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We study the interactions between two atomic species in a binary Bose-Einstein condensate to revisit the
conditions for miscibility, oscillatory dynamics between the species, steady-state solutions, and their stability.
By employing a variational approach for a quasi-one-dimensional, two-atomic species condensate, we obtain
equations of motion for the parameters of each species: amplitude, width, position, and phase. A further
simplification leads to a reduction of the dynamics into a simple classical Newtonian system where compo-
nents oscillate in an effective potential with a frequency that depends on the harmonic trap strength and the
interspecies coupling parameter. We develop explicit conditions for miscibility that can be interpreted as a
phase diagram that depends on the harmonic trap’s strength and the interspecies coupling parameter. We
numerically illustrate the bifurcation scenario whereby nontopological, phase-separated states of increasing
complexity emerge out of a symmetric state as the interspecies coupling is increased. The symmetry-breaking
dynamical evolution of some of these states is numerically monitored and the associated asymmetric states are
also explored.
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I. INTRODUCTION

Over the past 15 years, the study of Bose-Einstein con-
densates �BECs� has gained a tremendous momentum, stem-
ming from an intense and wide variety of theoretical, as well
as experimental studies that have now been summarized in a
number of books �1,2�. One of the particularly intriguing
aspects of the system is its effective nonlinearity stemming
from a mean-field representation of the interatomic interac-
tions. This, in turn, has led to a wide range of developments
in the area of nonlinear matter waves in BECs �3� and the
drawing of natural parallels between this field and that of
nonlinear optics, where similar nonlinear Schrödinger �NLS�
types of models arise �4�.

One of the particularly interesting aspects of investigation
of BECs within the realm of NLS �often referred to in the
BEC context as Gross-Pitaevskii �GP�� equations is based on
the examination of multicomponent systems. Starting from
the early work on ground-state solutions �5,6� and small-
amplitude excitations �7� of the order parameters, numerous
investigations have been focused on the study of two hyper-
fine states or two different atomic species that can be con-
densed and confined concurrently. More specifically, a few
among the numerous topics investigated involved the struc-
ture and dynamics of binary BECs �8–10�, the formation of
domain walls between immiscible species �8,11�, bound
states of dark-dark �12�, dark-bright �13,14�, or coupled vor-
tex �15�, or even spatially periodic states �16�. The early
experimental efforts produced such binary mixtures of differ-
ent hyperfine states of 87Rb �17� and of 23Na �18�, but also of
mixed condensates �19�. Efforts were later made to create
two-component BECs with different atomic species, such as

41K-87Rb �20� and 7Li-133Cs �21�, among others. Recently
the interest in multicomponent BECs has been renewed by
more detailed and more controlled experimental results illus-
trating the effects of phase separation �22–24�, which have,
in turn, motivated further theoretical studies in the subject
�25,26� �see also �27� for a recent review�.

Although in the present work we will focus on two-
component condensates, it is relevant to note in passing the
increasingly growing interest in three-component, so-called,
spinor condensates �28�. Among the numerous themes of in-
vestigation within the latter context we mention spin do-
mains �29�, polarized states �30�, spin textures �31�, as well
as multicomponent �vectorial� solitons of bright �32–35�,
dark �36�, gap �37�, and bright-dark �38� types.

Our aim in the present paper is to revisit the theme of
binary condensates in quasi-one-dimensional �1D� BEC set-
tings in an attempt to offer additional both analytical and
numerical insights on the phenomenology of phase separa-
tion. Our paper is organized as follows. In Sec. II, a Gaussian
trial function is used in a variational approach to obtain six
first-order ordinary differential equations �ODEs� for the
time evolution of the parameters of the two-component an-
satz: position, amplitude, width, phase, wave number, and
chirp. In Sec. III A, the fixed points of the system of ODEs
are obtained to yield the equilibrium position, amplitude, and
width of the two species. Bifurcation diagrams of the ansatz’
parameters are produced as a function of the interspecies
coupling strength. In Sec. III B, phase diagrams are produced
and analytical conditions for miscibility are obtained relating
the interspecies coupling with the system’s chemical poten-
tial and parabolic trap strength. The dynamics of this system
is compared to results obtained by numerical integration of
the Gross-Pitaevskii equation in Sec. III C. In Sec. III D the
system of ODEs is further reduced, upon suitable approxi-
mations, to a classical Newtonian system; the latter is simple
to analyze and instructive with respect to the interpretation of
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the fundamental interactions driving the system’s dynamics.
In Sec. IV, we numerically analyze in a systematic way the
existence and stability of higher-excited phase-separated
states as a function of the interspecies interaction. The dy-
namical instability evolution of the latter class of states is
examined numerically in Sec. V. Motivated by the numerical
experiments of Sec. V, in Sec. VI we study the existence of
asymmetric states when the chemical potentials of the two
components differ. Finally, in Sec. VII, we summarize our
results and present some interesting directions for future in-
vestigation.

II. VARIATIONAL MODEL

A. Coupled equations

The Gross-Pitaevskii equation, which is a variant of the
NLS equation accounting for the potential confining the
atomic species, governs the dynamics of bosonic particles
near absolute zero temperatures �1,2�. In the context consid-
ered herein �related to the case of 87Rb which is common in
relevant experiments �17,23��, the two hyperfine states of the
same atom are described by a set of coupled GP equations
�9�

i�
��1

�t
= �−

�2

2m
�2 + V1 + g11��1�2 + g12��2�2��1,

i�
��2

�t
= �−

�2

2m
�2 + V2 + g22��2�2 + g21��1�2��2,

Vj =
1

2
�� jx

2 x2 + � jy
2 y2 + � jz

2 z2�, j = 1,2. �1�

Here, gjk=4��2ajk /m are the self-coupling interaction pa-
rameters of the first species for j=1, k=1, for the second
species j=2, k=2, and for j=1, k=2 or j=2, k=1 are the
cross species coupling parameters. These interaction
strengths depend on the scattering lengths between same �a11
and a22� and different species �a12=a21�. The external har-
monic trapping potential for each atomic species, Vj =Vj�r�,
depends on the radial distance r from the center of the trap,
while the atomic density is given by the square modulus of
� j =� j�r , t�. The atomic mass is denoted by m.

We will make the customary assumption that the external
trap’s effect on each species is the same, using V1�r�
=V2�r�. More importantly, in the interest of analytical trac-
tability of our results, we will also assume that the self-
interactions for each species are the same, g11=g22. Both
assumptions are very good approximations when considering
two hyperfine states of the same atomic species, although
they are not exact �see, e.g., the relevant discussion in Ref.
�23��. It is also relevant to mention the recent remarkable
experiments of Ref. �39� where the Florence group was able
to controllably tune, via Feshbach resonance, the interspecies
coupling in 87Rb-41K binary BECs. This opens the door to
study more general configurations where nonlinear couplings
differ considerably from the usual symmetric case.

In a highly anisotropic trap, where the frequency of the
longitudinal component of the trap is much smaller than the

transverse components �x��y =�z, an effective one-
dimensional system of partial differential equations �PDEs�
can be obtained �3�
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x2 + �u2�2 + g�u1�2�u2, �3�

where time, space, and wave function have been rescaled to
reduce the system’s parameters to just two �� and g�. In this
1D reduction, the chemical potential corresponds to �1D,
� j→uj

�gjj /�1D, x→x�m�1D /� is the longitudinal distance
from the center of the trap, t→ t�1D /� is the rescaled time,
and g=g12 /g11=g21 /g22 is the rescaled species interaction
term. In the literature, the condition of miscibility �
= �g12g21−g11g22� /g11=g2−1 is often used �see, e.g., �8–10��.
The rescaled harmonic trap frequency is given by �
=��x /�1D.

B. Ansatz and Euler-Lagrange equations

In this section, we describe a variational model based on a
chirped Gaussian ansatz. This type of variational ansatz is
similar to the one introduced in Ref. �40� to describe the
dynamics of coupled solitons in birefringent or two-mode,
nonlinear optical fibers. However, these earlier works lack
the confining external potential that is central to our current
analysis. To develop an accurate variational model, we sub-
stitute in the rescaled two-component Lagrangian

L = 	
−	

	

�L1 + L2 + L12 + L21�dx ,

where

Lj = Ej +
i

2
�uj

�uj
�

�t
− uj

��uj

�t
� ,

Ej =
1

2

 �uj

�x

2

+ V�x��uj�2 +
1

2
�uj�4,

L12 = L21 =
1

2
g�u1�2�u2�2,

the Gaussian ansatz of the form

u1�x,t� = Ae−�x − B�2/2W2
ei�C+Dx+Ex2�, �4�

u2�x,t� = Ae−�x + B�2/2W2
ei�C−Dx+Ex2�. �5�

Starred variables indicate complex conjugation. The param-
eters A, B, C, D, E, and W are assumed to be time dependent
and they represent the amplitude, position, phase, wave num-
ber, chirp, and width of the Gaussian ansatz, respectively.
For large �, the steady-state solution very closely resembles
two Gaussian functions separated by a distance 2B, with con-
stant rotation of the phase C=�t, where � is the chemical
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potential �without loss of generality we take �=1�. Upon
interaction between the species and with the harmonic trap,
acceleration induces an inhomogeneity in the carrier wave,
known as chirp, which accordingly affects the phase of each
species. It is important to note here that the ansatz is invari-
ant upon transposition of space and atomic species compo-
nents x→−x and u1→u2. This allows us to reduce the num-
ber of parameters in the system to six instead of having 12,
which would take into account independent variation of the
parameters in u1 and u2. However, this simplification comes
at a certain cost as, in particular, it is not possible to monitor
asymmetric �between the two components� states within this
ansatz; the latter type of states will be partially explored
within the dynamics of the species in Sec. V.

When the Lagrangian is evaluated for the proposed an-
satz, a spatially averaged effective Lagrangian is obtained

L = − ��A2W��2B2 + 2E2W2 + �D + 2BE�2

+
A2

�2
�1 + ge−2B2/W2

� +
1

2W2 +
�2W2

2
+ 2

dC

dt
+ 2B

dD

dt

+
dE

dt
�2B2 + W2�� �6�

and the equations of motion for the parameters are obtained
through the corresponding Euler-Lagrange equations

�L

�pj
−

d

dt
� �L

�pj
� = 0, �7�

where the parameter pj, j=1,2 , . . . ,6 represents the param-
eters in the ansatz A, B, C, D, E, W, and ṗj =dpj /dt. The
Euler-Lagrange equations for A, B, and W evaluate to
�L /�A=0, �L /�B=0, and �L /�W=0 since the second term in
the Euler-Lagrange Eq. �7� is zero for these. This results in
equations that involve linear combinations of dC /dt, dD /dt,
and dE /dt that when solved, give Eqs. �10�–�12�. The rest of
the Euler-Lagrange equations give equations that involve lin-
ear combinations of dA /dt, dB /dt, and dW /dt that can be
solved to give Eqs. �8�, �9�, and �13�. The following equa-
tions are the result of solving the Euler-Lagrange equations
for the time derivatives of all the parameters of our ansatz:

dA

dt
= − AE , �8�

dB

dt
= D + 2BE , �9�
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−

1

2W2 +
�2A2
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8W2 e−B2/2W2
�8B4 + 2B2W2 + 5W4� , �10�
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2W4 e−B2/2W2
�4B2 + W2� −

�2A2b

2W2 −
B

W4 − 2DE ,

�11�

dE

dt
=

�2A2g

4W4 e−B2/2W2
�− 4B2 + W2� +

�2A2

4W2 +
1

2W4 − 2E2

−
�2

2
, �12�

dW

dt
= 2EW . �13�

As described below, these ODEs reflect fairly accurately
the principal dynamical features of the system. In particular,
they capture the oscillations of the two species past each
other when the equilibrium separation B is zero and the os-
cillations about their corresponding phase-separated equilib-
rium position when the two components are phase separated.

III. STEADY STATE SOLUTIONS

A. Phase bifurcations

The steady state of Eqs. �8�–�13� is obtained by setting
dA /dt = dB /dt = dC /dt = dE /dt = dD /dt= dE /dt= dW /dt= 0
which leads immediately to the steady-state solution E�

=D�=0 and C�=�. When the equilibrium separation be-
tween the species is zero, the equilibrium amplitude and
width reduce to

B� = 0, �14�

A�
2 =

2�2�8� − �15�2 + 4�2�
15�1 + g�

, �15�

W�
2 =

�2� + �15�2 + 4�2�
5�2 . �16�

When the equilibrium separation is nonzero, the resulting
equilibrium amplitude and width are given by the transcen-
dental relations

�2 −
�2A�

2g

W�
2 e−B�

2/2W�
2

= 0, �17�

� −
1

2W�
2 −

5W�
2

8
��2A�

2g + �2W�
2� = 0, �18�

� +
3

4W�
2 −

5

4
�2�W�

2 + 2B�
2� = 0. �19�

Figure 1 shows that the steady-state solution of the full
GP model closely matches the steady state from the ODEs,
indicating that the ansatz successfully captures the relevant
PDE behavior. For large values of �, the steady-state solu-
tion of the GP deviates from the Gaussian shape, resembling
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an inverted parabola, often referred to as the Thomas-Fermi
approximation �1,2�.

Detailed bifurcation diagrams for the amplitude, position,
and width of each species can be obtained by solving Eqs.
�17�–�19� for A, B, and W for the phase-separated state and
Eqs. �14�–�16� for the mixed state. The steady-state solution
reveals a pitchfork bifurcation for the position of each con-
densate as the interspecies coupling strength is increased as
can be seen in Fig. 2�a�. Interestingly, the steady state of the
GP equations produces a supercritical pitchfork bifurcation
at point D of Fig. 2. More specifically, for small values of g,
a stable mixed phase can be identified; as g is increased, the
mixed phase becomes unstable and the phase-separated state
becomes stable. On the other hand, the system of ODEs also
predicts a pitchfork bifurcation, however the approximate
nature of the ansatz results in the identification of the bifur-
cation as a subcritical one �point A� occurring in the vicinity
of a symmetric pair of saddle node bifurcations �points B�.
Both bifurcation diagrams agree with each other away from
the transition between phases. In the vicinity of the transition
point, clearly, the nature of the ansatz is insufficient to cap-
ture the fine details of the bifurcation structure �thus inaccu-
rately suggesting a phenomenology involving bistability, and

hysteretic behavior of the system�. It should be noted that the
phase separation from the GP model �point D� lies near the
saddle-node bifurcation point �point B� and the subcritical
bifurcation point �point A� from the system of ODEs. At
small values of the harmonic trap strength, the true point of
phase transition is closer to the subcritical bifurcation point
and at larger values of the harmonic trap strength, the true
point of phase transition lies closer to the saddle-node bifur-
cation point.

B. Phase separation

Using the zero separation amplitude and width, point A in
Fig. 2, an expression for the onset of phase separation can be
approximated in terms of the critical interspecies interaction
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FIG. 1. �Color online� �a� Steady state solution, u1 and u2, for
the mixed state when B=0. �b� Steady state solution for the sepa-
rated state when B�0. The solid �blue� line represents the steady
state of the GP equations and the dashed �red� line is the steady-
state solution of the system of ODEs. Here, �=0.6, �=1, and g
=1 for �a� and g=20 for �b�.
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FIG. 2. �Color online� Equilibrium �a� separation, �b� amplitude,
and �c� width for the two condensed species, as a function of the
interspecies coupling strength g for �=0.6 and �=1. The �red� thin
solid �stable� and dashed �unstable� lines correspond to the steady
states for the reduced ODE model �Eqs. �8�–�13��, while the �blue�
thick solid �stable� and dots �unstable� correspond to the steady
state from the full GP model �Eqs. �2� and �3��.
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gcr =
6� + 3�15�2 + 4�2

26� − 7�15�2 + 4�2
. �20�

Despite the deviation of point A in Fig. 2, from the relevant
point D of the corresponding PDE, the analytical expression
offers valuable insight on the dependence of the critical in-
terspecies interaction for phase separation on parameters of
the trap �in particular, its frequency� and those of the con-
densate �in particular, its chemical potential� �see also Fig. 3
for a detailed comparison of the ODE and PDE bifurcation
points�. More specifically, the equation predicts that when
the harmonic trap’s frequency approaches zero, �→0, phase
separation occurs when gcr→1 coinciding with the well-
known miscibility condition �=g2−1=0. As �→�cr
=4�2� /7
0.8� phase separation occurs at gcr→	. This
behavior can be qualitatively understood since tighter �larger
�� traps tend to “squeeze” both components together, thus
frustrating the system’s tendency toward phase separation.

The prediction of the system of ODEs for the location of
the bifurcation point agrees well with the results from the GP
model for small values of the harmonic trap strength. Recall
that the phase separation for the ODE model is located at the
subcritical pitchfork bifurcation point A in Fig. 2. However,
as can be observed from Fig. 3, a better approximation for
the full system’s phase separation �point D�, in the case of
large trapping frequencies, can be given by the saddle-node
bifurcation point B for the ODE reduced system for � values
close to �cr.

C. Dynamics of the reduced system

For relatively small values of the interspecies coupling g
�i.e., to the left of point D in Fig. 2�, the two species do not
separate and thus, when given opposite direction velocities
from the mixed state, they will oscillate through each other

as depicted in Fig. 4. This case is analyzed in Fig. 5 where
the two components oscillate through each other about their
common equilibrium separation of zero and the prediction
from the system of ODEs �red dashed lines� agrees very well
with the direct integration of the GP equations �blue solid
lines�. Because of conservation of mass, the amplitude and
width oscillate out of phase: the amplitude is maximized and
width is minimized when the acceleration of the species is
maximized; on the other hand, the width is maximized and
the amplitude is minimized when the velocity is maximized.
The velocity of each species �see Eq. �9�� has two compo-
nents: one that depends on the wave number D and another
that depends on the product of chirp and position 2EB. If
there is no chirp, the wave number is the velocity of the
condensate species. In Figs. 5�c� and 7�c�, a factor of �t has
been added to show the deviation of the phase from the
steady-state value.

On the other hand, if we assume a well-separated state as
the PDE’s initial condition �right of point D in Fig. 2�, it is
possible that the two components entertain oscillations about
their phase-separated steady states as depicted in Fig. 6. As
illustrated in Fig. 7, the two phase-separated components
collide against each other as they oscillate �but do not go
through each other� about a nonzero position. The prediction
from the system of ordinary differential equations once again
agrees very well with the numerical integration of the GP
equation for the position of the two species, but differs some-
what for the other parameters of motion. This occurs because
the time evolution of the solution of Eqs. �2� and �3� in this
case, due to the oscillation and interaction, deviates from a
Gaussian wave form and the corresponding variational pre-
diction begins to lose accuracy.

D. Newtonian reduction

To develop a more tractable model for the dynamics, a
classical Newtonian system for the motion of the center of
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Ω

g

Stable separated state

Stable mixed state

Supercritical Pt. D (PDE)
Subcritical Pt. A (ODE)
Saddle−Node Pt. B (ODE)

FIG. 3. �Color online� The �blue� solid line represents the
boundary of zero species separation from the GP equations �point D
in Fig. 2�, where states that lie to the right of this line are mixed and
values to the left are phase separated. The �red� dashed line repre-
sents the boundary of zero species separation for the system of
ODEs given by Eq. �20� �point A in Fig. 2�. The �black� dotted line
shows the saddle-node point �point B in Fig. 2� obtained from the
system of ODEs.

FIG. 4. Oscillations for a mixed state from direct numerical
integration of the GP model �2� and �3� for g=1 �g
gcr�, �=1, and
�=0.6. Lighter gray corresponds to the density of one component
and darker gray to the other component.
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each species is desirable. Taking a time derivative of Eq. �9�
and substitution of Eqs. �9�, �11�, and �12� yield

d2B

dt2 = − ��2 −
�2A�

2g

W�
2 e−B2/2W�

2�B , �21�

where we simplified the dynamics by replacing the time-
dependent variations of A and W by their respective equilib-
rium values A� and W�. This simplification is justified by the
fact that the oscillations in A and W are relatively weak as it
can be observed from Figs. 5�a�, 5�f�, 7�a�, and 7�f�. These
phase-separated oscillations contain two fundamental physi-
cal features: the external trapping potential and an exponen-
tial repulsive interaction that depends on the cross species
coupling parameter g. Integrating Eq. �21� with respect to B
yields a Newtonian equation of motion under the effective
potential

Ueff =
�2

2
B2 +

�2A�
2g

2
e−B2/2W�

2
. �22�

This reduced dynamics gives an effective double-well poten-
tial for a fully phase-separated state �g�gcr� and a nonlinear

single well potential for the mixed states �g
gcr�. It is im-
portant to note that in the expression of Eq. �22�, A� and B�

vary as a function of g. This dependence has been incorpo-
rated in Fig. 8 which shows the effective potential for in-
creasing values of g, where it transitions from a single well
potential to a double-well potential. For �=0.6 and �=1, the
reduced Newtonian model predicts that at g=2.6, the two
species phase separate and the potential becomes very flat
yielding very long periods of oscillation. It is remarkable to
point out that a similar picture has been drawn for the inter-
action of two particlelike excited states �i.e., dark solitary
matter waves� within the same species and has been found to
be extremely successful in comparisons to experimental re-
sults �41�. In that case, as well, the fundamental characteris-
tics were the parabolic trapping and the exponential tail-tail
interaction between the waves.

Figure 9 depicts both the �a� amplitude and �b� period of
oscillations predicted by the Newtonian reduction in com-
parison to the corresponding PDE findings. It is seen that the
GP equation and the ODE system agree very well for a wide
range of values of initial velocities. This figure also shows
the nonlinearity of oscillations where small-amplitude oscil-
lations have a period of 18.3 and large oscillations yield a
period of T
10.5, which corresponds to the harmonic trap’s
period T→2� /�. Figure 10�a� shows that the period of os-
cillation from the system of ODEs matches that of the GP
model for small values of g. As g→2.4 �i.e., when approach-
ing phase separation of the GP equations �point D in Fig. 2��,
the period changes substantially. Then as g→3.1, the steady
states predicted by the ODE reduction begin to phase sepa-
rate. Since these are small oscillations, the eigenvalues from
the Jacobian of the system of ODEs at equilibrium matches
very well the oscillations of the system of ODEs. Figure
10�b� shows similar results to Fig. 10�a� but for larger oscil-
lations. We can see that for larger oscillations, the ODEs’
period more closely matches that of the GP for smaller g,
while for larger values of the interspecies strength, the de-
viation becomes more significant. Furthermore, for larger

FIG. 6. Same as in Fig. 4 for the time evolution of oscillating
species about their phase-separated configuration when g
=20 �g�gcr�.
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FIG. 5. �Color online� �a� Amplitude, �b� position, �c� phase, �d�
velocity, �e� chirp, and �f� width corresponding to the mixed oscil-
lating state show in Fig. 4. Solid lines represent results from direct
numerical simulations of the GP equation while dashed lines depict
the results for the ODE reduction �9�–�13�.
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values of g, the period obtained from the eigenvalues also
deviates from the period from the ODEs. For large oscilla-
tions, the two species do not effectively interact �since they
go through each other too rapidly to “feel” each other� and
the period is roughly independent of g as predicted by Eq.
�21� when �B��1, yielding simple harmonic oscillations. In
this case, the GP’s period is close to that predicted by the
ODEs.

IV. EXCITED STATES

For sufficiently weak traps �
0.5, as the interspecies
coupling strength is increased for g�1, new high-order

mixed states emerge. These higher-excited states correspond
to alternating bands dominated successively by each of two
species. As � is decreased or alternatively g is increased, the
number of alternating bands increases within the solution
profile and the population imbalance within each band is less
pronounced. Each solution branch is found by using param-
eter continuation on the parameter g using a Newton fixed-
point iteration to find the stationary state. The stability for
each computed profile was obtained by computing the eigen-
values of the linearized dynamics at the fixed points using
standard techniques �3�. We now describe the series of bifur-
cations that occur as the interspecies coupling g increases as
depicted in Fig. 11:

�i� For g
1.08, the only state that exists is the mixed
state and it is stable. This threshold is close to the traditional
miscibility condition �=g2−1=0.

�ii� At g=1.08 �point A�, the mixed states become un-
stable, through the previously described supercritical pitch-
fork bifurcation, leading to the emergence of a stable phase-
separated state where one component moves to the left and
the other one moves to the right.

�iii� At g=1.24 �point B�, a second supercritical pitchfork
occurs, rendering the symmetric �across components� solu-
tion more unstable and giving rise to a state where one spe-
cies has a single hump and the other one has a double hump.
We call this state a 1-2 hump configuration.
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�iv� At g=1.63 �point C�, the third supercritical pitchfork
bifurcation of the series arises, leading this time to a situation
where one species moves to the left and the other one moves
to the right, both forming a double hump �a 2-2 hump con-
figuration�.

�v� At g=2.22 �point D�, a double hump with a triple
hump state arises �a 2-3 hump configuration�.

�vi� At g=3.8 �point E�, a triple hump with a triple hump
state forms �a 3-3 hump configuration�.

As the condensate becomes wider, more and more bands
appear, each band having a width comparable to the healing
length of the condensate. This picture seems to be natural
from the point of view of �25�, where the emergence of these
higher-excited states could be interpreted as a manifestation
of an effective modulational instability. Within the effec-
tively finite region determined by the confining potential, as
g is increased, higher “modulation wave numbers” become
unstable, leading to the “quantized” �associated with the
quantization of wave numbers in the effectively finite box�
cascade of supercritical pitchfork bifurcations and associated
further destabilizations of the symmetric state. The degree of
phase separation in Fig. 11 between these bands is computed
as �h=u1�xc�−u2�xc�, where xc is the location of the closest
density maximum, irrespective of component, to the trap
center.

The emergence of high-order states can be inferred by
observing the real part of the eigenvalues as the interspecies
coupling is varied. The eigenvalues collide with the real axis
as new states emerge. Eigenvalue analysis shows that all
excited states are unstable with the exception of the single-
hump phase-separated state �which results from the first
pitchfork bifurcation, namely, the 1-1 hump state�. These ex-
cited states are, however, less unstable than the mixed state
from which they arise. The latter, as shown in Fig. 12, be-
comes progressively more unstable, as expected, as further
multihump branches arise. Each of the bifurcation points, for
which the same designation as in Fig. 11 is used, corresponds
to a further pair of real eigenvalues appearing for the mixed
branch.
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FIG. 10. �Color online� �a� The period of oscillation, T, is shown
as a function of g for an initial velocity of v0=0.01. �b� The period
of oscillation, as a function of g for an initial velocity of v0=0.1.
The �blue� solid line represents results from the coupled GP equa-
tions, the �red� dashed line represents results from system of ODEs,
while the black dots represent the results from the evaluation of the
eigenvalues of the Jacobian of the system of ODEs at equilibrium.
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As indicated by Fig. 11, the 1-1 hump phase-separated
state is stable even for large values of g. In fact, for ��1
and g�1, the two components repel each other so strongly
that the center of magnetic trap becomes a domain wall,
where each species abruptly transitions from near zero
atomic density to maximum atomic density. Apparently, this
1-1 hump phase-separated state is the only stable state of the
system after the mixed state loses its stability past the bifur-
cation point A �see Fig. 11�. Nonetheless, as depicted in Fig.
13, the additional multihumped excited states are succes-
sively created as g is increased �bifurcation points B, C, D,
and E in Fig. 11� and are progressively less unstable as g
increases. Therefore, for sufficiently large g, the instability of
higher-excited multihumped states might be weak enough for
these states to be observable within experimentally acces-
sible times. It is interesting to note that since these excited
multihumped states emanate from the �already unstable�
mixed state, they feature a relatively strong instability close
to their bifurcation point.

V. DYNAMICS OF UNSTABLE STATES

In this section, we present the dynamics of the different
unstable states that were identified above. We start by ana-
lyzing the destabilization of the mixed state for a value of g
to the right of the bifurcation point A �see Fig. 11�. In fact,
for all the dynamical destabilization results presented in this
section, we chose the value of g=5 that is, for �=0.2, to the
right of the bifurcation point �see Fig. 11�. Therefore, in this
regime, we have coexistence of several unstable multihump
solutions and the stable phase-separated 1-1 hump state.
Other parameter regions �not shown here� gave qualitatively
the same results.

In Fig. 14, we show the destabilization of the mixed state.
As it can be observed from the figure, the mixed state suffers
an initial modulational instability that becomes apparent for
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FIG. 12. �Color online� Real part of largest eigenvalue of the
mixed state as a function of the interspecies coupling parameter for
the various excited states depicted in Fig. 11 with g� �0.5,4.5� and
�=0.2.

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

g

λ r

B

C

D

E
1−2 hump
2−2 hump
2−3 hump
3−3 hump

FIG. 13. �Color online� Real part of the largest eigenvalues of
the principal phase-separated states as a function of the interspecies
coupling parameter, g, for �=0.2.

(b)

−5 0 5
0

0.2

0.4

x

|u
1,

2(x
)|

2

t= 0
t=40

(c)

−5 0 5
0

0.2

0.4

x

|u
1,

2(x
)|

2

t= 0
t=145

(e)

−5 0 5
0

0.2

0.4

x

|u
1,

2(x
)|

2

t=0
t=10000

FIG. 14. �Color online� Dynamics of the mixed state for g=5
and �=0.2. �a� Top and bottom subpanels correspond to the evolu-
tion of the densities for the first and second components, respec-
tively, after applying an initial spatially random perturbation of size
1
10−8. Panels �b� and �c� depict snapshots of the initial density
and at the times indicated in panel �a� by the white vertical dashed
lines. �d� Long-term dynamics showing that the mixed state even-
tually approaches a separated state. �e� Snapshots of the densities at
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t�35 that seeds a highly perturbed 2-3 hump solution �see
panel �b��. Since this new solution is also unstable for the
chosen parameter values, it is rapidly converted into a rela-
tively long-lived 1-2 hump state �see panel �c��. Nonetheless,
as it is clear from the long term dynamics presented in panel
�d�, the 1-2 hump state, being unstable, eventually “decays”
to the separated �1-1 hump� state. We use here the term “de-
caying” in quotes since our system is conservative �no dissi-
pation� and thus there is no real decay.

In Fig. 15, we show the destabilization of the unstable 1-2
hump state. As it is obvious from the figure, although the
instability eigenvalue is sizeable ��r=0.122, see panel �c��,
the initially weak perturbation does not lead to the destruc-
tion of the 1-2 hump state. Instead, this unstable state just
momentarily “jumps” to the left �or to the right, results not
shown here� �see panel �b�� for a short period of time �be-
coming slightly asymmetric� and then comes back close to
the 1-2 hump �symmetric� steady-state configuration. This
indicates that, for this parameter combination, the 1-2 hump
state is a saddle fixed point. Thus, the orbit remains close to
the steady 1-2 hump state and it is eventually “kicked out”
along the unstable manifold. Then, it performs a quick ex-
cursion and “comes back” through the stable manifold.

In Fig. 16, we depict the destabilization dynamics of the
2-2 hump state. As it is evident from the figure, when com-
pared to Fig. 15, the destabilization happens earlier �t

200� since the 2-2 hump state is more unstable than the 1-2
hump state �see Fig. 13�. As the dynamics of the perturbed
2-2 hump state evolves, it progressively favors phase sepa-
ration until eventually the system rearranges itself into a 1-1

hump state at about t
4000. Since the 1-1 hump is stable,
this resulting configuration is sustained thereafter.

A similar scenario �fast initial destabilization, slow tran-
sient stage, and eventual settling into the stable phase-
separated state� is observed when following the dynamical
destabilization of the 2-3 hump state. As it can be observed
from Fig. 17, the relevant configuration destabilizes around
t
90 �earlier than its 1-2 and 2-2 hump counterparts given
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FIG. 15. �Color online� Dynamics of the unstable 1-2 hump
state for g=5 and �=0.2. �a� Same as in Fig. 14�a�. �b� Snapshots
of the densities at t=0 and t=758 �see white vertical dashed line in
panel �a��. �c� Growth of the norm of the perturbation vs time �in
semilog plot�. Circles �crosses� correspond to the perturbation of the
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growth obtained from the eigenvalue computation �max�R����
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FIG. 16. �Color online� Dynamics of the unstable 2-2 hump
state for g=5 and �=0.2 as in Fig. 14. The eventual result of the
instability is the formation of a robust and dynamically stable 1-1
hump state.
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FIG. 17. �Color online� Dynamics of the unstable 2-3 hump
state for g=5 and �=0.2 as in Fig. 14. The initial instability leads
to a transient 1-2 state that eventually approaches the separated state
for extremely long propagation times �t�100 000�.
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its larger instability growth rate �see Fig. 13��. The dynamics
goes through a transient 1-2 state and eventually settles into
a highly perturbed separated state that is preserved thereafter
as was the case also for the mixed state dynamics �see Fig.
14� and the 2-2 state �see Fig. 16� presented above.

Finally, in Fig. 18, we present the dynamical destabiliza-
tion for the 3-3 hump state. Again, this state destabilizes
even faster �t=40� than the previous wave forms because of
the higher instability of its eigenvalue �see Fig. 13�. In this
case, the 3-3 hump state first destabilizes into a highly per-
turbed 2-2 state. Since the 2-2 hump state is unstable, the
ensuing dynamics results into a separated 1-2 hump state
after t�100 which, in turn, eventually settles to a highly
perturbed separated state.

VI. EXISTENCE AND STABILITY OF ASYMMETRIC
STATES

It is interesting to observe in the above computations that
the transient 1-2 hump state emanating from the destabiliza-
tion of the mixed state �see Figs. 14� or from higher-order
states �see Figs. 17 and 18� has a relatively long life span.
However, given that this state is also unstable, it eventually
tends to a perturbed separated �i.e., 1-1 hump� state. The
process of converting a 1-2 state into the separated state in-

volves the effective shift of mass from one of the two humps
�in the component with two humps� to the other one until all
the mass is “swallowed up” by one hump resulting in a 1-1
hump. For example, as it can be observed in panel �d� of Fig.
17, at t=50 000, the right hump of the first component has
more mass than its left hump. Since the chemical potential
�i.e., rotation frequency of the wave function in the complex
plane� is closely related to the mass of the condensate, it is
possible to follow the local change in mass by following the
local chemical potential. In Fig. 19, we depict the oscilla-
tions of the real part of the wave functions at the location of
the maximal density �see squares and circles in the figure�.
We then fit a sinusoidal curve �see solid lines in the figure�
through the data to obtain the oscillation frequency. As it is
obvious from the figure, although both components started
with the 2-3 hump steady state with the same chemical po-
tential �1=�2=�=1, the two components oscillate at differ-
ent rates. In fact, at t=50 000, the local chemical potentials
for each species are, respectively, �1=0.776 and �2=0.734
and at t=100 000, we have �1=0.688 and �2=0.771. We
systematically extracted the local chemical potentials at the
location of the maximum density for the mixed state, 2-3
hump state and 3-3 hump state and depict them in Fig. 20. As
it can be observed from the figure, both chemical potentials
start at �1=�2=1 but rapidly drop when the initial instability
of the steady state develops for the three cases. Then, the
chemical potentials slowly drift until they acquire values
very close to each other at around the time when the dynam-
ics settles to a perturbed phase-separated state.

The fact that the local chemical potentials vary during the
dynamical evolution of the unstable higher-order states natu-
rally prompts the question of existence and stability of steady
states with different chemical potentials between the species.
Up to this point, all the steady states we analyzed supposed
that both components had the same chemical potential.
Namely, the evolution for each component is

u1�x,t� = w1�x�e−i�1t,

u2�x,t� = w2�x�e−i�2t,

where the steady-state profiles are w1,2�x� and �1=�2=1. We
now relax this symmetric assumption and look for steady
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states with different chemical potentials between the compo-
nents ��1��2�. A full bifurcation diagram as a function of
�1, for fixed �2=1, is depicted in Fig. 21. In this diagram,
we use in the vertical axis the difference in the variance of
the steady-state distribution between the two components.
The different bifurcation branches correspond to the particu-
lar asymmetric states depicted in the surrounding insets. This
diagram provides an account of how the different solutions
bifurcate from each other. It is very interesting to follow the

bifurcation path of all the states labeled from A to T during
which all the higher-order states are browsed continuously.
Due to symmetry, a similar scenario is present when one
keeps �1=1 fixed and varies �2 �results not shown here�.

The stability in the bifurcation diagram depicted in Fig.
21 is denoted, as before, with a solid line for stable states and
a dashed line for unstable states. As it can be noticed from
the figures, as it was the case for symmetric states, all the
asymmetric states are unstable except the mixed state. This is
due to the fact that the interspecies coupling for these dia-
grams was chosen as g=5, i.e., high enough so that the
mixed state in unstable. In fact, in Fig. 22, we show the
largest real part of the eigenvalues for the different asymmet-
ric states depicted in the bifurcation diagram in Fig. 21. As it
was observed for the symmetric case, the higher the order of
the asymmetric state, the more unstable it becomes. It is
crucial to note that the 1-2 hump state seems to get stabilized
for �2=1 and �1�1.12 �see top panel of Fig. 22�. However,
after close inspection �see the bottom panel in Fig. 22�, the
real part of the eigenvalue for the 1-2 hump state never van-
ishes but instead becomes extremely small �between 10−8

and 10−2� until the branch disappears �at �1
1.65 for �2
=1�. This very weak instability explains the long-term exis-
tence of the transient 1-2 hump states depicted in Figs. 14,
17, and 18.

VII. CONCLUSIONS

In the present work, we have analyzed the emergence of
nontopological, phase-separated states in the immiscible re-
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gime out of mixed ones in the miscible regimes, as a natural
parameter of the system �namely, the interspecies interaction
strength� was varied. Our analysis was presented for the case
of magnetically trapped two-component Bose-Einstein con-
densates, i.e., two coupled NLS equations with a parabolic
potential. The results hereby presented could be relevant to
the remarkable experiments reported in Ref. �39� where bi-
nary condensates of 87Rb-41K with tunable interspecies were
recently produced.

Our analysis is based on a variational approach yielding a
reduced model describing the statics, stability, and dynamics
of each condensate cloud. We are able to elucidate the mis-
cibility boundary for the interspecies coupling parameter as
the strength of the magnetic trap �and/or the chemical poten-
tial of the system� is varied. The approach is also capable of
accurately capturing the spatial oscillations of the clouds
about the stable stationary states �for both mixed and for
phase-separated states�. In particular, for relatively small in-
terspecies coupling, the two condensed clouds do not phase
separate �mixed state�, giving rise, if the BEC clouds are
initially displaced with respect to each other, to oscillations
through each other. On the other hand, for relatively large
interspecies coupling, the two clouds form a stable phase-
separated state which can entertain oscillations about the
equilibrium separation between the components. A further
dynamical reduction allows to understand this behavior more
intuitively based on an effective potential that undergoes a
bifurcation from a single well �mixed state� to a double well
�phase-separated state� form as the interspecies coupling pa-
rameter is increased. We also describe the bifurcation sce-
nario of higher-order phase-separated states, as the interspe-
cies coupling parameter is increased. We observe that several
�interwoven between the two components� bands of density
modulations progressively arise out of the mixed states giv-
ing rise to higher-excited states. Among all the phase-
separated states, only the first-excited one with one hump in
each component is found to be dynamically stable for all
values of the interspecies interaction strength past its bifur-
cation point. We furthered our analysis by studying the exis-

tence and stability of asymmetric states for which the chemi-
cal potentials for each species is different. We found, similar
to the symmetric case of equal chemical potentials, that the
only stable steady state for high-enough interspecies cou-
pling is the separated state. Nonetheless, we found that in
some regimes, the asymmetric variant of the state with one
band in one component surrounded by two bands of the other
component �the 1-2 hump state� can have an extremely weak
instability and thus facilitating its potential observability in
numerical experiments.

There are numerous directions along which the present
work can be naturally extended. For example, within the
one-dimensional context, it is natural to seek to relax the
simplifying assumption of the intraspecies scattering lengths
�and by extension the self-interaction coefficients of the two
components, g11 and g22� being equal. However, this exten-
sion will unfortunately have to come at the expense of an
ansatz with different amplitude, width, etc. parameters be-
tween the components, which will render the intuitive and
explicit analytical results obtained herein much more te-
dious.

Another natural extension is to try to generalize the ideas
presented herein into higher-dimensional or larger number of
component �i.e., spinor� settings. Especially in the former
case, more complicated wave forms such as crosses and pro-
pellers have been predicted in two-component condensates in
two dimensions �42� and it would be particularly interesting
to examine whether these, as well as more complicated mul-
tihump wave forms emerge systematically from the corre-
sponding mixed state via two-dimensional generalizations of
the bifurcations presented herein. Such studies are presently
in progress and will be presented in future publications.
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