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We study the Bloch dynamics of a quasi-one-dimensional Bose-Einstein condensate of cold atoms in a tilted
optical lattice modeled by a Hamiltonian of Bose-Hubbard type. The corresponding mean-field system de-
scribed by a discrete nonlinear Schrödinger equation can exhibit dynamical �or modulation� instability due to
chaotic dynamics and equipartition over the quasimomentum modes. It is shown that these phenomena are
related to Bogoliubov’s depletion of the Bose-Einstein condensate and a decoherence of the condensate in the
many-particle description. Three types of dynamics are distinguished: �i� decaying oscillations in the region of
dynamical instability and �ii� persisting Bloch oscillations or �iii� periodic decay and revivals in the region of
stability.
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I. INTRODUCTION

Recently, considerable attention has been paid to the dy-
namics of cold atoms and Bose-Einstein condensates �BECs�
loaded into an optical lattice with a static, e.g., gravitational
force �see �1–12��. In the limit of vanishing particle interac-
tion, the system shows Bloch oscillations �BOs� �for a re-
view see, e.g., �13��. However, it is known that the interac-
tion between the atoms leads to modifications and possibly
even to a breakdown of these Bloch oscillations.

The most prominent theoretical approach to investigate
the dynamics is the reduction of the many-particle system to
a mean-field description via the �nonlinear� Gross-Pitaevskii
equation. The description can be further simplified by dis-
cretizing it in terms of Wannier functions localized on the
lattice sites. In the many-particle description, this yields a
Bose-Hubbard model and accordingly the mean-field dynam-
ics is described by the discrete nonlinear Schrödinger equa-
tion �DNLSE� �see, e.g., �14��. It should be pointed out that
the mean-field approximation is formally equivalent to a
classical limit for single-particle quantum mechanics. There-
fore, it is often denoted as “�pseudo�classical,” although it
still describes a quantum system. This becomes evident in
the limit of vanishing interaction, where it reduces to a
single-particle Schrödinger equation. Nevertheless, the for-
mal similarity of the many-particle to mean-field transition
and the quantum classical correspondence allows for the ap-
plication of semiclassical methods as well as the investiga-
tion of topics such as quantum chaos within the framework
of ultracold atoms �15–21�.

The mean-field system of interest in the present study
shows a rich structure of mixed and chaotic behavior and our
main aim will be to identify the counterparts of some pro-
nounced features in the corresponding many-particle system.
For this purpose, we compare the DNLSE dynamics to the
underlying microscopic many-particle system, described by
the one-dimensional bosonic Hubbard model with the Hamil-
tonian

Ĥ = �
l

�ln̂l −
J

2�
l

�âl+1
† âl + H.c.� +

W

2 �
l

n̂l�n̂l − 1� , �1�

where âl
† and âl are bosonic creation and annihilation opera-

tors for the lth lattice site and n̂l= âl
†âl are the associated

number operators. The hopping energy and the particle inter-
action are denoted by J and W, respectively, and �l=dFl is
the on-site energy where d is the lattice period and F the
magnitude of a static force. Experimentally, all these quanti-
ties can be controlled separately. However, the validity of the
Bose-Hubbard model is based on certain assumptions such
as the single band tight-binding approximation, which may
break down in some parameter regions. Yet, for the follow-
ing studies, only the ratios of the quantities are of interest for
the qualitative behavior of the system which offers an addi-
tional freedom to maintain the validity of the Bose-Hubbard
Hamiltonian. Therefore, we believe that the observations re-
ported in the following should be experimentally accessible.

The Hamiltonian commutes with N̂=�ln̂l and therefore
the total number N of particles is conserved. Here we con-
sider the macroscopic limit N→�, W→0 with constant g
=WN /L, where the number of sites, L, is kept finite. In this
limit, the mean-field approximation can be applied, which
usually is formulated as replacing the bosonic operators âl,
âl

† by complex numbers al, al
�, the components of an effec-

tive single-particle wave function which appear as “classi-
cal” canonical variables. The resulting mean-field Hamil-
tonian function is given by

H = �
l

�l�al�2 −
J

2�
l

�al+1
� al + c.c.� +

g

2�
l

�al�4, �2�

up to a term proportional to �l�al�2, which is an integral of
motion. The DNLSE can be formulated via the canonical
equations of motion
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i�ȧl = �H/�al
�, i�ȧl

� = − �H/�al. �3�

One aim of the present paper is to investigate the validity of
this mean-field approach for a system with finite particle
number in the different parameter regions.

For nonvanishing particle interaction g�0, the mean-field
Bloch oscillations are damped �8,9�. In this context, the main
phenomena are the dynamical instability which is also
known as modulation instability �see, e.g., �22,23�� and the
equipartition over the quasimomentum modes �also denoted
as thermalization� due to the onset of classical chaos in the
DNLSE. On the other hand, within the many-particle ap-
proach, the main phenomenon induced by the interaction is a
decay of Bloch oscillations due to decoherence �8,13�. The
present analysis shows a direct relation between these clas-
sical and quantum phenomena. We argue that the quantum
manifestations of both dynamical instability and equiparti-
tion can be understood in terms of the depletion of the
Floquet-Bogoliubov states, defined as the “low-energy”
eigenstates of the evolution operator over one Bloch period.

We furthermore go beyond the traditional single trajectory
mean-field treatment and, following a recent suggestion �24�,
average the dynamics over an ensemble of trajectories given
by the Husimi distribution of the initial many-particle state.
It is shown that this method is capable of describing impor-
tant features of the many-particle dynamics.

The paper is organized as follows. In Sec. II, we discuss
the mean-field dynamics, in particular the stability properties
of the Bloch oscillation and its relation to chaotic dynamics.
The corresponding many-particle system is analyzed in Sec.
III, mainly based on the Floquet-Bogoliubov states whose
depletion properties provide a measure for the many-particle
stability which can be compared to the mean-field behavior.
We summarize our results and end with a short outlook in
Sec. IV.

II. MEAN-FIELD DYNAMICS

Evaluating the canonical equations of motion �3� with the
Hamiltonian function �2� yields the mean-field equations of
motion of a BEC in a tilted optical lattice, the DNLSE

i�ȧl = �lal −
J

2
�al+1 + al−1� + g�al�2al, �l = dFl . �4�

Here, al�t� are the complex amplitudes of a mini BEC asso-
ciated with the lth well of the optical potential, J is the hop-
ping or tunneling matrix element, d the lattice period, F the
magnitude of the static force, and g the nonlinear parameter
given by the product of the microscopic interaction constant
W and the filling factor n̄ �the mean number of atoms per
lattice site�. It should be noted that Eq. �4� can also be de-
rived as a tight-binding approximation for the discretized
Gross-Pitaevskii equation. To simplify the equations, we
shall set the lattice period d and the Planck constant � to
unity in the following.

Throughout the paper, we shall use the gauge transforma-
tion

al�t� → exp�− i�g + Fl�t�al�t� �5�

that eliminates the static term in Eq. �4�. Note that the inclu-
sion of g in the transformation is optional and is done to
facilitate the stability analysis below. The effect of the static
force then appears as periodic driving of the system with the
Bloch frequency F,

iȧl = −
J

2
�e−iFtal+1 + e+iFtal−1� + g��al�2 − 1�al. �6�

An advantage of the gauge transformation is that one can
impose periodic boundary conditions, a0�t��aL�t�, where we
restrict ourselves to odd values of L. Equation �6� also ap-
pears as a canonical equation of motion generated by the
Hamiltonian function

H�t� = −
J

2�
l

�eiFtal+1
� al + c.c.� +

g

2�
l

�al�2��al�2 − 2� . �7�

In this work, we shall be concerned mainly with almost
uniform initial conditions al�0��1 which correspond to a
BEC in the zeroth quasimomentum mode in the many-
particle description in Sec. III. Note that we do not normalize
�l�al�2 to unity. Of course, this initial condition is an ideali-
zation of the real experimental situation, where initially only
a finite number of wells are occupied. Nevertheless, an
analysis of this situation provides useful estimates which, in
fact, can also be applied to the case of nonuniform initial
conditions �25�.

It is convenient to switch to the Bloch-waves representa-
tion

bk = L−1/2�
l=1

L

exp�i�l�al, k = 0, � 1, . . . , � �L − 1�/2,

�8�

where �=2�k /L is the quasimomentum �−������. After
this canonical change of variables, Eq. �6� takes the form

iḃk = − J cos�� − Ft�bk +
g

L
�

k1,k2,k3

bk1
bk2

� bk3
	k,k1+k2−k3

�L� − gbk,

�9�

where 	k,k�
�L� is the Kronecker 	 modulo L. For strictly uniform

initial conditions al�0�=1, Eq. �9� has the trivial solution

b0�t� = 	L exp
i
J

F
sin�Ft��, bk�0�t� � 0, �10�

i.e., a Bloch oscillation with period TB=2� /F. However, it is
well known that for g�0, the solution �10� can be unstable
with respect to a weak perturbation. The stability analysis of
the solution �10�, resulting in the stability diagram in the
parameter space of the system, was presented in Refs.
�22,23�. We extend this analysis below, mainly following
Ref. �22�, using methods of classical nonlinear dynamics.

A. Stability analysis

From a formal point of view, the BO �10� is a periodic
trajectory in the multidimensional phase space spanned by
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the aj or the bk, respectively. Using the standard approach,
we linearize Eq. �9� around this periodic trajectory which
leads to pairs of coupled equations

iḃ+k = − J cos�� − Ft�b+k +
g

L
�b0�2b+k +

g

L
b0

2b−k
� ,

iḃ−k = − J cos�� + Ft�b−k +
g

L
�b0�2b−k +

g

L
b0

2b+k
� , �11�

for k�0, where the initial amplitudes b�k�0� are arbitrarily
small. Substituting b0�t� from Eq. �10� and integrating Eq.
�11� in time over n Bloch periods, we get


b+k�tn�
b−k

� �tn�
� = 
1

nb1 + 
2
nb2. �12�

Here tn=TBn and 
1,2 and b1,2 are the eigenvalues and eigen-
vectors of the stability matrix

U�k� = exp̂�− ig

0

TB 
 1 f�t�
− f��t� − 1

�dt� , �13�

where the hat over the exponential function denotes time
ordering and

f�t� = exp
i
2J

F
�1 − cos ��sin�Ft�� . �14�

Note that the determinant—and therefore the product of the
eigenvalues—of the �symplectic� stability matrix is equal to
1. The trajectory is stable when both eigenvalues lie on the
unit circle but becomes unstable when they merge on the real
axis and go in and out of the unit circle. In what follows, we
shall characterize this instability by the increment �, given
by the logarithm of the modulus of the maximal eigenvalue:
�=ln�
1�, �
1�� �
2�. The increment of the dynamical insta-
bility is parameterized by the quasimomentum � and, hence,
there are �L−1� /2 different increments ��k��0. For a stable
BO, all of them should vanish simultaneously. Further details
concerning the stability analysis can be found in Appendix
A.

As an example, we show the increment of the dynamical
instability for the system with only L=3 sites in dependence
of F /J and g /J in Fig. 1. It is seen in the figure that the
parameter space of the system is divided into two parts by a
critical boundary. If the number of sites is increased, the
instability regions grow and the boundary approaches ap-
proximately the curve

Fcr ��3g , F � 2.9J

2.96	gJ , F 
 2.9J
� �15�

�see �23��. Figure 2 shows the stability diagram for L=63
lattice sites together with the boundary curve �15�.

In the right region of the diagrams in Fig. 1, �=��F ,g�
�0 holds and BOs are always stable. Physically, that means
that a sufficiently large static force ensures stability even in
the presence of nonlinearity. In the left-hand side of the dia-
grams, BOs are typically unstable but a closer inspection
reveals a web of stability regions for smaller values of the

parameters as can be seen in the upper panel in Fig. 1. It
should be noted that these stability regions are a particular
property of systems with a small number of lattice sites. If L
is increased, the regions where ��k�
0 overlap �see Fig. 3�
and for any point in the left side of the diagram, there is at
least one strictly positive increment of the dynamical insta-
bility.
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FIG. 1. �Color online� Increment of the dynamical �modulation�
instability � as a function of the static force magnitude F /J and the
interaction g /J for L=3 sites. The yellow �light gray� region in the
lower panel corresponds to ��k�=0 for all k, i.e., the Bloch oscilla-
tion is stable. A magnification of the lower left corner is depicted in
the upper panel and reveals a web of additional stability regions.
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FIG. 2. �Color online� Same as Fig. 1 �lower panel�, however,
for L=63 sites. Also shown is the boundary given by Eq. �15� as a
black curve.
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B. Relation to chaos

In this section, we investigate the implications of the sta-
bility on the dynamics of a classical ensemble of trajectories.
We will address the relation between dynamical instability,
classical chaos, and the so-called self-thermalization, that is,
equipartition of the energy between the different quasimo-
mentum modes. Related questions have been studied in �26�
in the context of one of the standard systems of classical
chaos, the Fermi-Pasta-Ulam system �27�. There, it was
pointed out that a positive increment � of the dynamical
instability is a necessary but not sufficient condition for the
onset of developed chaos in a chain of coupled nonlinear
oscillators. Here, the term “developed chaos” characterizes a
situation where a chaotic trajectory explores the whole en-
ergy shell. Developed chaos also implies equipartition of the
energy between the eigenmodes of the chain, a phenomenon
often referred to as thermalization.

The consideration of an ensemble of classical trajectories
as compared to a single trajectory is well suited for under-
standing the systems behavior in the present context for two
main reasons. First it is a convenient method to capture the
generic features of perturbed initial conditions due to an out-
averaging of the special behavior of an individual trajectory
slightly differing from the BO �10�. The second reason is that
the mean-field description is an approximation in the spirit of
a classical limit of the many-particle system which has to be
regarded as the more fundamental description. This many-
particle system, however, cannot be associated with a point
in the �classical� mean-field phase space, but is rather
equipped with a finite width due to the uncertainty principle,
where the width decreases with increasing particle number.
Thus, the natural counterpart of the many-particle system
within the mean-field description is a phase-space distribu-
tion rather than a single point. This phase-space distribution
can be conveniently replaced with a finite ensemble of clas-

sical trajectories for practical purposes. Further details of this
considerations can be found in �24� and Appendix B. As an
example, we depict in Fig. 4 the amplitudes al, l=1, . . . ,L of
an initial classical ensemble for the parameters N=15 and
L=5 considered in Sec. III for 100 realizations. The histo-
grams show the corresponding probability distributions for
the populations �al�2 and the phases.

A convenient quantity for the characterization of the
Bloch dynamics in the higher-dimensional classical phase
space is the classical momentum given by

p�t� =
1

2i��l

al+1
� ale

−iFt − c.c.� = �
k

�bk�2sin�� − Ft� .

�16�

For the periodic solution �10�, that is, the BO, the momentum
oscillates in a cosine manner between −1 and 1 with the
Bloch frequency F. For neighboring initial values, the behav-
ior may differ considerably depending on the stability of the
BO. If the BO is unstable, we expect an exponential growth
of the initial deviation connected to classical chaos, leading
to thermalization. On the other hand, the naive expectation in
the stable region is that a small initial deviation leads to a
small deviation in the overall trajectory and therefore aver-
aging over an ensemble does not change the Bloch oscilla-
tion behavior in principle. However, we are going to argue
that this is only true in a certain range of the parameter space
and indeed one can distinguish three regimes of classical
motion instead of only “stable” or “unstable” behavior. In
fact, we find that for large values of the static force F, the
ensemble average leads to a breakdown of the BOs and even
a thermalization in the absence of classical chaos.

Let us start our discussion with the unstable regime, that
is, small values of F. The exponential growth of a deviation
from the uniform initial condition is evidently related to
chaos. In particular, as for the Fermi-Pasta-Ulam system
�27�, for the system �6�, positive increments of the dynamical
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FIG. 3. �Color online� Increments of the modulation instability
��k�=��k��F�, k=0,1 , . . . for J=1, g=0.1, and L=5 sites �upper
panel� as well as L=63 sites �lower panel�. With the increase of the
lattice size, the instability regions for different k overlap and cover
the whole region left to the critical line.
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FIG. 4. �Color online� Classical ensemble representing the
many-particle initial state for N=15, L=5, and 100 realizations. The
characteristic width of the distribution is proportional to n̄−1/2.
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instability are a necessary condition for the onset of devel-
oped chaos. To illustrate the impact on the Bloch dynamics,
we show the time evolution for a single trajectory of an
ensemble mimicking an N=15 particle system in Fig. 5. The
first panel in the figure depicts the momentum �16� and the
second panel shows the mode populations �bk�t�2� of the qua-
simomentum modes k as a function of time measured in units
of TJ=2� /J.

For a single run, the momentum p�t� and the mode popu-
lations �bk�t��2 start to oscillate irregularly after a transient
time t�� ln�� /��, �� n̄−1/2, required for the modes with k
�0 to take non-negligible values. These erratic oscillations
are smoothed by averaging over the ensemble �consisting of
1000 trajectories in the present example� as shown in Fig. 6.
In the ensemble average, one observes a damped BO of p�t�
and an equipartition of the mode populations converging to
the values of 1 /L, i.e., a thermalization. It is clearly seen in

the figure that the rate of thermalization actually determines
the decay rate of the BO. In Sec. III, we will demonstrate
that this �classical� mean-field dynamics agrees remarkably
well with the full quantum many-particle behavior in view of
the small number of three particles per site.

One gets further insight into the relation to chaos by
studying the finite time Lyapunov exponent


�t� = ln�	a�t��/t , �17�

where 	a�t� evolves in the tangent space according to the
linear equation

i
d	a

dt
= M�a�t��	a�t� �18�

�see Appendix A�. As an example, Fig. 7 shows the behavior
of 
�t� for ten different trajectories from an ensemble �B2�. It
is seen that 
�t� converges to some constant values, so that
the mean Lyapunov exponent �
� is a well-defined quantity.
Since the unstable periodic trajectory analyzed in Sec. II A is
a member of this ensemble, the maximal increment of the
modulation instability �=maxk ��k� provides a reliable esti-
mate for �
�. Still, because the mean Lyapunov exponent
depends on the ensemble �i.e., on the value of the filling
factor n̄=N /L�, generally �
���. In particular, �
� is found
to be a smooth function of F, while the maximal increment
of the modulation instability is a nonanalytic function of F
with discontinuous first derivative. As a consequence, when
we cross the critical line in the stability diagram, the system
shows a smooth transition from the regime of decaying BOs
to the regime of persistent BOs. �For example, for the pa-
rameters of Fig. 6, this change happens in the interval 0.1
�F�0.4.�

We now turn to the parameter regime of stable BOs, for
larger values of F where the increment is zero. Here, we will
distinguish two different types of behavior in the ensemble
average: persistent BOs for intermediate values of F and
decaying BOs connected to thermalization in the limit of
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FIG. 5. �Color online� Mean-field BO of the momentum �upper
panel� and the dynamics of the population of quasimomentum
modes �lower panel�. These results for a single trajectory oscillate
erratically. Parameters are L=5, J=1, g=0.1, and F=0.1.
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FIG. 6. �Color online� Mean-field BO of the momentum �upper
panel� and dynamics of the populations of quasimomentum modes,
averaged over an ensemble of 1000 trajectories of initial conditions
�B2�. The other parameters are the same as in Fig. 5. An equiparti-
tion between the quasimomentum modes results in the decay of BO.
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FIG. 7. �Color online� Finite-time Lyapunov exponent 
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ten different trajectories from the ensemble �B2�. �Same parameters
as in Fig. 5.�
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large F. The regime of persistent BO is shown in Fig. 8 for
an example with F=0.4. No energy exchange between qua-
simomentum modes is seen which means that the system
dynamics is at least locally regular. In other words, for the
considered moderate F, the periodic trajectory �10� is sur-
rounded by a stability island. Moreover, the size of this sta-
bility island should be large enough as compared to the char-
acteristic width of the distribution �B2�, so that the majority
of the trajectories are stable. In this case, the ensemble aver-
aging is of little influence, resulting only in a small decrease
of the amplitude.

The behavior for large values of F and its relation to
classical chaos is more surprising. An analysis of the phase-
space structure of the system �7� reveals the volume of the
regular component to grow with F and for F→� the system
becomes integrable �22�. �This integrable regime was already
observed in �28�.� Thus, one would first expect persisting
BOs. However, the observed behavior is quite different. As
an illustration, we show an example for an individual trajec-
tory in Fig. 9. Here, one observes a quasiperiodic behavior.
When averaged over an ensemble, this leads to a decay of the

BO as depicted in Fig. 10. This behavior can indeed be un-
derstood analytically. In the limit F→�, the populations of
the lattice sites are frozen and the amplitudes al evolve only
in the phase according to

al�t� � al�0�exp�− ig„�al�0��2 − 1…t� . �19�

The evolution �19� for the amplitudes al�t� immediately im-
plies the observed quasiperiodic dynamics of the amplitudes
bk�t� �see Fig. 9�. It can be shown that the decay due to the
dephasing arising for the ensemble-averaged dynamics obeys
an exp�−�rt

2� law, where the coefficient �r is proportional to
g and inversely proportional to n̄. Remarkably, the quasiperi-
odic dynamics also implies an equipartition between the qua-
simomentum modes �see Fig. 9� in the absence of classical
chaos. However, there are characteristic differences com-
pared to the decay and the thermalization processes intro-
duced by classical chaos. First, the relaxation constant �r for
the dephasing decay depends on the characteristic width of
the distribution function �B2� and decreases as 1 / n̄ in the
semiclassical limit. On the contrary, the relaxation constant
�c for the chaotic decay decreases only as 1 / ln n̄. Second,
the chaotic decay follows �p�t��=exp�−�ct�sin��Bt�, while
for the dephasing decay, we have �p�t��=exp�−�rt

2�sin��Bt�.
Going ahead, we note that both the regimes of stable BO

and the one of decaying BO in the presence of classical
chaos closely resemble the full many-particle dynamics
when averaged over an ensemble. However, in what follows,
we shall find that there is an additional many-particle feature
in the dynamics in the third regime of large F. Here the
decay of the Bloch oscillations is present in the many-
particle system as well and for short times, the mean-field
ensemble even quantitatively resembles the many-particle
dynamics. However, the many-particle system shows a peri-
odic revival behavior as already pointed out in �28� which, as
a pure quantum phenomenon, cannot be captured by the
mean-field ensemble.

III. MANY-PARTICLE DYNAMICS

In this section, we study the many-particle counterpart of
the mean-field system discussed in the preceding section.
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FIG. 8. �Color online� Same as Fig. 6, however, for F=0.4
showing a stable Bloch oscillation.
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FIG. 9. �Color online� Same as Fig. 5, yet for F=10 in the
strong-field region.
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FIG. 10. �Color online� Same as Fig. 6, yet for F=10 in the
strong-field region.
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This is described by the driven Bose-Hubbard Hamiltonian

Ĥ�t� = −
J

2�
l

�eiFtâl+1
† âl + H.c.� +

W

2 �
l

n̂l�n̂l − 2� . �20�

We also confine the system to L lattice sites �L chosen to be
odd� and apply periodic boundary conditions. Then the Hil-
bert space of system �20� is spanned by the Fock states �n�
= �n1 ,n2 , . . . ,nL�, where �lnl=N is the total number of atoms.
The dimension of the Hilbert space is equal to �N+L−1�!

N!�L−1�! . Using

the canonical transformation b̂k=L−1/2�lexp�i2�kl /L�âl, the
Hamiltonian �20� can be presented in the form

Ĥ = − J�
k

cos�� − Ft�b̂k
†b̂k +

W

2L
�
ki

b̂k1

† b̂k2
b̂k3

† b̂k4
	k1+k3,k2+k4

,

�21�

where we omit the constant term W�kb̂k
†b̂k. The

basis vectors of the Hilbert space are now given by the
Fock states in the quasimomentum a representation
�n−�L−1�/2 , . . . ,n−1 ,n0 ,n+1 , . . . ,n�L−1�/2�. In the coordinate rep-
resentation, the Fock and the quasimomentum Fock states
are given by the symmetrized product of the Wannier and
Bloch functions, respectively. Here, we are interested in the
solution of the time-dependent Schrödinger equation with the
Hamiltonian �21� for initial conditions given by a BEC of
atoms in the zero quasimomentum state, i.e., ��0�
= �. . . ,0 ,N ,0 , . . .�q. This is, in fact, equivalent to an SU�L�
coherent state, namely,

��0� =
1

	N!

 1

	L
�
l=1

L

âl
†�N

�0� = �
n

cn�n� �22�

where �n� with n= �n1 , . . . ,nL� is a Fock state and cn

=	 N!
LNn1!¯nL!

. In general, the SU�L� coherent states are
equivalent to the fully condensed states, where our special
choice approximately corresponds to the ground state of the
system at F=0 if the condition W�J is satisfied.

A. Floquet-Bogoliubov states

First, we address the question of a manifestation of the
dynamical instability in the many-particle quantum system.
It is argued below that, similar to the static case F=0, the
quantum counterpart of the dynamical instability is Bogoli-
ubov’s depletion of the condensate �29�. We begin with an
alternative derivation of the common Bogoliubov spectrum
for F=0 �30� which we shall then adopt to the case F�0.

For an infinite number of particles, the Bogoliubov states
can be constructed from ��0� by applying the depletion op-
erators

D̂�k� = �
n=0

�

cn
�k��b̂−k

† b̂+k
† b̂0b̂0�n, �23�

which transfer particles from the zero quasimomentum state
to the states �k,

��� = �
k
0

D̂�k���0� . �24�

In Eq. �23�, the coefficients cn
�k� should be determined self-

consistently so that the wave function ��� satisfies the sta-
tionary Schrödinger equation with the Hamiltonian �21� with
F=0,

Ĥ�F = 0���� = E��� . �25�

Equations �23� and �24� are equivalent to the ansatz

���k�� = �
n=0

�

cn
�k��. . . ,n, . . . ,N − 2n, . . . ,n, . . .�q, �26�

where n particles are redistributed from the zero quasimo-
mentum state to the state k and to the state −k. Note that
here, as well as in Eqs. �23� and �24�, the limit N→�, W
→0 with constant g=WN /L is assumed, which justifies a
factorization of the eigenvalue problem �25� into �L−1� /2
independent eigenvalue problems. Substituting the ansatz
�26� into Eq. �25� and taking the above limit, the original
problem reduces to the diagonalization of a tridiagonal Her-
mitian matrix A�k� with matrix elements

An,n
�k� = 2�g + 	�n, An,n+1

�k� = g�n + 1� , �27�

where 	=J�1−cos ��. The spectrum of the matrix A�k� is
equidistant with a level spacing given by the Bogoliubov
frequency ��k�=2	2g	+	2. Correspondingly, the eigenvec-
tors c�k� of A�k� define the Bogoliubov states of the Bose-
Hubbard model. It is worthwhile emphasizing that for a finite
N, these Bogoliubov states provide only an approximation to
the actual eigenstates of the Bose-Hubbard system. While
this approximation can be quite accurate for the ground and
low-energy states, it fails for the high-energy states �30�. The
BEC depletion of these states, defined by

ND = �
k
0


�
n=1

�

2n�cn
�k��2� , �28�

provides a quantitative criterion for the validity of the Bogo-
liubov approach. Namely, if ND�N, then the approach is
justified. On the contrary, ND�N �which is the case for high-
energy states� means that the actual structure of the eigen-
states has nothing to do with the presumed Bogoliubov struc-
ture �24�. Furthermore, it is convenient to order the states
according to the depletion �28�.

Now we are in the position to discuss the case F�0.
Since we are interested in the Bloch dynamics, it is useful to
introduce the evolution operator over one Bloch period �13�

Û = exp̂�− i

0

TB

Ĥ�t�dt� , �29�

where Ĥ�t� is given in Eq. �21� and the hat over the expo-
nential function again denotes time ordering. We are looking

for those eigenstates of Û,
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Û��� = exp�− i2�E/F���� , �30�

which have the Bogoliubov structure �24�. Substituting the
ansatz �26� into Eq. �30�, we obtain an equation for the co-
efficients cn

�k�,

exp̂�− i

0

TB

A�k��t�dt�c�k� = exp
− i
2�E

F
�c�k�, �31�

where the diagonal elements of the matrix A�k��t� are now
given by

An,n
�k� �t� = 2�g + 	 cos�Ft��n, 	 = J�1 − cos �� . �32�

As an illustration, the right panel in Fig. 11 shows the
coefficients of the first three Floquet-Bogoliubov states in the
quasimomentum Fock basis for L=3, g=0.1, and F=0.4
�31�, where the depletions are ND=0.113, 2.341, and 4.568
particles, respectively. For the sake of comparison, the left
panel in the figure shows the Bogoliubov states for the same
value of g=0.1, where the depletions are ND=0.002, 2.006,
and 4.010. It is seen in Fig. 11 that the depletion of the
driven BEC is larger than the depletion of a stationary BEC
which was found to be a typical situation in further numeri-
cal studies.

The depletion �28� provides useful information on the
BEC stability. For the “ground” Floquet-Bogoliubov state,
the dependence ND=ND�F� is depicted in Figs. 12 and 13. It
is seen in Fig. 12 that, as a function of F, ND diverges at the
points where the classical increment of the dynamical insta-
bility � �also shown in the figure� takes positive values.
�More precisely, the depletion cannot be larger than N. How-
ever, since the Bogoliubov theory refers to N=�, it can be
formally considered as infinite.� This “divergence” of ND
means that in the regions of instability, the eigenfunctions of
the evolution operator differ considerably from the Bogoliu-
bov structure. In fact, they are chaotic in the sense of quan-

tum chaos �13�. It is also seen in the figure that the depletion
increases linearly for F→�. Thus, the discussed Floquet-
Bogoliubov states cannot be eigenstates of the evolution op-
erator in the limit of large F, although the classical incre-
ments ��k� vanish identically for F→�. We come back to this
point in the next section.
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FIG. 11. �Color online� Left panel: coefficients of the first three
Bogoliubov states ���=�ncn�n ,N−2n ,n� of the three-site Bose-
Hubbard model. Right panel: Floquet-Bogoliubov states. �Param-
eters: J=1, g=0.1, and F=0.4.�
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FIG. 12. �Color online� Number of the depleted particles ND

�solid red lines� as a function of the field strength F �logarithmic
scale� compared to the classical increment of dynamical instability
�=��F� �dashed blue lines�. Parameters are J=1, g=0.1, and L=3.
The upper panel magnifies the region of small F in the lower panel.
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FIG. 13. �Color online� Number of the depleted particles ND as
a function of the static force magnitude F /J and the interaction g /J
for L=3 sites. The depletion is very small in the yellow �light gray�
region of the lower panel. The upper panel magnifies the lower left
corner of the lower panel and reveals additional regions of small
depletion.
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The intervals of small depletion observed in Fig. 12 de-
pend, of course, also on the interaction g. The full parameter
dependence of the depletion �28� is shown in Fig. 13. For
relatively low values of g /J and F /J �upper panel�, we find a
highly organized web of stability regions, whereas the be-
havior for larger parameters �lower panel� shows a simpler
structure. These many-particle results can be directly com-
pared to the mean-field stability diagrams in Fig. 1 which
confirms the relationship between BEC depletion and mean-
field stability.

For the sake of completeness, we also briefly discuss the
corresponding quasienergies E �see Eq. �30�� which are de-
fined modulo � times the Bloch frequency, i.e., E�,j =E�,0
+ jF, j=0, �1, . . .. The lower panel of Fig. 14 displays the
quasienergies of the five Floquet-Bogoliubov states with
smallest ND. The system parameters are J=1, g=0.1, and L
=3 as in Fig. 12. For clarity, three Floquet zones are shown
in the figure. As expected, the spectrum is equidistant with a
level spacing correlated with the depletion. Note the apparent
irregularity in the windows around F=0.2 and F=0.17,
which is related to the region of dynamical instability of the
mean-field system. For comparison, the upper panel shows
the number of depleted particles ND as in Fig. 12 with a
linearly scaled F axis. In the regions of finite depletion, the
most stable quasienergy states appear to be very sensitive
against a variation of F.

B. Bloch oscillations

The microscopic dynamics of BOs was considered earlier
in a number of papers summarized in Ref. �13� with focus on
the regime of low filling factors n̄=N /L�1. In the present
work, to make a link to the mean-field dynamics, we simu-
late BOs for a relatively large filling factor.

We investigate the dynamics in dependence on the force F
for N=15 and N=20 atoms in a lattice with L=5 sites. Since
the plots are very similar, only the results with N=15 are

shown. The value of the microscopic interaction constant is
set to W=0.1 / n̄ so that the macroscopic interaction constant
is g=0.1, and the hopping matrix element J=1. The initial
wave function is chosen as the SU�L� coherent state �22�.

In Fig. 15, we show the dynamics of the many-particle
counterpart of the mean-field quantity �16�, that is, the ex-
pectation value of the many-particle momentum

p�t� =
1

2iN
���t���

l

âl+1
† âle

−iFt − �H.c.����t�� , �33�

for N=15 and the three values of F chosen in different dy-
namical regimes as shown in Figs. 6, 8, and 10.

The upper panel of Fig. 15 corresponds to F=0.1, which
falls into the region of dynamical instability of the mean-
field system. Here, the quantum many-particle BO decays in
very good agreement with the mean-field ensemble shown in
the upper panel of Fig. 6 �note that finer details are also
reproduced�. This demonstrates that the ensemble-averaged
mean-field dynamics is capable of describing important as-
pects of the full many-particle system �24�.

In the middle panel of Fig. 15, we have F=0.4, where the
system is stable. Here, the quantum many-particle BOs per-
sist in time, also agreeing with the ensemble-averaged mean-
field dynamics. As discussed above, in this regime, the en-
semble average is of little influence, i.e., the state is fully
condensed and can be described by a single mean-field tra-
jectory instead.

The third case, F=10, depicted in the lower panel of Fig.
15, requires a separate consideration. Indeed, as mentioned
in the previous section, in the limit of large F, the Floquet-
Bogoliubov states are not eigenstates of the evolution opera-
tor �29�. Instead, it can be shown that those are the Fock
states �n� �13�. Thus the time evolution of the wave function
is given by
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FIG. 14. �Color online� Lower panel: quasienergy spectrum of
the Floquet-Bogoliubov states as a function of the field strength F
�same parameters as in Fig. 12�. Upper panel: number of the de-
pleted particles ND.
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FIG. 15. �Color online� Bloch oscillations of N=15 atoms in a
lattice with L=5 sites for J=1, W=0.1 /3, and F=0.1 �top�, F
=0.4 �middle�, and F=10 �bottom�. Shown is the many-particle
mean momentum p�t� given in Eq. �33�.
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���t�� = �
n

cn exp
− i
Wt

2 �
l=1

L

nl�nl − 1���n� . �34�

Equation �34� implies a periodic recovering of the initial
state �22� at times which are multiples of TW=2� /W and,
hence, periodic revivals of BOs �28�. It should be stressed
that these revivals are a pure quantum many-particle effect
due to the finiteness of W and n̄. This constructive interfer-
ence cannot be explained within the ensemble-averaged
mean-field approach. However, the breakdown can be de-
scribed by the ensemble averaging and is due to dephasing,
as explained in Sec. II B.

IV. SUMMARY

We have studied an N-particle system, a Bose-Hubbard
Hamiltonian with linearly increasing on-site energies. This
system can be conveniently reduced to a finite lattice with L
sites by using gauge transformation and imposing periodic
boundary conditions.

Such a model can be used to describe important features
of realistic systems, as for instance the dynamics of cold
atoms or BECs in an optical lattice under the influence of the
gravitational field �1–12�, or many-particle systems in ring-
shaped optical lattices as proposed in �32� with additional
driving. It should be noted, however, that it neglects a num-
ber of features. The space dimension is reduced to a quasi-
one-dimensional setting, a decay of the system via Zener
transitions to higher bands is excluded, the lattice is dis-
cretized and truncated, and the interaction is simplified. Nev-
ertheless, this model has been found to describe experimental
results quite well. Further, the Bose-Hubbard model is of
interest in its own right, as evident from the large number of
studies exploring its properties which are remarkably rich.

In the present paper, we have studied the Bose-Hubbard
model for relatively small number of lattice sites L�5 but
relatively large number of particles up to N=20 to make a
link with the mean-field dynamics. Our aim was twofold.
First, we have demonstrated how the modulation instability
observed in the mean-field system is manifested in the many-
particle case. We have shown that a reasonable measure of
the N-particle instability is provided by the quantity �28�.
Second, we have explored the possibility to describe the time
evolution of many-particle expectation values in terms of
mean-field trajectories, averaged over an ensemble con-
structed from the SU�L� phase-space distribution of the ini-
tial many-particle state. We found that this �averaged� mean-
field dynamics agrees remarkably well with the full quantum
many-particle behavior in a number of cases. The only ex-
ception was the presence of many-particle revivals for strong
fields which is a pure quantum phenomenon.

These observations suggest an application of the mean-
field ensemble method to investigate the properties for larger
lattices and larger particle numbers where many-particle
computations are much more difficult or virtually impos-
sible. Furthermore, it will be of interest to study the interre-
lation between classical chaotic motion and stable or decay-
ing Bloch oscillations for more lattice sites where one can
possibly make contact with recent related studies of the

force-free, F=0, case both for the mean-field �33,34� and the
many-particle descriptions �30,35�.
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APPENDIX A: STABILITY MATRIX

It is instructive to consider the DNLSE �6� from the view-
point of the general theory of nonlinear dynamics. Then the
solution with the initial condition al�t=0�=1,

al�t� = exp
i
J

F
sin�Ft�� , �A1�

is nothing other than a periodic trajectory in a
2L-dimensional phase space. Thus one may address the ques-
tion of stability of this periodic trajectory.

Denoting by 	a= �	a1 , . . . ,	aL ,	a1
� , . . . ,	aL

��T the devia-
tion from an arbitrary trajectory a�t� and linearizing the
DNLSE around this trajectory, we have

i
d

dt
	a = M�a�t��	a , �A2�

where M�a�t�� is a 2L�2L matrix of the following structure:

M�a�t�� = 
A + gB gC

− gC� − �A + gB�� � , �A3�

Al,m = −
J

2
�	l+1,meiFt + 	l−1,me−iFt� , �A4�

Bl,m = �al�t��2	l,m, Cl,m = al
2�t�	l,m. �A5�

Inserting the trajectory �A1� into Eq. �A2�, the linear equa-

tion �A2� takes a form where the matrix M̃�t� is periodic in
time. Finally, we introduce the stroboscopic map for the dis-
crete time tn=TBn,

	ã�tn+1� = U	ã�tn�, U = exp̂�− i

0

TB

M̃�t�dt� . �A6�

This stability matrix U is symplectic and hence the consid-
ered periodic trajectory �A1� is stable if and only if all its
eigenvalues lie on the unit circle.

Using the unitary transformation U→VUV−1, where

V = 
T 0

0 T
�, Tl,m = L−1/2 exp
 i2�k

L
l� , �A7�

the stability matrix U can be factorized into L decoupled 2
�2 matrices which can be labeled as U�k� with k
=0, �1, . . . , � �L−1� /2. The matrix U�0� is not of interest
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here because its eigenvalues are always located on the unit
circle. The explicit form of the matrix U��k� is given by Eq.
�13� and, depending on F, its eigenvalues 
1,2 either lie on
the unit circle �with 
2=
1

�� or on the real axis �with 
2

=1 /
1�. We have stability in the first case and instability in
the second case.

APPENDIX B: MEAN-FIELD ENSEMBLE

Let us recall that the mean-field dynamics of the site am-
plitudes al �or, alternatively, the quasimomentum amplitudes
bk� appears as a canonical Hamiltonian evolution in a
2L-dimensional complex phase space which conserves the
norm, i.e., the phase space is the surface of a complex
sphere. In order to approximate the many-particle dynamics,
we construct an ensemble of mean-field trajectories
representing the initial many-body state ���0��. This is
achieved most conveniently by using the quantum Husimi
phase-space distribution �24�, the projection onto SU�L� co-
herent states which in the quasimomentum representation is
given by

�b�q =
1

	N!

 �

k=−�L−1�/2

�L−1�/2

b̂kb̂k
†�N

�0� , �B1�

with b= �b−�L−1�/2 , . . . ,b0 , . . . ,b�L−1�/2� and �k�bk�2=L. For the
initial many-particle state �22�, this Husimi density Q�b�
= ��b ���0���2 is easily calculated as

Q�b� = B�b0�2N, �B2�

where B is a normalization constant. Note that the probabil-
ity density for the vector components depends only on the
zero-mode probability �b0�2 and is strongly localized in the
region close to its maximum value �b0�2=L for large particle
number N.

Numerically, one can construct the ensemble �B2� by
means of a rejection method �36�. First, one generates L
randomly distributed real numbers rk in the unit interval with
random phases �k and normalizes the random vector with
components zk=rke

i�k to unity. Another random number v in
the unit interval is chosen in order to decide if the generated
vector is accepted as a part of the ensemble: it is accepted if
v� �z0�2N and rejected otherwise. Finally, we renormalize as
bk=	Lzk. If desired, the ensemble can be Fourier trans-
formed to yield the corresponding ensemble of lattice site
amplitudes al.
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