
Unified view of low- and high-frequency regimes of atomic ionization in intense laser fields

Haruhide Miyagi and Kiyohiko Someda
Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku,

Tokyo 153-8902, Japan
�Received 3 July 2009; published 21 August 2009�

On the basis of the Floquet formalism, a two-dimensional model atom in circularly polarized intense laser
fields is analyzed. By solving the close-coupling equations, the pole positions of the scattering matrix are
calculated on the complex quasienergy Riemann surface, and the pole trajectories with respect to the variation
in the laser intensity are obtained for different laser frequency regimes. The behaviors of the pole trajectories
indicate that the tunneling ionization is typically observed in the low-frequency regime, while the stabilization
of the atom occurs in the high-frequency regime. The mechanisms of the atomic ionization in these two
regimes are discussed from a unified point of view. The transition between the different frequency regimes can
be explained by the change in the avoided crossings among the adiabatic potential curves for the radial motion
of the electron.
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I. INTRODUCTION

Recent advances in the technology of high power lasers
have opened a new aspect of atomic and molecular physics.
Atoms and molecules in intense laser fields have been found
to exhibit various phenomena, such as molecular alignment
and orientation, Coulomb explosion, above threshold ioniza-
tion, high-harmonics generation, and so on �1�. Among a
variety of phenomena attracting attentions of researchers,
ionization is particularly significant because it is involved in
many cases as a basic process or otherwise needed to be
taken into account as a competing process of the phenomena
under consideration.

Studies on ionization in intense laser fields already have a
long history since the work of Keldysh �2�. When the laser
frequency is sufficiently lower than the typical frequency of
electron motions bound in an atom �or molecule�, the ioniza-
tion probability is well described by tunneling of an electron
through the barrier of the instantaneous electrostatic potential
energy. Theories along this line have extensively been devel-
oped. Among them, the Keldysh-Faisal-Reiss �KFR� theory
�2–4� and the Ammosov-Delone-Krainov �ADK� theory �5�
are widely accepted as the standard theory to describe the
tunneling ionization in the low-frequency regime.

On the other hand, many theoretical studies indicate that
high-frequency intense lasers can give rise to several intrigu-
ing phenomena, such as stabilization �6� and light induced
state �LIS� �7,8�. The stabilization means the phenomenon in
which the ionization rate decreases with increasing laser in-
tensity in a certain range of intensity.

The stabilization phenomenon was first predicted by the
theoretical study �6� based on the Floquet formalism, in
which atoms in stationary intense fields are treated. Later on,
particularly many studies have been reported the stabilization
in one-dimensional �1D� models, for example, 1D Coulomb
potential �9�, 1D Gaussian potential �7,10–12�, 1D Pöschl-
Teller potential �13�, and 1D square well potential �14,15�.
On the other hand, the stabilization phenomena have also
been found for three-dimensional �3D� systems, for example,
an H atom in linearly and circularly polarized laser fields

�16–20� and an H− ion in linearly polarized laser fields �21�.
The existence of the stabilization phenomenon was shown
experimentally for the circular Rydberg state of a Ne atom in
a linearly polarized laser field �22�.

In contrast to the low-frequency regime, the motion of the
atomic electrons for the high-frequency regime is reasonably
considered to be dominated by Kramers-Henneberger �KH�
potential, i.e., the time averaged potential in the acceleration
gauge. Gavrila studied the stabilization phenomenon along
this line and defined “quasistationary �adiabatic� stabiliza-
tion” �QS� as the stabilization that appears in the framework
of the Floquet formalism �23�. Popov et al. named the same
phenomenon “KH stabilization” according to its mechanism
�24�. Dörr and Potvliege discussed the mechanism of QS on
the basis of the Keldysh parameter �25�. These studies have
proposed slightly different mechanisms independently, and
there exists no unified understanding of the mechanism of
stabilization. On the other hand, no stabilization has been
observed in the low-frequency regime.

In the studies reported so far, the low- and high-frequency
regimes are separately discussed on the basis of the approxi-
mation verifiable only within each regime. The present study
aims at discussing a unified picture which explains how the
stabilization occurs in the high-frequency regime, why the
stabilization does not occur in the low-frequency regime, and
what governs the transition between two regimes. In this
paper, a two-dimensional �2D� model mimicking an atom in
circularly polarized laser field is analyzed. On the basis of
the Floquet formalism, the close-coupling equations in the
acceleration gauge are derived. By numerically solving these
equations under the Siegert boundary condition, the pole po-
sitions of the scattering matrix �S matrix� on the complex
quasienergy Riemann surface are calculated. The intensity
dependence of the pole position was found to exhibit the
stabilization in the high-frequency regime and the tunneling
ionization in the low-frequency regime. An attention is fo-
cused on the effective potential matrix in the close-coupling
equations for the radial wave functions. The adiabatic poten-
tials obtained by diagonalizing that matrix were found to be
useful in understanding the transition between the tunneling
ionization in low-frequency regime and the stabilization in
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the high-frequency regime. It is emphasized that the centrifu-
gal potential of the 2D system plays an important role in
clarifying the mechanism of the transition between two dif-
ferent regimes. Similar discussion is not possible if the 1D
models are employed.

The paper is organized as follows. The 2D model is intro-
duced in Sec. II A, and the close-coupling equations are de-
rived in Sec. II B. In Sec. II C, the method of calculating the
S-matrix pole trajectories is described, and the effective po-
tential matrix is defined. The results of the calculation of the
S-matrix pole trajectories are shown for several laser fre-
quencies in Sec. III. The mechanisms of the atomic ioniza-
tion in the low- and high-frequency regimes are discussed on
the basis of the effective potential matrix in Sec. IV. Physical
implications of the numerical results are discussed in Sec. V.
The conclusion is given in Sec. VI.

II. MODEL AND FORMULATION

A. Model system

A 2D model mimicking an atom is considered. An elec-
tron is trapped in a 2D potential well interacting with a cir-
cularly polarized laser field. The time-dependent Schrödinger
equation �TDSE� in the acceleration gauge �the KH frame� is
expressed as �e.g., see �26��

i
�

�t
��r,t� = �−

1

2
�2 + V„r + ��t�…���r,t� , �1�

where �2 is the 2D Laplacian operator. The atomic units are
used throughout this paper. The potential function V�r� rep-
resents a 2D isotropic potential well expressed by a Gaussian
function,

V�r� = − V0 exp�− �r/r0�2� , �2�

with V0=r0=1.404. This potential well supports only one
bound state at the energy E=−0.477. The vector ��t� is re-
lated to the vector potential A�t�,

A�t� =
A
�2

�x̂ cos �t − ŷ sin �t� , �3�

and defined as

��t� = �t

A�t��dt� =
�

�2
�x̂ sin �t + ŷ cos �t� , �4�

where x̂ and ŷ are the unit vectors along the x and y axes,
respectively, A represents the magnitude of the vector poten-
tial, � is the angular frequency of the laser field, and �
=A /� is the ponderomotive radius which represents the ex-
cursion amplitude of the classical quiver motion of an elec-
tron in the laser field.

For the comparison with the 2D model, a 1D model is
considered. An electron is trapped in a 1D potential well
interacting with a linearly polarized laser field. The 1D po-
tential function V1D�x� is defined as a Gaussian function,

V1D�x� = − exp�− x2� . �5�

This 1D potential well supports only one bound state at the
energy E=−0.477. The values of the parameters of the 2D

Gaussian potential function, V0=r0=1.404, were so deter-
mined that the energy of the bound state coincides with that
of the 1D model. The TDSE in the acceleration gauge for the
1D model is given in Ref. �12�. The definitions of the pon-
deromotive radius � and the magnitude of the vector poten-
tial A for the 1D model are the same with those for the 2D
model. In these definitions, the laser intensity, i.e., the energy
flux density of the laser field, is the same for both the models
when the values of � are the same.

B. Derivation of the close-coupling equations

According to the Floquet theorem, the solutions of the
TDSE �Eq. �1�� can be expressed as

��r,t� = e−iEt 	
n=−�

�

�n�r�ein�t, �6�

where E is the quasienergy �27�. On the other hand, the
potential function in the TDSE �Eq. �1�� can be written in an
explicit form by using Eqs. �2� and �4� and eventually ex-
panded in the Fourier series as follows:

V�r + ��t��

=−V0 exp
−
1

r0
2��x+

�

�2
sin �t�2

+ �y +
�

�2
cos �t�2�


= − V0 exp�−
r2

r0
2 −

�2

2r0
2�exp�−

�2�r

r0
2 sin��t + ���

= 	
n=−�

�

Vn�r;��ein��t+��, �7�

where � is the azimuthal angle of the electron coordinate and
the expansion coefficient Vn�r ;�� is given by

Vn�r;�� = − V0 exp�−
r2

r0
2 −

�2

2r0
2�inIn��2�r

r0
2 � . �8�

Here, In� · � is the nth order modified Bessel function of the
first kind. By substituting Eqs. �6� and �7� into the TDSE
�Eq. �1��, one obtains coupled equations,

�−
1

2
�2 + n���n�r� + 	

m=−�

�

Vn−m�r;��ei�n−m���m�r�

= E�n�r� . �9�

Each Floquet component �n�r� is expanded in the 2D partial
waves as

�n�r� = 	
M=−�

�

fn
M�r�eiM�, �10�

where M is the angular momentum quantum number and
fn

M�r� is the radial wave function. Substituting Eq. �10� into
Eq. �9�, one obtains the close-coupling equations,
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�−
1

2r

d

dr
�r

d

dr
� +

M2

2r2 + n�� fn
M�r�

+ 	
m=−�

�

Vn−m�r;��fm
M−n+m�r� = Efn

M�r� . �11�

By introducing a new quantum number,

� = M − n , �12�

and a new radial wave function gn
��r�,

gn
��r� = fn

M�r� , �13�

Eq. �11� is simplified in the form

�−
1

2r

d

dr
�r

d

dr
� +

�n + ��2

2r2 + n��gn
��r�

+ 	
m=−�

�

Vn−m�r;��gm
��r� = Egn

��r� . �14�

The radial functions with a different Fourier index n are
coupled with each other, while there is no coupling with
respect to the index �. The index � is a good quantum num-
ber originating from the rotational symmetry of the system
under consideration, and Eq. �14� can be solved for each �
separately. When � is replaced by �+1 in Eq. �14�, the equa-
tion can be kept invariant if n and E are replaced by n−1 and
E−�, respectively. Hence, it suffices to solve the close-
coupling equations �Eq. �14�� only for �=0. The quasienergy
for ��0 can be obtained simply by shifting the complex
quasienergy by ��. This is the manifestation of the period-
icity of the quasienergy spectrum in the Floquet formalism.
By truncating the number of the Floquet channels so as to
include N channels, the close-coupling equations �Eq. �14��
can be written in the matrix form,

−
1

2r

d

dr
�r

d

dr
�g��r� + Veff

� �r;��g��r� = Eg��r� , �15�

where g��r� is a column vector with N components and
Veff

� �r ;�� is the N	N effective potential matrix defined by

�Veff
� �r;���nm = � �n + ��2

2r2 + n��
nm + Vn−m�r;�� . �16�

C. Method of calculation of the S-matrix pole on the complex
quasienergy Riemann surface

In the present formalism, the ionization of the atom origi-
nally in a bound state is described by the decay of a quasi-
bound state. According to the scattering theory, the quasi-
bound states correspond to the poles of the S matrix on the
complex quasienergy Riemann surface. The pole positions of
the S matrix can be determined by solving Eq. �14� under the
Siegert boundary condition in the asymptotic region,

gn
��r� →

r→�

const 	 Hn+�
�+� �knr� , �17�

and the usual boundary condition at the origin,

gn
��r� →

r→0

const 	 r�n+��. �18�

In Eq. �17�, Hn+�
�+� �knr� is the Hankel function of the first kind,

and it should be noted that this function is multivalued for
the complex variable �see Appendix A�. The symbol kn is the
momentum of the electron in the nth Floquet channel defined
by

kn = � �2�E − n�� . �19�

The sign of kn determines the Riemann sheet on which the
pole is located. The sign + �−� corresponds to the physical
�unphysical� sheet with respect to the nth Floquet channel.
Therefore, a set of signs of kn is needed to specify the Rie-
mann sheet uniquely. According to Ref. �13�, the symbol �
= �. . . ,
n−1 ,
n ,
n+1 , . . .� is defined, where 
n represents the
sign of kn given in Eq. �19�.

The poles of the S matrix can be classified into two cat-
egories, dominant pole and shadow pole �28�. The dominant
pole leads to the wave function with the physical asymptotic
behavior, while the shadow pole leads to that with an un-
physical boundary condition. A pole located in the region
n��Re E� �n+1�� is a dominant pole when the combina-
tion of the signs is

� = �. . . ,
n−1,
n,
n+1,
n+2, . . .� = �. . . ,− ,− ,+ ,+ , . . .� � �n.

�20�

Otherwise, the pole is a shadow pole. Here, an abbreviation
�n is defined as the combination of signs for the dominant
poles in the region n��Re E� �n+1��.

The positions of dominant and shadow poles on the com-
plex quasienergy Riemann surface are calculated by solving
the close-coupling equation in the matrix form �Eq. �15��
under the Siegert boundary condition �Eq. �17�� with the
specified set of signs �. The detail of the numerical proce-
dure is discussed in Appendix B. The dominant pole posi-
tions at several selected values of � were obtained by the
preliminary calculation on the basis of the complex-scaling
Floquet method �11,13� and were used for the initial guess of
E needed in the procedure of solving the close-coupling
equations. The S-matrix pole trajectories were calculated by
gradually changing the value of � with fixed �. The results
shown in Sec. III were obtained from the calculation includ-
ing the Floquet channels n=−15, . . . ,15, i.e., the total num-
ber of the Floquet channel is N=31.

III. S-MATRIX POLE TRAJECTORY

The calculation of the S-matrix pole trajectories was car-
ried out for the case of �=0. The typical trajectories are
shown in Fig. 1. The values of angular frequencies are �
=0.3, 0.4, 0.5, and 0.6. For the cases of �=0.5 and 0.6 the
energy of one photon exceeds the binding energy of 0.477 of
the bound state, while for the other cases ionization requires
multiphoton absorption. The values of �=0.3 and 0.6 are
used to be representative values for the low- and high-
frequency regimes, respectively.
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A. Low-frequency regime

The pole trajectories for the low-frequency regime
��=0.3� are shown in Fig. 1�a�. With increasing laser inten-
sity, the pole originating from the bound state leaves the real
axis downward and becomes a dominant pole on the �−2
sheet. However, that pole crosses leftward the channel
threshold Re E=−0.6 at �=2.01 and becomes a shadow
pole. On the other hand, one of the shadow poles of the
bound state also leaves the real axis downward on the �−3
sheet. This pole passes leftward the threshold Re E=−0.6 at
�=2.02 and becomes a dominant pole. These threshold
crossings of two poles described above take place at approxi-
mately the same value of � and at approximately the same
point in the complex E plane, so that two poles seem to
exchange their roles with each other at the channel threshold.
The new dominant pole continues to travel leftward and
passes the next threshold Re E=−0.9 at �=3.87, where it
becomes a shadow pole again. At this threshold, the role of
the dominant pole is taken by another pole, which has been
traveling on the �−4 sheet. It should be noted that the third
pole also originates from one of the shadow poles of the
bound state. Similar exchanges are further repeated at the
thresholds located at Re E=−1.2, −1.5, and −1.8. As a result,

pieces of the dominant pole trajectories are connected with
each other so as to form one almost continuous trajectory.

The connected trajectory of dominant poles represents a
resonance state of the atom, which adiabatically changes its
property with laser intensity. The left-downward movement
along the connected trajectory of the dominant poles means
that the energy of that resonance state is broadened and
shifted downward monotonically with increasing �. Such
shift has been known as the ponderomotive energy shift �28�.
The observed adiabatic change is predicted by the KFR
theory �2–4� and interpretable as the tunneling ionization or
the barrier-suppression ionization �BSI�, which typically
takes place in the low-frequency regime. It is remarkable that
all the dominant poles appearing at each threshold correlate
to the shadow poles of the bound state on each Riemann
sheet. The member poles of the connected trajectory of the
dominant poles become shadow poles again after they
handed over their roles to the successors. The �red� pole on
the �−2 sheet and the �blue� pole on the �−3 sheet, however,
recross the channel threshold rightward and become domi-
nant poles again. Such sudden emergence of a dominant pole
has been known as the LIS �7,8�. Moreover, these two LIS
poles move upward, i.e., in the direction of decreasing reso-
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FIG. 1. �Color online� The S-matrix pole trajectories of the 2D model for four different laser angular frequencies: �a� �=0.3, �b� �
=0.4, �c� �=0.5, and �d� �=0.6. The pole trajectories are indicated by solid curves when the poles are dominant poles and by dotted curves
when they are shadow poles. The vertical lines represent the cuts originating from the branch points at the channel thresholds. The numerical
values near the circles indicate the values of � at these points. The insets in panels �a�, �c�, and �d� are magnifications of a part of each figure.
The trajectories originate, except several cases, from either the poles of the bound state at E=−0.477 or its shadow poles. The exceptions are
as follows: the �gray� trajectories in panels �a�–�d� start from the point E=0.0147−�−0.028 23i, which corresponds to the shape resonance
on the M =−1 channel; the �orange� leftmost trajectory in panel �b� comes from an unknown point with Im E�−0.35; and the �blue�
trajectory in panel �d� starts from the point E=−0.585+0.0282i, which corresponds to one of the shadow poles of the complex conjugate pole
of the shape resonance.
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nance width, with increasing �. This is the stabilization phe-
nomenon.

On the other hand, the trajectory starting from the point
E=−0.2853−0.028 23i on the �−1 sheet moves in the direc-
tion of increasing Re E, i.e., the direction opposite to the
ponderomotive energy shift. As regard to Im E, that pole
initially moves downward but begins to move upward at �
=2.5. This is also the stabilization phenomenon. The starting
point E=−0.2853−0.028 23i is the pole position of a shape
resonance. The 2D Gaussian potential well possesses a dou-
bly degenerate shape resonance at Eres=0.0147−0.028 23i
with the angular momentum quantum number M = �1. As a
result, the pole of the shape resonance of M =−1 is located at
E=Eres−�=−0.2853−0.028 23i in the present system.

B. Intermediate-frequency regime

The case of �=0.4 is shown in Fig. 1�b�. Unlike the case
of �=0.3, the continuous exchanges of dominant and
shadow poles are not observed. The dominant pole originat-
ing from the bound state moves on the �−2 sheet. It passes
leftward the threshold Re E=−0.8 at �=2.42 and becomes a
shadow pole. On the other hand, one of the shadow poles of
the bound state moves on the �−3 sheet. It passes leftward
the threshold Re E=−0.8 at �=2.48 and becomes a dominant
pole. These threshold crossings of two trajectories take place
at roughly the same value of � and at roughly the same point
in the complex E plane. However, the connection is far less
smooth than in the case of �=0.3. The exchange of the roles
of dominant and shadow poles is observed only at this
threshold. No successive exchanges take place unlike the
case of �=0.3. At �=4.81, the shadow pole on the �−2 sheet
passes rightward the threshold Re E=−0.8 and becomes a
dominant pole again. In addition, another shadow pole
comes from a certain unknown point in the region Im E�
−0.35 and moves on the �−4 sheet. This pole becomes a
dominant pole by passing leftward the threshold Re E=
−1.2 at �=3.64. On the other hand, the shape resonance pole
at E=Eres−�=−0.3853−0.028 23i moves on the �−1 sheet
and exhibits the stabilization. In summary, four dominant
poles coexist for ��4.81. Two of them, i.e., one on the �−2
sheet and the other on the �−4 sheet, are the LISs. All the
dominant poles show the stabilization phenomenon when the
laser intensity becomes sufficiently large.

The case of �=0.5 is shown in Fig. 1�c�. In this case, the
energy of one photon slightly exceeds the binding energy of
0.477. The pole originating from the bound state moves left-
ward on the �−1 sheet and becomes a shadow pole at the
threshold Re E=−0.5 when �=0.26. A shadow pole of the
bound state initially moves on the �. . . ,
−3 ,
−2 ,
−1 ,
0 , . . .�
= �. . . ,+ ,+ ,− ,+ , . . .� sheet. It crosses the real axis downward
and enters the �−2 sheet. At �=0.28, the pole becomes a
dominant pole by passing leftward the threshold Re E=
−0.5. These threshold crossings of two trajectories take place
at approximately the same value of � and at approximately
the same point in the complex E plane as in the case of �
=0.3. The role of the first dominant pole seems to be suc-
ceeded by the second dominant pole. Unlike the case of �
=0.3, however, the latter pole on the �−2 sheet does not

continue to travel left downward. At �=2.30, that pole
passes rightward the threshold Re E=−0.5 and becomes a
shadow pole again. The ponderomotive energy shift is not
observed. On the other hand, the pole originating from the
shape resonance at E=Eres−�=−0.4853−0.028 23i exhibits
the stabilization phenomenon.

C. High-frequency regime

The trajectories in the high-frequency regime �=0.6 are
shown in Fig. 1�c�. The behaviors are totally different from
the former cases. The pole originating from the bound state
and that from the shape resonance behave conversely. The
pole of the bound state begins to move right downward on
the �−1 sheet and eventually exhibits the stabilization. On the
other hand, the pole of the shape resonance at E=Eres−�=
−0.5853−0.028 23i on the same sheet moves left upward
and becomes a shadow pole by passing the threshold Re E
=−0.6 at �=0.50. In addition, a shadow pole starts from the
point E=−0.5853+0.028 23i on the
�. . . ,
−3 ,
−2 ,
−1 ,
0 , . . .�= �. . . ,+ ,+ ,− ,+ , . . .� sheet. The lo-
cation of this point coincides with the complex conjugate
point of the shape resonance pole. The pole of shape reso-
nance at E=Eres−� on the �−1 sheet gives rise to the com-
plex conjugate pole at E=Eres

� −�. The observed shadow pole
originates from a shadow pole of this complex conjugate
pole. That shadow pole passes the real axis downward and
enters the �−2 sheet. At �=0.62, the pole becomes a domi-
nant pole by passing leftward the threshold Re E=−0.6. This
emergence of the dominant pole seems to be coincident with
the disappearance of the dominant pole originating from the
shape resonance. It could be interpreted as the succession of
the role, as observed in the case of �=0.3, although the
connection of two trajectories is not smooth.

The similar behaviors of pole trajectories have been ob-
served in 1D models, i.e., 1D Gaussian potential �10–12�, 1D
Pöschl-Teller potential �13�, and 1D square well potential
�14,15�. In order to make a direct comparison with the 2D
results calculation was carried out for the 1D Gaussian po-
tential with directly comparable parameters given in Eq. �5�.
Figure 2 shows the pole trajectories of the 1D model with the
laser frequency �=0.6. The dominant pole originating from
the bound state exhibits the stabilization phenomenon. The
shape of the trajectory resembles that of the 2D model. An
LIS can be seen to emerge at the threshold Re E=−0.6, and
this LIS pole behaves like the pole on the �−2 sheet of the 2D
model. The origin of this LIS is one of the shadow poles of
an antibound state �virtual state� �29� located at Eanti=
−0.0305, which is shifted to E=Eanti−�=−0.6305 in the Flo-
quet calculation.

IV. POTENTIAL CURVES FOR RADIAL MOTION AND
MECHANISMS OF IONIZATION

As discussed so far, the tunneling ionization accompanied
with the ponderomotive energy shift is typically observed in
the low-frequency regime. In the high-frequency regime,
however, the resonance state originating from the bound state
exhibits the stabilization phenomenon instead of the pon-
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deromotive energy shift. In order to analyze the mechanisms
of these phenomena and transition between two regimes, the
attention is focused on the effective potential matrix in Eq.
�16�. The adiabatic potential curves for the radial motion are
obtained by the eigenvalues of the effective potential matrix
plotted as a function of r. On the other hand, the diagonal
elements directly give the diabatic potential curves. The con-
ventional KH potential in the high-frequency approximation
corresponds to the diabatic potential �Veff

�=0�r ;���00.

A. Low-frequency regime

Both the adiabatic and diabatic potential curves for the
case �=0.3 are shown in Fig. 3. The adiabatic potential
curves are obtained by diagonalization of the effective poten-
tial matrix �Eq. �16�� including the Floquet channels n=
−10, . . . ,10. When �=0, the adiabatic and the diabatic po-
tential curves coincide with each other by definition. As can
be seen in Fig. 3, the potential curve of M =0 exhibits a deep
well of the Gaussian function in Eq. �2�. With increasing M,
the potential well becomes shallow due to the centrifugal
force, and eventually the potential becomes purely repulsive.
When � increases, the adiabatic potential curves begin to
exhibit avoided crossings with each other. When �=1.0, the
lowest adiabatic curve comes to have a barrier, through
which the tunneling ionization can take place. When �
�2.0, the effects of the avoided crossings create a new po-
tential well separated from the bunch of repulsive potential
curves. The resonance originating from the bound state has
changed into a kind of resonance formed inside or above the
new potential well. As � increases, the potential well shifts
downward along the envelope of the repulsive curves, and, in
accordance with it, the resonance energy also shifts down-
ward.

The formation of the new potential well is explicable by
level repulsions among the diabatic curves. The r depen-
dence of the off-diagonal elements of the effective potential
matrix is shown in Fig. 4. The absolute value of the off-
diagonal element, �Vn�r ;����n�0�, has a maximum. Around
this maximum, the level repulsions among the diabatic

curves are enhanced and push down the lowest potential
curve so as to form a well. With increasing �, the position of
the maximum shifts toward large r, and the potential well is
also shifted in the same direction.

On the basis of the change in the shape of the lowest
adiabatic curve, a physical picture of ionization is obtained
as follows: when 0���2.0, ionization is ascribable to the
tunneling through the potential barrier. When ��2.0, the
resonance energy level is lifted above the top of the barrier,
and the BSI takes place. This intuitive picture is verified by
the calculation of the single channel scattering, in which only
the lowest adiabatic potential is taken into account. Complex
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FIG. 3. �Color online� The adiabatic potential curves �black
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corresponding to the dominant poles of the same color in Fig. 1�a�.
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energy eigenvalues were calculated on the basis of the com-
plex absorbing potential �CAP� method �30,31�, and the po-
sition and width of the shape resonance were obtained. The
details of the calculation are described in Appendix C. The
results are shown in Fig. 5. The resonance position and width
approximately agree with exact ones shown in Fig. 3, respec-
tively. In conclusion, the tunneling ionization and the BSI
can be interpreted as decay of the shape resonance formed on
the lowest adiabatic potential of the Floquet formalism.

B. High-frequency regime

The potential curves for the high-frequency regime �
=0.6 are shown in Fig. 6. The lowest adiabatic potential
possesses a shallow well when �=1.0. For ��2.0, however,
no potential well is formed. In comparison with the case of
�=0.3, the larger channel interval makes the envelope of the
diabatic curves more steep. As a result, the lowest adiabatic
potential curve is too steep to form a well even in the pres-
ence of the localized level repulsions. It should be noted that
the off-diagonal elements are independent of �. The differ-
ence in the shape of the lowest adiabatic curve is solely

ascribed to the difference in the interval of the Floquet chan-
nels.

In this regime, the original bound state shifts upward as �
increases and becomes a resonance trapped, roughly speak-
ing, in the well of the diabatic potential �Veff

�=0�r ;���00, i.e.,
the KH potential. The wave function of the resonance state
leaks through the potential crossings. In the cases of �=1.0
and 2.0, the KH potential undergoes potential crossings with
large energy gaps as shown in Fig. 6. As a result, the reso-
nance width becomes very large. When ��2.0, the energy
gaps of the avoided crossings decrease with increasing �,
indicating that the KH high-frequency approximation be-
comes better, and the stabilization occurs. This is none other
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than the KH stabilization discussed by Popov et al. �24�. The
reduction in the energy gaps is ascribable to the shift of the
peak of the off-diagonal matrix elements Vn�0�r ;�� as a
function of r. With increasing �, the peak position of
�Vn�0�r ;��� shifts toward large r as shown in Fig. 4, and
consequently, the avoided crossings occurring at the region
of the potential well become small. It should be noted that
the avoided crossings caused by the Floquet channels of �n�
�10, which were neglected in Figs. 3 and 6, should have
smaller energy gaps.

The stabilization of the resonance originating from the
bound state can be explained by considering two Floquet
channels as follows: the calculation of the S-matrix pole po-
sition was carried out by considering only two Floquet chan-
nels, n=0 and −1. The resonance position and width ob-
tained for several values of � are shown in Fig. 7 together
with the adiabatic and the diabatic curves also obtained by

the two-channel model. The resonance position and width
approximately agree with the exact ones in Fig. 6. Thus, the
resonance state in question can be interpreted as the Fesh-
bach resonance, in which the quasibound state on the KH
potential decays into the Floquet channel n=−1.

On the other hand, the fate of the shape resonance dis-
cussed in Sec. III C can also be explained by the potential
curves in Fig. 6. As � increases, the shape resonance begins
to shift downward and crosses the channel threshold. As dis-
cussed in Sec. III C, the role of the dominant pole seems to
be succeeded by another pole, and the resonance continues to
exist for a while. When �=2.0, however, no potential well is
formed in the lower energy region, and the resonance disap-
pears. It should be noted that the resonance in question is not
reproduced in the two-channel model for ��1.0 as can be
seen in Fig. 7.
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V. DISCUSSION

A. Transition between low- and high-frequency regimes

As discussed so far, the tunneling ionization with a
smooth ponderomotive energy shift typically occurs in the
low-frequency regime, while the KH stabilization is ob-
served in the high-frequency regime. Transition between the
low- and the high-frequency regimes can be viewed as fol-
lows: the tunneling ionization can be ascribable to the decay
of resonance state formed in the lowest adiabatic potential.
When � increases and approaches to the one-photon ioniza-
tion threshold �b, the potential well becomes shallow, and
consequently, the resonance is formed only for small �. The
ponderomotive energy shift is quitted at a certain value of �
as shown in Fig. 1�b�. The picture of the tunneling ionization
or the BSI becomes invalid beyond that value of �. Thus, the
tunneling ionization accompanied by the ponderomotive en-
ergy shift can be observed only when the laser frequency is
sufficiently lower than the one-photon ionization threshold.

On the other hand, it should be noted that the KH stabi-
lization, which has been discussed as the typical phenom-
enon in the high-frequency regime, is observed also in the
low-frequency regime. As mentioned in Sec. III A, the shape
resonance exhibits the stabilization as can be seen in Figs.
1�a� and 1�b�. From an inspection of the adiabatic potential
curves for �=0.3 shown in Fig. 3, it is inferred that a kind of
KH stabilization occurs. In the case of �=4.0, for instance, a
shallow potential well can be seen in the region of −0.1
�E�0 if one traces the potential curve diabatically. Al-
though the potential well undergoes several avoided cross-
ings, the energy gaps are small. If � increases beyond 4.0,
the energy gaps are expected to become smaller, and the
diabatic representation also becomes better. The resonance
trapped in the diabatic well is expected to have a long life-
time. This mechanism is interpretable as a kind of KH stabi-
lization.

The stabilization of the shape resonance observed in the
case of �=0.5 is also proven to be the KH stabilization by an
inspection of the adiabatic potential curves. The stabilization
observed in the case of �=0.6 is a typical KH stabilization
as discussed in Sec. IV B. Accordingly, the KH stabilization,
including that of the generalized sense discussed above, is
observed in all of four cases shown in Fig. 1. The difference
between the low- and high-frequency regimes is in the origin
of resonances. In the cases of �=0.3, 0.4, and 0.5, the reso-
nance exhibiting the KH stabilization originates from the
shape resonance in the null field. In the case of �=0.6, how-
ever, it is the resonance originating from the bound state that
exhibits the KH stabilization.

The transition between the low- and high-frequency re-
gimes can be summarized as follows: when � is sufficiently
smaller than �b, ionization of the atom originally in the
bound state is ascribable to the tunneling ionization. On the
other hand, the shape resonance state exhibits the KH stabi-
lization of the generalized sense. When the value of � is in
the vicinity of �b, the picture of tunneling ionization breaks
down. The mechanism of the ionization has to be ascribed to
a result of complicated mutichannel scattering. However, the
KH stabilization of the shape resonance remains to occur.

When � further increases and exceeds a certain critical value
�c, the bound state of the atom exhibits the KH stabilization.
In this regime, the behavior of the shape resonance cannot be
explained by a simple picture.

The critical value �c dividing the low- and high-
frequency regimes falls between 0.5 and 0.6 in the present
model. It can intuitively be understood that the inequality
�c��b holds because of the following reason. The shape
resonance in question is always in the Floquet block of n=
−1, while the bound state is in the block of n�−2 when �
��b. This means that the energy position of the shape reso-
nance is higher than that of the bound state. If the system
changes adiabatically with increasing �, the lower state, i.e.,
the bound state, exhibits a downward shift interpretable as
the ponderomotive energy shift. The upper state, i.e., the
shape resonance, shifts upward and will be trapped in the KH
potential.

The behaviors of the pole trajectories in the case of �
=0.5 shown in Fig. 1�c�, however, imply that prediction of
the precise value of �c by an intuitive argument is difficult.
In this case, the bound state is the upper state. However, the
bound state shifts downward, and the shape resonance exhib-
its an upward shift and the KH stabilization. The two trajec-
tories, as can clearly be seen in the inset of Fig. 1�c�, undergo
a kind of avoided crossing on the complex energy plane.
Such collision of resonance poles implies that two resonance
states are interacting with each other �13�. In such a situation,
it is difficult to predict the motions of trajectories intuitively
on the complex energy plane. When � was increased to 0.6,
it seems that the energy difference became sufficiently large
so as make the upper state shift upward. Thus, it is inferred
that the value of �c depends very delicately on the relative
position of the bound state and the shape resonance on the
complex energy plane. According to the discussion so far, it
can be stated at most that �c falls in the vicinity of �b
+Eres, where Eres is the energy of the shape resonance in the
null field.

B. Tunneling ionization and BSI in the framework
of the Floquet formalism

The intuitive picture of the tunneling ionization and BSI
is usually based on the equations of motion in the length
gauge, in which electrons are driven solely by electrostatic
fields. The theory derived along this line is the ADK theory
�5�. In the length gauge, however, the interaction between the
electrons and the laser field extends to the asymptotic region
r→�. Consequently, the scattering theory is not applicable
to the ionization processes if the length gauge is employed.
One has to choose the acceleration gauge for the scattering
theoretical treatment. The scattering theoretical description
of ionization, based on the Floquet formalism in the accel-
eration gauge, has been known to be suitable for the high-
frequency regime �23,26�. It seems to be disadvantageous, at
first sight, to apply the Floquet formalism to the low-
frequency regime. The results in Sec. IV A, particularly in
Figs. 3 and 4, however, indicate that the Floquet formalism
successfully provides an intuitive picture. The ionization in
the low-frequency regime can again be understood as the
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tunneling through the potential barrier defined in the Floquet
formalism with the acceleration gauge. It should be noted
that the picture of tunneling within the Floquet formalism
remains valid for higher-frequency region in the low-
frequency regime as discussed below.

The conventional criterion for the validity of the tunneling
mechanism is given by the Keldysh parameter �
=�Ip / �2Up�, where Ip is the ionization energy of an atom and
Up=�2�2 /4 is the ponderomotive energy �2�. When ��1,
the atomic ionization is believed to take place by the tunnel-
ing mechanism. As regard to the present model in the low-
frequency regime, the Keldysh parameter is estimated as �
=3.26 /� with the fixed value of �=0.3. According to the
conventional criterion, the tunneling ionization could be ob-
served only for ��3.26. Therefore, the behavior of the pole
trajectory, i.e., a smooth connection of trajectories reproduc-
ing the ponderomotive energy shift, observed in Fig. 1�a�
cannot be explained by the tunneling ionization in the usual
sense. As discussed in Sec. IV A, however, the behavior of
the pole trajectory can clearly be explained by a single adia-
batic potential with a barrier even in the case of ��3 as
shown in Fig. 5. This implies that the picture of tunneling
remains valid in the Floquet formalism even when ��1.
Under the same condition, needless to say, the ADK theory
does not work well. The argument so far suggests that the
Floquet formalism in the acceleration gauge provides the
picture of tunneling ionization in a sense slightly different
from that of the ADK theory. In the limit of small �, two
pictures of tunneling should coincide with each other. It is
emphasized again that the picture of tunneling in the Floquet
formalism remains valid for higher laser frequencies than
that predicted by the conventional criterion based on the
Keldysh parameter.

As discussed so far, the behaviors of the resonances, i.e.,
the dominant poles, are clearly explicable by the adiabatic
potentials. As regard to the motions of the shadow poles,
however, there is no explanation at hand. As can be seen in
Fig. 1, the behaviors of poles as a whole could be understood
much more clearly if one had a certain intuition concerning
the motions of shadow poles. This point is left for future
studies.

C. Advantage of the two-dimensional model

As discussed in Secs. IV and V A, the transition between
the low- and high-frequency regimes is successfully ex-
plained by the change in the shape of the adiabatic potential
curves due to avoided crossings. It should be noted that no
avoided crossing occurs in the 1D model due to the lack of
the centrifugal potential. In the 1D Floquet model, all the
diabatic curves are generated by shifting one original poten-
tial curve. As a result, the infinite numbers of curves having
the same shape run parallel with each other for any value of
�. Therefore, no avoided crossing occurs in the adiabatic
curves. The discussion of the ionization mechanisms like that
in Sec. IV is not possible in the 1D model, although there is
similarity between the 1D and 2D models with respect to the
behaviors of the S-matrix pole trajectories, particularly in the
high-frequency regime as shown in Figs. 1�d� and 2.

The ionization mechanism of one-electron 3D atom, e.g.,
the realistic H atom, in intense laser fields could be eluci-
dated in the manner similar to the 2D model. There is simi-
larity between the 2D and 3D treatments in that the centrifu-
gal potential exists in both the cases. In the 3D treatments,
the diabatic channels should be labeled by three quantum
numbers: the index of the Floquet block nF, the azimuthal
quantum number l, and the magnetic quantum number m. In
the case of circularly polarized laser field with the polariza-
tion vector rotating perpendicularly to the axis of quantiza-
tion, a new quantum number �=m−nF remains good as in
the 2D case due to the rotational symmetry of the light-atom
system. Linked up with the periodicity with respect to the
quasienergy, the quasieigenstates with different � are repli-
cas of one identical state, e.g., that with �=0, as discussed
below Eq. �14�. The 2D model in the present study can be
interpreted as a model in which the physics is simplified by
neglecting the degree of freedom corresponding to l. In this
respect, the cost of numerical calculation is reduced in the
present 2D model in comparison with the 3D treatment. On
the other hand, the selection rule of coupling is changed in
the case of the linearly polarized light. The axis of quantiza-
tion being chosen as parallel to the polarization vector, the
magnetic quantum number m is good in this case. It suffices
to solve the close-coupling equations for each m. Unlike the
quantum number � discussed above, m is not linked with the
periodicity of the quasienergy, and one has to solve the
coupled equations for different m’s. By reduction to the 2D
model, one merely loses the good quantum number m, and
the cost of calculation is not much reduced.

The discussion of the ionization mechanism based on the
diabatic and adiabatic curves could be applied to two-
electron atoms, such as He and H−, by the use of the hyper-
spherical coordinate �32�. When the hyper-radius of the two-
electron system is treated as the scattering coordinate, one
can construct, in a manner analogous to that in Sec. IV, the
adiabatic potential curves which describe the ionization pro-
cesses. The adiabatic curves are expected to exhibit avoided
crossings due to not only the coupling with the laser field but
also the electron correlation. The effects of the electron re-
pulsion exerted on the ionization processes would come into
the scope of investigations.

VI. CONCLUSION

On the basis of the Floquet formalism, the 2D model atom
in circularly polarized intense laser fields is analyzed. The
S-matrix pole trajectories on the complex quasienergy Rie-
mann surface are calculated. In the low-frequency regime,
the tunneling ionization accompanied with the ponderomo-
tive energy shift is typically observed. On the other hand, the
stabilization phenomenon is observed in the high-frequency
regime. In order to obtain a unified view, a particular atten-
tion is focused on the adiabatic potential curves for the radial
motion of the electron in the acceleration gauge. The tunnel-
ing ionization can be explained again by the tunneling
through the lowest adiabatic potential. The ponderomotive
energy shift and the ionization rate can be reproduced by the
single channel scattering on the lowest adiabatic potential.
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On the other hand, the stabilization in the high-frequency
regime can be explained by the scattering in which two di-
abatic channels are involved. The transition between the low-
and high-frequency regimes can be elucidated by the change
in the shape of the adiabatic potential curves due to avoided
crossings.

APPENDIX A: COMPUTATIONAL METHOD OF THE
HANKEL FUNCTION FOR THE COMPLEX VARIABLE

The value of Hn+�
�+� �z� for the complex variable z=knr is

required in the Siegert boundary condition �Eq. �17��. The
numerical values can be obtained by using the following
formulas �35�:

H�
�+��z� =� 2

�z

exp�i�z − ��/2 − �/4��
��� + 1/2�

	�
0

� �1 +
it

2z
��−1/2

t�−1/2e−tdt �−
�

2
� arg z

�
3�

2
and � � 0� , �A1�

H−�
�+��z� = �− 1��H�

�+�, �A2�

H�
�+��z� = �− 1��mH�

�+��em�iz� + 2mJ��z� . �A3�

Here, J��z� represents the Bessel function for any integer
value �=n+�.

For the dominant poles, the value of Hn+�
�+� �z� is given by

the principal value with z in the range −��arg z��. When
the dominant pole becomes a shadow pole by crossing the
negative real axis of z, the analytic continuation is required,
and the value of Hn+�

�+� �z� should be calculated by using for-
mula �A3�, in which the integer value m specifies the Rie-
mann sheet of the complex z plane.

APPENDIX B: METHOD OF SOLVING THE CLOSE-
COUPLING EQUATIONS [EQ. (15)]

The process of calculation is started by integrating Eq.
�15� for a trial value of E. A set of N linearly independent
column vectors of the radial functions, �g1 ,g2 , . . . ,gN�, is
prepared so as to satisfy the Siegert boundary condition
�Eq. �17��, with a set of the N signs, �. In addition, an-
other set, �g1� ,g2� , . . . ,gN� �, is prepared so as to satisfy the
boundary condition of Eq. �17� with Hn+�

�+� �knr� replaced by
the derivative dHn+�

�+� �knr� /dr. The propagation of these two
sets is carried out by the Runge-Kutta method from the
asymptotic region to a matching point, and N	N matrices

Gr
�= �g1 ,g2 , . . . ,gN� and Gr

��= �g1� ,g2� , . . . ,gN� � are obtained. A
similar calculation is carried out outward to the same match-

ing point from a vicinity of the origin with the boundary
condition �Eq. �18�� as well as its derivative, and N	N ma-

trices Gl
� and Gl

�� are obtained. At the matching point the
continuity of the wave function and its derivative requires

Gl
�L = Gr

�R �B1�

and

Gl
��L = Gr

��R , �B2�

where L and R are certain unknown column vectors with N
components. The two matching conditions �Eqs. �B1� and
�B2�� can be combined as �e.g., see �33,34��

�Gl
� Gr

�

Gl
�� Gr

���� L

− R
� = 0 . �B3�

Therefore, the matching condition requires that the determi-
nant of the matrix in Eq. �B3� vanishes, i.e.,

D�E� = det�Gl
� Gr

�

Gl
�� Gr

��� = 0. �B4�

The solution is obtained by the Newton-Raphson method,
and the complex quasienergies E are determined.

APPENDIX C: THE CAP METHOD

The complex energy eigenvalues of the lowest adiabatic
potential for the laser angular frequency �=0.3 are calcu-
lated by using the CAP method �30,31� as follows: the radial
function −i�r6 is added to the lowest adiabatic potential
Vad�r ;��. An artificial Hamiltonian is defined as

H��� = −
1

2r

d

dr
�r

d

dr
� + Vad�r;�� − i�r6. �C1�

The complex energy eigenvalues E��� are calculated by di-
agonalizing the Hamiltonian matrix constructed by using the
discrete variable representation �36�. The mesh point of r is
rj = �j−1 /2��r, where �r=0.05 and j=1,2 , . . . ,400, and the
numerical data of the lowest adiabatic potential Vad�r ;�� at
each mesh point are prepared by diagonalizing the effective
potential matrix �Eq. �16�� including the Floquet channels
n=−60,−59, . . . ,5. The optimal values of � are determined
from the condition �30,31�

��
dE���

d�
� = min �C2�

and the values of �=1.40	10−7, 1.30	10−7, 1.50	10−7,
and 1.45	10−7 are used for the cases of �=1.0, 2.0, 3.0, and
4.0, respectively.
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