-
erator in the polariton basis reads as

aj = �
n=1

�

�
�,��=�

tn,���Pj,�n−1���
† Pj,n�, �35�

meaning that aj diminishes the polariton number n on site j
by one, and may or may not alter the polariton type �=�.

In full, the JC lattice Hamiltonian can thus be rewritten as

H = �
j

�
n=0

�

�
�=�

En�
� Pj,n�

† Pj,n�

− ��
j

�
j��NN�j�

�
n,n�=1

�

�
�,��,�,��

tn,���tn�,���

�Pj,n�
† Pj,�n−1���Pj�,�n�−1���

†
Pj�,n��, �36�

where the polariton hopping indeed transfers polaritons be-
tween nearest-neighbor sites, and additionally may change
the polariton type �� �, of one or both sites involved.

It is instructive to compare this form of the JC lattice
Hamiltonian to the Bose-Hubbard model. This comparison is
facilitated by rewriting the Bose-Hubbard model H=HBH
+Hhop in the corresponding form,

HBH = �
j

�bj
†bj +

1

2
Unj�nj − 1� = �

j
�
n=0

�

EnPj,n
† Pj,n,

�37�

Hhop = − ��
j

�
j��NN�j�

bj
†bj� =

− ��
j

�
j��NN�j�

�
n,n�


n
n�Pj,n
† Pj,n−1Pj�,n�−1

† Pj�,n�,

�38�

with En=n�+Un�n−1� /2. Inspection thus shows that the
structures of the JC lattice Hamiltonian and the Bose-
Hubbard Hamiltonian share several crucial properties. They

both involve an on-site contribution and a hopping term,
which transfers excitations between nearest-neighbor sites.
The two system differ, however, in �i� the specific on-site
eigenenergies, �ii� the scaling of the hopping matrix elements
with n, and �iii� in the case of the JC lattice model, the
existence of two excitation species and the possibility of in-
terconversion.

C. Mapping to the spin-1/2 quantum-XX model

Angelakis et al. pointed out that the interconversion be-
tween the two polariton types may be neglected within RWA
�23�. Specifically, their argument is based on the restriction
to the subspace consisting of ground state and one-excitation
manifold and results in a mapping to the XX model �35�. We
review this statement, specify its range of validity, and gen-
eralize it to include higher-excitation manifolds.

Consider the regime close to a degeneracy point between
two Mott-insulating lobes �polariton occupation numbers n
−1 and n� in the atomic limit, i.e., � /g	1. The effective
model for low-energy states in this regime treats the two
relevant product states ��n−1�−�� j and �n−�� j. Given the con-
ditions

� 	 min��E�n+1�−
� − En−

� �, �E�n−1�−
� − E�n−2�−

� �� , �39�

and

� 	 �E�n−1�+
� − E�n−1�−

� � , �40�

the hopping of photons will not lead to significant occupation
of the symmetric Jaynes-Cummings states �higher in energy�
or to occupation of adjacent Mott-insulating states. Thus, we
may truncate the Hilbert space and drop interspecies conver-
sion, which results in

Hn
eff = �

j
�

m=−1,0
E�n+m�−

� Pj,�n+m�−
† Pj,�n+m�−

− �tn
2�

j
�

j��NN�j�

Pj,n−
† Pj,�n−1�−Pj�,�n−1�−

† Pj�,n−. �41�

Note that the on-site energies E�n−1�−
� , En−

� , and the hopping
amplitude �tn	�tn,−− depend on the detuning � between
resonator frequency and qubit frequency. Changing the de-
tuning can thus be used to effectively alter the hopping
strength, which provides a convenient experimental “knob”
to tune the system across the phase transition �23�.

Within the truncated Hilbert space, the effective Hamil-
tonian Hn

eff can be rewritten as a spin-lattice XX model. To
see this, one identifies the polariton operators with spin-1/2
operators in the following way:

� j
+ 	 Pj,n−

† Pj,�n−1�−. �42�

With this definition, � j
+ and its Hermitian conjugate � j

− obey
the standard commutation and anticommutation rules for the
Pauli lowering and raising matrices. Specifically, we have

�� j
+,� j�

− � = ��n−� j��n − 1�−� j, ��n − 1�−� j��n−� j�� = � j j�1 ,

�43�

where we have used the completeness relation
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1 = �n−� j�n−� j + ��n − 1�−� j��n − 1�−� j �44�

valid in the truncated Hilbert space of site j. Similarly, we
confirm that

�� j
+,� j

+� = 0, �� j
+,� j

−� = 1 . �45�

Together with the usual definitions

� j
x = � j

+ + � j
−, � j

y = − i� j
+ + i� j

−, � j
z = 2� j

+� j
− − 1,

�46�

Equations �43� and �45� are sufficient to reproduce the com-
mon algebra of Pauli spin matrices, i.e., for a ,b ,c
� �x ,y ,z�,

�� j
a,� j

b� = � j j�2i�abc� j
c, �� j

a,� j
b� = 2�ab1 . �47�

The resulting XX model describing the physics close to
the degeneracy points of the JC lattice model is given by

Hn
XX =

1

2
�En−

� − E�n−1�−
� ��

j

� j
z −

1

2
�tn

2 �
�j,j��

�� j
x� j�

x + � j
y� j�

y � .

�48�

This effective model underlines the similarity between the JC
lattice model and the Bose-Hubbard model in the hard-core
boson limit U /�→�, for which a similar XX model is ob-
tained at the degeneracy points of adjacent Mott lobes �29�.

VI. EFFECTIVE-FIELD THEORY AND EXISTENCE OF
MULTICRITICAL POINTS

We now turn to the field-theoretic treatment of the JC
lattice model. Employing imaginary time coherent-state
functional integration, the partition function of the JC lattice
system may be expressed as

Z =� �
j

Daj
����Daj���DN j�����N j

2 − 1�e−S�aj
�,aj,Nj�,

�49�

where the action is given by

S�aj
�,aj,N j� = SB + �

0

�

d���
j

aj
��aj

��
+ �

j

Hj
JC�aj

�,aj,N j�

+ Hhop�aj
�,aj�� . �50�

Here, HJC and Hhop are now the Hamilton functions obtained
from the Hamiltonians �2� and �3� by replacing all operators
with their associated fields aj, aj

�, and Bloch vectors N j
= �Nj,x ,Nj,y ,Nj,z�, i.e.,

aj → aj���, aj
† → aj

����, � j
� → Nj,�, �51�

where �=x ,y ,z. For convenience, we have absorbed the
chemical-potential term into the JC Hamiltonian Hj

JC→Hj
JC

−�nj. Further, the Berry phase contribution to the action
from the spins is given by

SB = �
j
�

0

�

d��N j����
d

d�
�N j���� . �52�

�For a comprehensive exposition of coherent-state functional
integration of bosons and spins, see e.g., Refs. �29,36�.�

Analogous to the treatment of the Bose-Hubbard model
�17,29�, we next use a Hubbard-Stratonovich transformation
to decouple the hopping term,

exp��
0

�

d��
j,j�

aj
�� j j�aj�� =� �

j

D� j
����� j���

�exp�− �
0

�

d��
j,j�

� j
�� j j�

−1� j��
�exp��

0

�

d��
j

�� j
�aj + � jaj

��� .

�53�

Here, the nearest-neighbor hopping has been encoded in the
matrix � j j�, yielding the photon-hopping rate � if j and j� are
nearest-neighbor sites, and zero otherwise. The introduction
of the auxiliary fields � j thus results in an effective action
that is completely local. In full, the partition function now
reads as

Z =� �
j

D� j
����D� j���Daj

����Daj���DN j�����N j
2 − 1�

�exp�− S��� j
�,� j,aj

�,aj,N j�� , �54�

with an action S� that includes the auxiliary fields � j
�, � j,

S� = SB + �
0

�

d���
j

aj
��aj

��
+ �

j,j�

� j
�� j j�

−1� j�

+ �
j

Hj
JC�aj

�,aj,N j� − �
j

�� j
�aj + � jaj

��� . �55�

In the next step, we integrate out the fields aj
�, aj, and N j. For

the discussion of the quantum phase transition, we are pri-
marily interested in an effective-field theory for the auxiliary
fields � j

� and � j, which should hold for “small fields” �. �The
fields � j are proportional to the order parameter �aj� and,
hence, are small in the critical region.� Thus, we may expand
in the fields � j and their temporal and spatial gradients to
obtain the general effective action

Seff���,�� = �
0

�

d�� ddxLeff����x,��,��x,��� , �56�

with Lagrangian density

Leff = K0 + K1��
��

��
+ K2� ��

��
�2

+ K3����2 + r̃���2 +
ũ

2
���4

+ ¯ . �57�

Next, we wish to obtain explicit expressions for the coeffi-
cients in this expansion. As in the Bose-Hubbard model
�29,30�, the coefficients r̃ and ũ can be related to the mean-
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field coefficients r and u �Eq. �16��. To see this, consider the
situation of a spatially and temporally constant field � j���
=�. In this case, we identify

� �
j

Daj
����Daj���DN j�����N j

2 − 1�e−S��aj
�,aj,Nj;��

 e−Seff��� 	 Z��� , �58�

where the effective action �56� reduces to

Seff��� = �V�K0 + r̃���2 +
u

2
���4 + ¯� . �59�

Here, V denotes the volume of the system. The substitution
of the global field � into the action S� �Eq. �55�� is facilitated
by the relation �ij�ij

−1=N / ��zc�, where N is the total number
of sites. By inspection, one can verify that Z��� is the parti-
tion function corresponding to the mean-field Hamiltonian,

HMF = �
j
�1

2
�� − ��� j

z + �� − ��aj
†aj + g�aj

†� j
− + � j

+aj�

− �aj�
� + aj

†�� +
1

zc�
���2� . �60�

In the limit of low temperature �→� and close to the phase
boundary �i.e., small ��, we thus identify

Seff��� = �E0��� , �61�

where E0��� is the ground-state energy of the mean-field
Hamiltonian HMF. As a result, we conclude

r̃ = v−1r, ũ = v−1u , �62�

where v=V /N is the volume per lattice site.
To obtain the coefficients K1 and K2, we generalize the

time-dependent U�1� symmetry encountered for the Bose-
Hubbard model �29� to the JC lattice model. In the case of
the latter model, the symmetry involves both the photon
fields as well as the spins,

aj → aje
i����,

N j → � cos � sin � 0

− sin � cos � 0

0 0 1
�N j ,

� j → � je
i����,

�� − �� → �� − �� − i
d�

d�
. �63�

This symmetry transformation leaves the action S�, Eq. �55�
invariant �37�. The only two terms for which invariance may
not be immediately obvious are the atom-photon coupling
term and the spin Berry phase term SB. The verification of
invariance for these two terms is given in Appendix C.

With the invariance intact, we now explore its conse-
quences for the expansion coefficients in Eq. �57�. Specifi-
cally, we consider the transformation in the limit of a small
phase ����	1 and plug the transformed fields ��, �, and the

transformed �−� into the effective action Seff��� ,��. Taking
into account that the coefficients r̃, ũ, and K� may depend on
�−�, we Taylor expand in powers of the phase � and its
time derivatives. Requiring that Seff be invariant, the leading
order in this expansion yields the important relations

K1 =
� r̃

��� − ��
, K2 = −

1

2

�2r̃

��� − ��2 , �64�

see Appendix D for a more detailed derivation.
Whenever the coefficient K1 vanishes, the phase transition

of the JC lattice system changes its universality class. While
the case of K1�0 is associated with the generic superfluid–
Mott-insulator transition with dynamical critical exponent z
=2, points where K1=0 lead to a phase transition within the
universality class of the soft-spin �d+1�-dimensional XY
model. The physics of these multicritical points is in com-
plete analogy to the corresponding physics of the Bose-
Hubbard model �17,29�.

One difference worth noting is the presence of an addi-
tional parameter in the case of the JC lattice system. This
parameter, the energy scale for the atoms �, is to be held
constant when calculating the partial derivative in Eq. �64�.
Due to the presence of this additional parameter, the phase
boundary is a two-dimensional surface in the space spanned
by the parameters �, �, and �, and the condition K1=0 de-
fines curves on the phase boundary. Consequently, the field
theory predicts a multicritical curve, as opposed to the iso-
lated multicritical points of the Bose-Hubbard model.

These curves are shown in Fig. 3, where the axes have
been chosen as resonator frequency � and detuning �. As
mentioned by Zhao et al. �20�, the transformation of vari-
ables �� ,��→ �� ,�� shifts the position of multicritical
points away from the lobe tips, when considering cuts for
constant detuning � �compare Fig. 4�. Specifically, the
change of variables implies the transformation of the partial
� derivative according to

� �

��
�

�

= � �

��
�

�

− � �

��
�

�

, �65�

where subscripts to the partial derivatives denote which vari-
able to hold constant.

∂ω − ∂∆

∂ω∂∆

FIG. 4. �Color online� Change of variables shifts multicritical
points away from lobe tips. While multicritical points appear at lobe
tips when plotting the phase boundary as a function of ��−�� and
� for constant atomic energy �, their position is shifted when plot-
ting the phase boundary for constant detuning � �see Eq. �65��.
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We thus predict multicritical curves, whose position is
completely specified through the conditions given by Eq.
�20� �38�

� �

��
�

�

Rn = 0. �66�

For each Mott lobe with n=1,2 , . . ., there is one such multi-
critical curve, along which the universality class changes in a
way similar to the Bose-Hubbard model. It is interesting to
note that the numerical evidence for these multicritical
curves is currently discussed controversially. Specifically,
Zhao et al. argued for the complete absence of multicritical
points based on their quantum Monte Carlo simulations �20�.
By contrast, Schmidt and Blatter recently presented new evi-
dence for the presence of such multicritical points �22�,
which is consistent with our findings from the field theory.
While the exact position and shape of the phase boundary
may acquire corrections beyond the mean-field results pre-
sented in Eqs. �18�–�20�, we emphasize that the field-
theoretical analysis is general and applies to arbitrary spatial
dimensions of the system. Specifically, as long as the phase
boundary remains differentiable �i.e., no kinks� it predicts the
existence of multicritical lines independent of the spatial di-
mension of the lattice.

VII. CONCLUSIONS AND OUTLOOK

In conclusion, we have presented a thorough analysis of
the quantum phase transition predicted for polaritons in the
Jaynes-Cummings lattice. We have revisited the mean-field
phase diagram, clarified the existence of an unstable region,
and derived analytical expressions for the full two-
dimensional surface that constitutes the phase boundary. The
qualitative similarities between the Jaynes-Cummings lattice
and the Bose-Hubbard model have been elaborated and dis-
cussed in the context of exact mappings to a two-component
Bose-Hubbard model and a generalized polariton model. Fi-
nally, we have presented a field-theoretic approach for the
Jaynes-Cummings lattice, whose gradient expansion in the
critical region underlines the analogy with the Bose-Hubbard
model. We find that the Jaynes-Cummings lattice falls in the
same universality class and have proven the existence of
multicritical curves, which parallel the presence of multicriti-
cal points in the Bose-Hubbard model.

A number of potential candidates have been suggested for
an actual realization of the Jaynes-Cummings lattice physics,
ranging from arrays of photonic band-gap cavities to realiza-
tions in circuit QED �see the review by Hartmann et al. and
references therein �24��. The realization in circuit QED �see
Fig. 5� is particularly interesting. In this case, the fabrication
of the basic building block is well established and shows the
desired Jaynes-Cummings physics �9,39�. The step to fabri-
cating medium-size arrays �N�101−102� should not pose
fundamental difficulties and first ideas how to initialize such
a system have been suggested �23�. Namely, the system
could be prepared within a Mott-insulating phase by using a
global external microwave signal. An off-resonant ac Stark
tone could then be used to tune the system across the phase
boundary by modifying the detuning � and would also allow

for the study of the system at multicritical points. By con-
trast, both � as well as � would typically be fixed by the
fabrication parameters. The order parameter �= �a� could be
accessed by a homodyne measurement of the voltage field in
the resonators.

In the future, these ideas will have to be extended to
specify actual experimental protocols. As pointed out previ-
ously �18�, an analysis of the Jaynes-Cummings lattice when
subject to unavoidable decoherence mechanisms will be cru-
cial to aid the experimental attempt. An additional layer of
interesting physics will arise from disorder. Specifically, in
the circuit QED architecture such disorder is likely to occur
for the atoms’ frequencies due to the limited precision in
Josephson-junction fabrication. We are confident that a con-
certed effort of theory and experiment can lead to the real-
ization and further study of Jaynes-Cummings lattice physics
in the near future and note that such a realization would
share many of the interesting aspects and benefits of the
thriving field of ultracold-atom physics.
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APPENDIX A: SOLUTION OF THE JC MODEL

For completeness, we compile the most important results
for the Jaynes-Cummings model. The JC Hamiltonian �7�,

HJC = �a†a + ��+�− + g�a†�− + �+a� , �A1�

describes the situation of a two-level system �transition en-
ergy �, Pauli raising, and lowering operators ��� coupled to
a harmonic oscillator �frequency �, creation, and annihila-
tion operators a†, a� with coupling strength g. Prominent
realizations of Jaynes-Cummings physics include cavity and

FIG. 5. �Color online� Possible realization of the JC lattice
model, building upon circuit quantum electrodynamics: supercon-
ducting microwave resonators can be patterned onto a chip and
coupled to superconducting qubits �shown in the zoom in�.
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circuit QED �8,9�, where the JC Hamiltonian is usually ob-
tained within the RWA valid for g	� ,�.

The RWA is crucial: within this approximation, the total
number of excitations N=a†a+�+�− is conserved and the
Hamiltonian separates into 2�2 blocks for each fixed-
excitation subspace, i.e., HJC= �n=0

� hn, where h0=0 and

hn = � n� 
ng


ng �n − 1�� + �
� . �A2�

Precisely because of this block-diagonal form, the JC model
is exactly solvable, requiring merely the diagonalization of a
2�2 matrix. The resulting energy spectrum is given by the
ground-state energy E0=0 and the excited-state energies �n
1�,

En� = n� +
�

2
� ���

2
�2

+ ng2�1/2
. �A3�

Here, we have used �=�−� as an abbreviation for the de-
tuning, and the polariton number is counted by n�N. The
eigenstates corresponding to these eigenenergies are �0↓� for
the ground state and

�n−� = sin �n�n↓� + cos �n��n − 1�↑� , �A4�

�n+� = cos �n�n↓� − sin �n��n − 1�↑� . �A5�

The mixing angle �n depends on detuning, coupling strength,
and polariton number,

�n =
1

2
arctan�2g
n

�
� . �A6�

APPENDIX B: PERTURBATIVE SHIFTS FOR �Å0

In the critical region and within the mean-field theory, the
energy shifts Rn���2 due to photon hopping can be calculated
via perturbation theory. The resulting expressions for vanish-
ing detuning were given in Sec. IV. Here, we provide the
slightly lengthier but general expressions,

R0 = − � cos2 �1

E1−
� +

sin2 �1

E1+
� � , �B1�

Rn = � �
n + 1 cos �n cos �n+1 + 
n sin �n sin �n+1�2

En−
� − E�n+1�−

�

+
�
n + 1 cos �n sin �n+1 − 
n sin �n cos �n+1�2

En−
� − E�n+1�+

�

+
�
n cos �n cos �n−1 + 
n − 1 sin �n sin �n−1�2

En−
� − E�n−1�−

�

+
�
n cos �n sin �n−1 − 
n − 1 sin �n cos �n−1�2

En−
� − E�n−1�+

� � .

�B2�

�See Appendix A for the definition of the mixing angle �n.�

APPENDIX C: INVARIANCE OF ATOM-PHOTON
COUPLING AND SPIN BERRY PHASE UNDER LOCAL

U(1) GAUGE TRANSFORMATION

In Sec. VI, we have claimed that the action S� given in
Eq. �55� is invariant with respect to the local U�1� gauge
transformation specified in Eq. �63�. The invariance is veri-
fied by simple inspection. For completeness, we briefly dis-
cuss the proof for the atom-photon coupling and the spin
Berry phase term.

First, consider the coupling term

g�aj
��Nj,x − iNj,y� + c.c.� . �C1�

This is transformed into

g�aj
�e−i��Nj,x� − iNj,y� � + c.c.�

= g�aj
�e−i��cos �Nj,x + sin �Nj,y + i sin �Nj,x

− i cos �Nj,y� + c.c.�

= g�aj
�e−i��ei�Nj,x − iei�Nj,y� + c.c.�

= g�aj
��Nj,x − iNj,y� + c.c.� , �C2�

which reveals the invariance. Second, consider the transfor-
mation of SB. Writing the rotation matrix affecting N j as
R���, we have

SB → SB + �
j
�

0

�

d��N j����R†���Ṙ����N j���� . �C3�

Evaluating the matrix derivative and multiplying with the
transpose of R, we find

R†���Ṙ��� =
d�

d� � 0 1 0

− 1 0 0

0 0 0
� , �C4�

which gives �N j����R†���Ṙ����N j����=0,, and thus proves the
invariance of SB.

APPENDIX D: DERIVATION OF RELATIONS BETWEEN
K1, K2, AND r̃

Our derivation of the interrelations between the coeffi-
cients K1, K2, and r̃ which enter the effective action for the
auxiliary field � �Eqs. �56� and �57�� is analogous to the
reasoning applied in the case of the Bose-Hubbard model
�see, e.g., Refs. �29,30��. Starting point of this consideration
is the invariance of the action S� �Eq. �55��, under the gen-
eralized gauge transformation specified in Eq. �63�. Once the
Bose fields aj, aj

�, and the spins N j have been integrated out,
this invariance remains intact in the following sense: when
transforming the auxiliary fields and the cavity frequency
according to

� j → � je
i����, �� − �� → �� − �� − i

d�

d�
, �D1�

the effective action S� with Lagrangian density
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Leff = K0 +
1

2
K1���

��

��
+

���

��
�� + K2� ��

��
�2

+ K3����2

+ r̃���2 +
1

2
ũ���4 + ¯ �D2�

remains unchanged. This statement must hold for arbitrary
configurations of the fields � j

� and � j, as well as arbitrary
choices of the phase function ����. As a consequence, the
invariance must not only hold for the effective action but
also for the Lagrangian density itself. In particular, the coef-
ficients K1, K2, etc., themselves must be invariant, and they
must be so to each order in �, �̇, and its higher time deriva-
tives, when considering a small global phase change ����
	1.

Carrying out this expansion for the terms included in Leff
above, one finds

Leff  K0 − i�̇K0� −
1

2
�̇2K0�

+ ��K1

2
− i�̇

K1�

2
− i�̇K2���

��

��
+ c.c.�

+ �K2 − i�̇K2��� ��

��
�2

+ �K3 − i�̇K3������2

+ �r̃ − i�̇r̃� + iK1�̇����2 +
1

2
�ũ − i�̇ũ�����4 + ¯ ,

�D3�

where �̇=d� /d�, and primes denote derivatives with respect
to ��−��. It is important to note that the terms collected in
Eq. �D3� do not yet correspond to a consistent expansion.
Specifically, higher-order terms dropped in Leff above give
relevant contributions even to the order recorded in Eq. �D3�.
As one example, consider the higher-order term

�1
���

��

�2�

��2 , �D4�

whose expansion contains �among others� the contribution

i�1�̇� ��

��
�2

. �D5�

One can verify, however, that the coefficients of the ���2 and
the ���� /�� terms are in fact consistent to the order O��̇� as
written above, and we can read off the important relations as

K1 = r̃�, K2 = −
1

2
K1�. �D6�
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