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The R matrix with pseudostate �RMPS� method has been employed to perform nonperturbative calculations
of the total cross sections for single-photon double photoionization of ground-state Ne. A series of calculations
was performed in which the number of pseudostates included in the close-coupling expansion was varied.
Within the constraints of currently available massively parallel computers, we were able to achieve reasonably
good convergence of the double photoionization cross section for Ne. The final RMPS results in both the length
and the velocity gauges are compared to double photoionization cross sections determined from many-body
perturbation-theory calculations and synchrotron measurements.
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I. INTRODUCTION

Single-photon double photoionization is a prime example
of quantal three-body problems, which continue to present a
significant challenge to atomic scattering theory, especially
for complex atomic targets. Nonperturbative methods such as
convergent close coupling �CCC�, time-dependent close cou-
pling �TDCC�, R matrix with pseudostates �RMPS�, and hy-
perspherical close coupling have been successfully applied to
the calculation of single-photon double photoionization of
He �1–8�. In addition, the CCC and the TDCC methods have
been applied to double photoionization of ground-state Be
�9–11� and the CCC method to ground-state Mg and Ca �12�.
Recently, we employed the RMPS method to determine the
total double photoionization of ground and metastable Be
and Mg and the TDCC method to calculate double photoion-
ization of ground-term Mg �13�.

The RMPS method, in which the second electron ejected
from the target is represented by a large set of L2 pseu-
dostates, has proven ideally suited to the calculation of total
double photoionization of alkaline-earth metals such as Be
and Mg, where the final ion is left in a closed shell. However,
its application to an inert-gas atom such as Ne presents much
greater difficulties; this is solely because the final ion is in
either the 2s22p4 or the 2s2p5 open-shell configuration �the
closed-subshell 2p6 configuration is also possible, but the
cross section for double photoionization of the 2s2 subshell is
quite small�. First of all, this requires a very large close-
coupling �CC� expansion for the N-electron singly ionized
species that includes the Rydberg series: 2s22p4�1S�nl,
2s22p4�3P�nl, 2s22p4�1D�nl, 2s2p5�3P�nl, and 2s2p5�1P�nl.
However, with recent developments of highly efficient par-
allel R-matrix programs, which address the problem of cal-
culating and storing large numbers of �N+1�-electron eigen-
vectors and bound-free dipole matrix elements, it is now
possible to apply this method to such large expansions.

There is a second problem that cannot be overcome. For
completeness in any R-matrix calculation employing an or-
thonormal set of bound-electron wave functions, one must

include all possible �N+1�-electron bound terms that can be
formed by adding one of the bound electrons to all the terms
included in the N-electron CC expansion for the ion. This
leads to a highly correlated 2s22p6 1S ground term that in-
cludes all single-electron promotions out of the 2s and the 2p
subshells and all two-electron promotions out of 2p as well
as one out of 2s and one out of 2p through the highest value
of n included in the CC expansion of the residual ion. How-
ever, to include the same amount of configuration-interaction
�CI� in the terms within the expansion for the residual ion
would render the calculation impossibly large. This is illus-
trated in Table I. The second column lists the configurations
included in the CC expansion for the residual ion. The first
column lists all the �N+1�-electron configurations of the tar-
get atom formed by adding one bound electron to the ion
configurations, as described above. In the third column, the
first two sets of configurations would be required to provide
an equivalent amount of CI for the 2s22p5 2P ground term of
the residual ion as that included in the 2s22p6 1S ground term
of the target atom for the determination of the ionization
energy of the target. The next three sets of configurations
would be needed to provide a similar balance for the pseu-
dostates used to describe the second electron ejected from
the target in the determination of the double photoionization
cross section. Clearly, the number of such configurations
would be impossibly large, and this imbalance will affect
both the calculated ionization energy of the target and the
agreement between the length-gauge and the velocity-gauge
double photoionization cross sections.

Although there are presently no published nonperturbative
calculations of the single-photon double photoionization of
Ne, many-body perturbation theory �MBPT� has been ap-
plied to this problem �14–18�. A primary uncertainty in such
MBPT calculations is associated with the potential that
should be employed to generate the basis set for the pertur-
bative calculations; this problem is discussed extensively by
Carter and Kelly �16�. Kilin et al. �17� demonstrated that
there are very large differences between calculated double
photoionization cross sections that employ a V�N−1� potential

PHYSICAL REVIEW A 80, 023420 �2009�

1050-2947/2009/80�2�/023420�5� ©2009 The American Physical Society023420-1

http://dx.doi.org/10.1103/PhysRevA.80.023420


versus those that employ a V�N−2� potential. They then at-
tempted to overcome this problem by employing a V�N−q�

potential with a fractional charge q that was adjusted to mini-
mize the difference between the length- and velocity-gauge
cross sections �18�.

Over a period of about 25 years, a large number of mea-
surements of the double photoionization of Ne were per-
formed using synchrotron radiation �19–25�. However, there
is a significant spread among the various measurements that
makes any definitive comparison of theory with experiment
impossible.

The remainder of this paper is organized as follows: in
Sec. II, we provide a description of the RMPS method and its
application to the double photoionization of Ne; in Sec. III,
we present double photoionization cross-section results for
Ne; and in Sec. IV, we conclude with a brief summary.

II. THEORETICAL AND COMPUTATIONAL
METHODS

The application of the R-matrix method to photoioniza-
tion is described in detail by Burke and Taylor �26� and
Berrington et al. �27� and is summarized by Griffin et al.
�13�. In atomic units, the total cross section for photoioniza-
tion in LS coupling is given in the dipole approximation by

� =
8�2��

3�2Li + 1��lfL

��� f
−�D��i	�2, �1�

where � is the photon energy, � is the fine structure constant,
and the coefficient of the asymptotic form of the Coulomb
functions is ��k�−1/2. The dipole operator is given by

D = �
i=1

N+1

ri �2�

in the length gauge and by

D =
1

�
�
i=1

N+1

�i �3�

in the velocity gauge. �i is the initial �N+1�-electron bound
target wave function with a total angular momentum Li and
� f

− is the final wave function with a total angular momentum
L, for which the wave function of the ion with a total angular

momentum Lf and a total spin Sf is coupled to a continuum-
electron wave function of angular momentum lf.

Within an inner region r�a, where electron correlation
and exchange are important, the �N+1�-electron wave func-
tions �i and � f

− are expanded in terms of R-matrix basis
functions. In the outer region �r�a�, the continuum wave
functions are determined at each energy by solving CC equa-
tions without exchange; they are then matched to the solu-
tions in the inner region at r=a. In the case of � f

−, at least
one channel is open and the corresponding continuum wave
function satisfies the standard open channel asymptotic
boundary condition for Coulomb waves. For �i, all channels
are closed and the continuum functions all decay exponen-
tially as r→�.

The R-matrix method is extended to double photoioniza-
tion by employing the RMPS method �4�, in which the con-
tinuum associated with the N-electron ion is represented by a
set of pseudo-orbitals. We employ nonorthogonal Laguerre
pseudo-orbitals of the form

Pn̄l�r� = Nn̄l�	n̄lzr�l+1e−	n̄lzr/2Ln̄+l
2l+1�	n̄lzr� . �4�

Here, z=Z−N+1, where Z is the nuclear charge; Ln̄+l
2l+1 is the

associated Laguerre polynomial; and Nn̄l is a normalization
constant. We then orthogonalize these orbitals to each other
and the spectroscopic orbitals. The scaling parameters 	n̄l
can be used to adjust the energy and the radial extent of the
pseudostates. We employ a method developed by Gorczyca
and Badnell �4� to orthogonalize the �N+1�-electron con-
tinuum basis orbitals to the Laguerre pseudo-orbitals. The
double photoionization cross section is then calculated as the
sum of all cross sections for single photoionization with ex-
citation to those pseudostates that are above the ionization
limit of the N-electron ion.

For all our RMPS calculations of the double photoioniza-
tion of Ne, we employed the program AUTOSTRUCTURE �28�
to determine Thomas-Fermi-Dirac-Amaldi spectroscopic or-
bitals for the 1s-4f subshells. In order to represent the high-
Rydberg states and continuum of the singly ionized species,
we then used the same program to generate the Laguerre
pseudo-orbitals n̄l from n̄=5 to some upper limit and l
=0–4.

For our first calculation of the double photoionization of
Ne, the target expansion for Ne+ included the terms arising
from the spectroscopic configurations 2s22p5, 2s2p6,
2s22p4nl, and 2s2p5nl with nl from 3s to 4f , along with the
pseudostate configurations 2s22p4n̄l and 2s2p5n̄l with n̄
=5–12 and l=0–4. In the case of the 2s2p5nl spectroscopic
configurations, all terms are well above the first ionization
limit of Ne+ and are, therefore, autoionizing. This basis leads
to a total of 829 terms in both the CI and the CC expansions.
We refer to this calculation as model 1.

Ideally, in order to determine whether a given calculation
is converged with respect to the pseudostate expansion, one
would add additional layers of 2s22p4n̄l and 2s2p5n̄l pseu-
dostates and compare the resulting double photoionization
cross section with that from the smaller calculation. How-
ever, since the 2s2p5n̄l pseudostates are significantly higher
in energy than those from the 2s22p4n̄l configurations, for

TABLE I. An illustration of the imbalance between the large
amounts of CI included in the initial target compared to the amounts
of CI included in the residual ion.

Target
atom
configurations

Residual-ion
configurations

Omitted
residual-ion

configurations

2s22p6 2s22p5 2s22p3n�l�n�l�
2s22p5nl 2s2p6 2s2p4n�l�n�l�
2s2p6nl 2s22p4nl 2s22p2nln�l�n�l�
2s22p4nln�l� 2s2p5nl 2s2p3nln�l�n�l�
2s2p5nln�l� 2p4nln�l�n�l�
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our next set of calculations we kept the maximum value of n̄
for the 2s2p5n̄l pseudostates fixed at 12 and added additional
2s22p4n̄l pseudostates. We first increased the maximum
value of n̄ for the 2s22p4n̄l pseudostates to 13, resulting in
879 terms �model 2�; and finally to 14, resulting in 929 terms
�model 3�. The size of the R-matrix box, the number of basis
orbitals used to represent the continuum wave functions in
the inner region, and the number of pseudostates above the
first ionization limit of Ne+ changed somewhat with these
three models. The radius of the R-matrix box varied from
37.2 a.u. for model 1 to 41.6 a.u for model 3; 45 basis orbit-
als provided an adequate representation of the continuum for
model 1, but had to be increased to 50 for model 3; and for
model 1, 732 out of the 829 terms were above the ionization
limit of Ne+, while for model 3, 825 out of the 929 terms
were above this ionization limit.

At first, it may appear that one could achieve more com-
plete pseudostate convergence by separating the RMPS cal-
culation for the 2s22p4nl series from that for the 2s2p5nl
series. However, since the interaction between these two se-
ries should be quite strong, such a separation could lead to
inaccurate results. Indeed, two separate test calculations of
double photoionization to 2s22p4 and 2s2p5 confirmed this.
The first one that included only 2s22p5, 2s22p43l, 2s22p44l,
and the 2s22p4n̄l pseudostates from n̄=5 to 12 and from l
=0 to 4 yielded a double photoionization cross section that
was relatively free of pseudoresonances and was about 30%
below that from model 1, described above. The second one
that used an expansion that included only 2s22p5, 2s2p6,
2s2p53l, 2s2p54l, and the 2s2p5n̄l pseudostates from n̄=5 to
12 and from l=0 to 4 yielded a cross section with a back-
ground of about 35% of the cross section from model 1;
however, it also displayed a very large resonance structure
that is completely unphysical.

All the RMPS scattering calculations for the inner region
were performed using significantly modified parallel ver-
sions �29� of the RMATRX I suite of codes �30,31�. These
programs generate the surface amplitudes, the R-matrix
poles, the �N+1�-electron eigenvectors, and the dipole ma-
trices needed to determine the photoionization cross sections.
A modified version of the program STGB was used to deter-
mine the initial bound states of the �N+1�-electron atom and
a parallel program derived from the serial code STGBF was
employed to do all calculations in the outer region and gen-
erate the photoionization cross sections as a function of en-
ergy.

III. RESULTS

The calculated energies for Ne+ in comparison to experi-
mental values for the lowest 21 terms of the 929 terms in-
cluded in the RMPS calculation from model 3 are given in
Table II. The energy levels from the other two models are
very close to those given in this table. The average difference
between the experimental and the theoretical energies is
2.9%. The calculated ionization energy from the 2s22p6 1S
ground term of Ne is 1.842 Ry, compared to the experimental
value of 1.585 Ry; this difference of 0.257 Ry amounts to a
16% error. As discussed in Sec. I, this relatively large error

arises from the fact the �N+1�-electron bound states for neu-
tral Ne are highly correlated, while those for Ne+ include
much less correlation.

The double photoionization cross sections from the
ground term of Ne from models 1–3, in both the length and
the velocity gauges, are shown in Fig. 1. They are deter-
mined from the cross section for single photoionization with
excitation to all pseudostate terms above the experimental
ionization energy of Ne+. The threshold for double photoion-
ization was then adjusted to the experimental value by ad-
justing the theoretical value for the ionization limit of Ne to
the experimental value. These curves display the size of the
pseudoresonances as a function of the number of 2s22p4n̄l
pseudostates included in the CC expansion. One would ex-
pect the pseudoresonances attached to the pseudostates in-
cluded in the CC expansion to decrease in magnitude as the
pseudostate basis is increased. As can be seen, this does oc-
cur gradually as we move from model 1 to model 3, espe-
cially for the cross sections calculated in the velocity gauge.

To provide clearer comparisons of the results from these
three calculations, we made fourth-order polynomial fits to
the raw cross-section data shown in Fig. 1, and these fits are
shown in Fig. 2. As can be seen, the cross sections calculated
in the velocity gauge from model 1 to model 3 are extremely
close, indicating a good convergence. The length-gauge cross

TABLE II. Energies of the first 21 terms in Ne+ relative to the
ground term.

No. Term
Expt. energya

�Ry�
Theor. energyb

�Ry� % Diff.c

1 2s22p5 2P 0.0000 0.0000

2 2s2p6 2S 1.9779 1.9913 0.7

3 2s22p4�3P�3s 4P 1.9968 2.0537 2.8

4 2s22p4�3P�3s 2P 2.0439 2.1144 3.3

5 2s22p4�3P�3p 4P 2.2448 2.3048 2.6

6 2s22p4�1D�3s 2D 2.4532 2.3293 5.3

7 2s22p4�3P�3p 4D 2.2727 2.3344 2.6

8 2s22p4�3P�3p 2D 2.2892 2.3512 2.6

9 2s22p4�3P�3p 2S 2.3037 2.3681 2.7

10 2s22p4�3P�3p 4S 2.3051 2.3681 2.7

11 2s22p4�3P�3p 2P 2.3165 2.3843 2.8

12 2s22p4�1D�3p 2F 2.5004 2.5846 3.3

13 2s22p4�1D�3p 2P 2.5183 2.6007 3.2

14 2s22p4�1S�3s 2S 2.5213 2.7060 6.8

15 2s22p4�1D�3p 2D 2.5273 2.6127 3.3

16 2s22p4�3P�3d 4D 2.5445 2.6055 2.3

17 2s22p4�3P�3d 2D 2.5547 2.6179 2.4

18 2s22p4�3P�3d 4F 2.5567 2.6172 2.3

19 2s22p4�3P�3d 2F 2.5569 2.6199 2.4

20 2s22p4�3P�3d 4P 2.5611 2.6215 2.3

21 2s22p4�3P�3d 2P 2.5660 2.6270 2.3

aNIST atomic spectroscopic data �32�.
bFrom the present 929-term CI calculation �model 3�.
cThe average is 2.9%.
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section increases slightly in going from model 1 to model 2;
and, at the peak, it decreases in magnitude by about 6% from
model 2 to model 3. The fit to model 3 in the length gauge is
above the fits to models 1 and 2 at photon energies above
133 eV, at least partially because of the pseudoresonances in
model 3 within this energy range. At the cross-section peaks,
the ratio of the velocity-gauge to the length-gauge cross sec-
tions is 0.67 and 0.66 for models 1 and 2, respectively, but
has increased to 0.71 for model 3. These ratios are signifi-
cantly lower than those that we obtained in our work on Be
and Mg �13�; however, this is not surprising in light of the
imbalance between the correlations included in the initial
and the final states, as discussed in Sec. I.

In Fig. 3, we compare the polynomial fits to both the
present length-gauge and velocity-gauge cross sections from
model 3 with both MBPT results and experimental cross sec-
tions obtained from a variety of synchrotron measurements.
The measurements of Samson and Angel �24� and those of
Holland et al. �23� vary by as much as 100 kb, making com-
parisons of experiment with theory difficult. The length-
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FIG. 2. �Color online� Ne double photoionization cross sections
determined from polynomial fits to the present length- and velocity-
gauge RMPS calculations. The dotted-dashed curves are from the
829-term RMPS calculation �model 1�, the dashed curves are from
the 879-term RMPS calculation �model 2�, and the solid curves are
from the 929-term RMPS calculation �model 3� �1.0 kb=1.0
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gauge cross section determined from model 3 is in excellent
agreement with the measurements of Holland et al., but low
compared to all other experimental results, while the
velocity-gauge cross section is low compared to all experi-
mental measurements. The length-gauge MBPT cross section
from Carter and Kelly �16�, in which their basis wave func-
tions were calculated in the potential of Ne+ �VN−1�, has a
peak magnitude that is close to the experimental results of
Bartlett et al. �25�. However, their velocity gauge results are
about 16% lower and the peaks in their MBPT cross sections
are at higher energies than any of the experimental cross
sections. We also show two length-gauge and two velocity-
gauge MBPT cross sections from Kilin et al. �17�. The VN−1

potential length-gauge result is approximately 2.4 times
higher than the VN−2 length-gauge cross section, and the ratio
of the velocity-gauge to the length-gauge cross section is
0.86 for the VN−1 potential and 1.75 for the VN−2 potential.
When Kilin et al. �18� used a VN−q potential and varied the
fractional charge q to minimize the difference between the
length-gauge and the velocity-gauge cross sections, they ob-
tained a result close to their VN−1 potential velocity-gauge
cross section shown in Fig. 3. However, it is quite surprising
that the VN−1 results of Kilin et al. �17� vary so much from
those of Carter and Kelly �16�.

IV. SUMMARY

We have completed a series of R matrix with pseudostate
calculations of total double photoionization from the ground
term of Ne. These RMPS calculations were performed in
both the length and the velocity gauges and the length and
the velocity results are not nearly as close as they were for
our earlier calculations of double photoionization in Be and
Mg �13�. However, this should be expected on the basis of
the complexity of the configurations remaining after double
photoionization of Ne compared to the closed-shell configu-
rations remaining after double photoionization of Be and
Mg. Within the limits of currently available massively paral-
lel computers, we were able to achieve a reasonably con-
verged result, especially in the velocity gauge. However, due
to large variations between the results of various synchrotron
measurements, it is difficult to draw any definitive conclu-
sions regarding the accuracy of the present results.
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