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We present a detailed formulation of the relativistic convergent close-coupling �RCCC� method which is
based on the solution of the Dirac equation describing electron scattering from quasi-one-electron atoms. A
square-integrable Dirac L spinor basis has been used to obtain a set of target states representing both the bound
and continuum spectra of the target. A set of momentum-space coupled Lippmann-Schwinger equations for the
T matrix is then formulated and solved. We use spin asymmetries, particularly those that are identically zero in
a nonrelativistic formulation, to check the accuracy of the RCCC method and find good agreement with
experiment on a broad energy range.
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I. INTRODUCTION

We have recently reported the development of the relativ-
istic convergent close-coupling �RCCC� method and illus-
trated it by application to the elastic electron scattering from
cesium atoms at a single incident electron energy of 7 eV �1�
and also to the study of electron scattering from gold atoms
�2�. The aim of this paper is to provide details of the method
and demonstrate its ability to produce accurate collision re-
sults across a wide energy range.

The nonrelativistic formulation of the convergent close-
coupling �CCC� method has been successfully applied to the
study of electron scattering from hydrogen atoms �3�, alkali
atoms �4�, helium atoms �5�, and alkali-earth atoms �6�. The
ability of the CCC method to accommodate relatively large
close-coupling expansions combined together with the ac-
count of coupling to the target continuum via its square-
integrable representation yields reliable results across a wide
spectrum of incident electron energies and scattering pro-
cesses. The application of the CCC method to electron scat-
tering from heavy atoms, such as cesium �7–9�, barium �10�,
and mercury �11�, demonstrated good agreement with experi-
ment but also revealed the limitations of the method. These,
first of all, are related to the importance of the relativistic
effects both in the description of the heavy atoms target wave
functions and scattering dynamics. In particular, experiments
with spin-polarized electrons and targets performed by
Bielefeld group �7–9� for the electron-cesium scattering sys-
tem produced differential cross section �DCS� and three spin
asymmetries �Ann ,A1 ,A2�. Only the exchange spin asymme-
try Ann can be obtained with nonrelativistic methods, with
the spin asymmetries A1 and A2 being identically zero in
such methods. Collectively, these parameters form an ideal
test of relativistic approaches and will be used here to check
the accuracy of the RCCC method.

It has been recognized for a long time in the field that the
most consistent approach to theoretical modeling of electron
scattering from heavy atoms should be the one based on a
solution of relevant Dirac equations for both target wave
functions and electron-atom scattering. A number of theoret-

ical methods are available at present that follow a fully rela-
tivistic formulation. The most advanced of them are the
Dirac R-matrix method �12–15�, the recently developed
Dirac B-spline R-matrix method �DBRM� �16,17�, and Dirac
R matrix with pseudostates method �DRMPS� �18�. These
calculations are most computationally effective at low ener-
gies where the size of the close-coupling expansion does not
have to be large to obtain converged results. However, at
intermediate energies, a large close-coupling expansion is of-
ten required. In a relativistic formulation, the size of the
close-coupling expansion is about twice larger than in the
corresponding nonrelativistic method which makes the rela-
tivistic R-matrix calculations computationally difficult to
perform �16�. The problem of large close-coupling expan-
sions can be avoided at high incident electron energies where
first-order methods can be used. Extensive calculations of
electron-atom elastic scattering and excitations have been
performed using such first-order techniques �see, for ex-
ample, Refs. �19,20��.

This paper is organized as follows. In the following sec-
tion, we describe in detail the RCCC method with emphasis
on applications to scattering from quasi-one-electron atoms.
The results for e-Cs elastic scattering are presented in the
next section, followed by conclusions and outlook to future
work.

II. THEORY

We assume that the target atom or ion is well described by
a model of one electron above a frozen Dirac-Fock core. The
set of core orbitals ��c� is obtained by performing a self-
consistent field Dirac-Fock calculation using, for example,
the GRASP package �21�. The resulting Dirac equation for the
active electron wave function is

HT��r� = �c� · p + �m0c2 + VT���r� = ���r� , �1�

where � and � are the Dirac matrices, c is the speed of light,
m0 is the electron mass, and p is the momentum operator. In
what follows, we will use atomic units m0=1 and c�137.
For a central potential VT, the solutions of the Dirac equation
�1� are characterized by the relativistic quantum number �
and are given by a four-component spinor �22�*d.fursa@curtin.edu.au
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��m�r� =
1

r
� ��

L�r���m

i��
S�r��−�m

	 . �2�

Here, ��
L�r� and ��

S�r� are the large and small components of
the radial-wave function, ��m is a two-component coupled
spin-orbit function, and m is the magnetic quantum number.
The relativistic quantum number � is related to the total an-
gular momentum j and parity �= �−1�l of the orbital via

j = 
�
 −
1

2
, �3�

l = � � , � � 0

− � − 1 � 	 0.
� �4�

The potential VT of interaction of the active electron with
a closed core is a sum of a frozen-core Dirac-Fock potential
VFC and a polarization potential Vpol,

VT = VFC + Vpol. �5�

The nonlocal VFC potential is defined as a sum of local �di-
rect� Vd

FC and nonlocal �exchange� terms

VT = Vd
FC + Ve

FC, �6�

with

Vd
FC��r� = �−

Z

r
+ 


�c

� d3r�

�c�r��
2


r − r�
 	��r� , �7�

Ve
FC��r� = − 


�c

� d3r�
�c�r�����r��


r − r�

�c�r�� . �8�

We use a point-nuclear model with Z being the nuclear
charge. The number of electrons in the frozen core is Nc
=
�c

�2jc+1�. Note that for neutral atoms Z=Nc+1, but for
positively charged ions, the asymptotic charge of the target is
nonzero

Zas = Z − Nc − 1. �9�

The phenomenological one-electron core-polarization po-
tential Vpol allows us to take into account more accurately the
effect of closed inert shells on the active electron. For light
atoms and ions, a simple model used in the nonrelativistic
CCC method �4� can be used. However, for heavy targets,
such as cesium, a more accurate form of polarization poten-
tial is necessary. The polarized-orbital methods of
McEachran et al. �23� can be used to produce the polariza-
tion potential from the core orbitals.

A. Diagonalization of the Dirac Hamiltonian

The key step in the formulation of the CCC method is the
diagonalization of the nonrelativistic Schrödinger Hamil-
tonian of the target in a finite-size Sturmian basis. In the case
of the Dirac Hamiltonian, diagonalization in a finite-size ba-
sis proved to be a significantly more complicated problem.
Firstly, the spectrum of the Dirac Hamiltonian of a hydro-
genlike atom does not have a finite lower bound and consists

of three distinct intervals: the continuous spectrum �−
 ,
−2c2� corresponding to the negative-energy electrons �posi-
trons�, the discrete spectrum �−2c2 ,0� containing the target
bound states, and the target continuous spectrum �0,
� �see
Fig. 1�. The absence of the lowest-energy state for the Dirac
Hamiltonian means that the variational principle and tech-
niques derived from it such as diagonalization in the finite-
size basis cannot be applied to the problem, at least not in the
same straightforward manner as is done for the nonrelativis-
tic Schrödinger Hamiltonian. Secondly, the choice of the ba-
sis proved to be very important as a simple generalization of
the nonrelativistic diagonalization techniques leads to the ap-
pearance of so-called “intruder” states �24� that carry no
physical meaning and were an artifact of the incorrect ac-
count of the interaction between the negative-energy electron
continuum and the positive-energy bound and continuum
parts of the Dirac equation spectrum.

The problems of the applicability of the variational prin-
ciple to the Dirac Hamiltonian and choice of the basis for
diagonalization were resolved by Grant and Quiney �25� �we
refer the reader to this reference for the detailed discussion�.
We should also note that an alternative but equivalent formu-
lation was presented by Szmytkowski �26�. In this paper, we
will follow the formulation of Grant and Quiney �25�.

The target atom wave function ��m�r� is sought as an
expansion �25�

��m�r� =
1

r
� ��

L�r���m

i��
S�r��−�m

	 =
1

r� 

nr

cnr

L fnr�
L �r���m

i

nr

cnr

S fnr�
S �r��−�m� .

�10�

Here, cnr

L and cnr

S are expansion coefficients and fnr�
L �r� and

fnr�
S �r� are Dirac L spinors �25�. Dirac L spinors form a com-

FIG. 1. �Color online� A qualitative comparison of the Dirac and
Schrödinger target spectra and their discretization using CCC and
RCCC methods. The energy was shifted by −c2 to facilitate com-
parison to CCC. Note that RCCC generally yields a lower energy
ground state.
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plete square-integrable basis and are the relativistic analogue
of Coulomb Sturmian functions �Laguerre functions� which
are used in the formulation of the nonrelativistic CCC
method. The important feature of the expansion �10� is that
although the large and small components of the wave func-
tion are expanded separately, the Dirac L spinors for large
and small components are not independent but satisfy the
following system of differential equations:

d

dr
fnr�

L �r� = −
�

r
fnr

L �r� + �Nnr�
− nr − �

r
+ �	 fnr

S , �11�

d

dr
fnr�

S �r� =
�

r
fnr

S �r� + �− Nnr�
− nr − �

r
+ �	 fnr

L , �12�

where �=��2− �Z /c�2 and Nnr�
=��2+2nr�+nr

2. The conse-
quence of this relation is that the large and small components
of the Dirac L spinors satisfy the criterion of strict kinetic
balance �25� which guarantees the correct account of the in-
teraction between different parts of the Dirac equation spec-
trum and the correct transition to the nonrelativistic limit
�c→
�. The explicit form of the Dirac L spinors is

fnr�
L/S�r� = � nr ! �2� + nr�

2Nnr�
�Nnr�

− ��
�2� + nr�
�1/2

�2�r��e−�r

��− �1 − �nr,0
�Lnr−1

2� �2�r� �
Nnr�

− �

nr + 2�
Lnr

2��2�r�	 ,

�13�

with the + �−� corresponding to the large �small� compo-
nents, respectively. 
�a� is the usual gamma function �27�.
Dirac L spinors are normalized to unity but form a nonor-
thogonal set. We refer the reader to Ref. �25� for a detailed
discussion of the Dirac L spinor properties, such as orthogo-
nality and the transition to the nonrelativistic limit. We also
note that Dirac L spinors have been used to generate a com-
pete set of pseudostates in the DRMPS method �18�.

The problem of diagonalization of the Hamiltonian HT in
the basis of L spinors is divided into two steps. In the first
step, we consider the Dirac equation �1� with the local part of
the potential, VT

loc=Vd
FC+Vpol, and formulate a standard ei-

genvalue problem for the expansion coefficients
�cnr

L ,cnr

S � ,nr=1, . . . ,N� by substitution of the expansion �10�
into the �local� Dirac equation



nr

�fmr�
L 
VT

loc + c2
fnr�
L �cnr

L − c

nr

�fmr�
L 


d

dr
−

�

r

fnr�

S �cnr

S

= 

nr

��fmr�
L 
fnr�

L �cnr

L , �14�

c

nr

�fmr�
S 


d

dr
+

�

r

fnr�

L �cnr

L + 

nr

�fmr�
S 
VT

loc − c2
fnr�
S �cnr

S

= 

nr

��fmr�
S 
fnr�

S �cnr

S . �15�

Note that for N� L spinors used in expansion �10�, the size of
the eigenvalue problem is 2N�. The result of the diagonaliza-

tion is a set of 2N orbitals ��̃n� and corresponding energies
�̃n with N� of them describing bound states and discretized
continuum states for the potential VT

loc and in addition there is
a set of N� orbitals describing discretized negative-energy
continuum states �see Fig. 1�. According to Dirac �28�, the
negative-energy states are filled with electrons and the Pauli
exclusion principle prohibits decay to them from positive-
energy bound and continuum parts of spectrum. Excitations
from the negative-energy states result in the creation of
electron-positron pairs. The energy required for such pro-
cesses ��2c2�1 MeV� is much higher than the energies
normally considered in electron-atom collision studies.
Therefore, we will exclude all negative-energy orbitals that
come from the diagonalization of the Dirac Hamiltonian.

In the second step, we use N� �positive-energy� orbitals
��̃n� as a basis to diagonalize the full-target Hamiltonian HT.
This requires evaluation of the matrix elements of the non-
local frozen-core potential Ve

FC,

��̃n
Ve
FC
�̃n�� = ��n,�n�


�c



�

2jc + 1

2jn + 1
���n,�c,��

��Cjc1/2,�0
jn1/2 �2�

0




dr��c�r���̃n�r��

��
0




dr�c�r��̃n�r�,v��r�,r� , �16�

where

v��r�,r� = �r�/r��+1 for r� � r

r��/r�+1 for r� 	 r
� �17�

and ���n ,�c ,�� incorporates the parity selection rules �29�

���n,�c,�� =
1

2
�1 −

�n


�n

�c


�c

�− 1� jn+jc+�	 . �18�

The result of the target structure calculations is a set of
wave functions ��n

N� and corresponding energies �n
N, n

=1, . . . ,N=
�N�, that describe the target atom or ion and
satisfy

��m
N
HT
�n

N� = �n
N�m,n. �19�

B. Relativistic scattering formulation

We now turn to the formulation of the relativistic scatter-
ing problem. This formulation is similar to the nonrelativistic
case and we present here only the main results with emphasis
on the differences with the nonrelativistic case �30�. In what
follows, we use index “1” to describe the projectile electron
coordinates and index “2” for the target electron coordinates.

The Dirac Hamiltonian describing the total projectile
electron and target scattering system is given by

H = H1 + H2 + V12, �20�

where Hi=Ki+Vi, with Ki denoting the free Dirac Hamil-
tonian and Vi=Vi

FC+Vi
pol denoting the interaction potential of

electron i with the closed frozen core as described in the
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previous section. We note that with this notation, HT=H2 and
VT=V2. The potential V12 denotes the Coulomb electron-
electron potential. Generalization to the Breit and Møller po-
tentials will be discussed elsewhere.

The total scattering wave function satisfies

�E − H�
�i
�+�� = 0, �21�

where the superscript �+� denotes incoming plane- or
Coulomb-wave and outgoing spherical-wave boundary con-
ditions and the initial target state is �i and projectile momen-
tum is ki.

We use the set of target states ��n
N� to perform a multi-

channel expansion of the total wave function


�i
N�+�� =

1

2
�1 − P12�
�i

N�+�� =
1

2
�1 − P12�


n


fn,i
N �n

N� ,

�22�

where fn,i
N are channel functions and P12 is the space ex-

change operator. The explicit antisymmetrization in Eq. �22�
guarantees that the total wave function satisfies the Pauli
exclusion principle

�x1x2
�i
N�+�� = − �x2x1
�i

N�+�� . �23�

However, it leads to nonunique channel functions fn,i
N and

consequently to an ill-defined set of scattering equations.
Similarly to the nonrelativistic case, one can show that
uniqueness of the total wave function can be ensured, with-
out loss of generality, by imposing the following condition:

��m
N
fn,i

N � = − ��n
N
fm,i

N � . �24�

We now turn to the derivation of the close-coupling equa-
tions. In the general case, the charged target has asymptotic
charge Zas �see Eq. �9�� with the asymptotic Hamiltonian of
the scattering system defined as

Has = K1 −
Zas

r1
+ H2. �25�

The distorted waves 
k��� ,� ,b� are solutions of the one-
electron Dirac equation

�� − K1 +
Zas

r1
− U1	
k���,�,b� = 0, �26�

where U1 is an arbitrary short-ranged distorting potential, �
is the spin magnetic number, and b is the sign of energy, �
= ��k= �c�k2+c2, with the positive sign corresponding to
electrons and the negative sign to positrons �negative-energy
electrons�. The Dirac distorted-waves satisfy the following
orthogonality and completeness conditions:

�k����b
k������b�� = ��,���b,b���k − k�� , �27�

X

b�
d3k
k����b��k����b
 = 1̃, �28�

where 1̃ denotes the unity 4�4 matrix.
Dirac distorted waves reduce to standard Dirac plane

waves in the case of scattering from neutral targets and zero
distorting potential and are given by �31�


k�b� = U�
b 
k� = U�

b 1

�2��3/2eik·r, �29�

where the four-component spinors U�
b are

U�
+ =��k + c2

2�k � ��

c� · k

�� + c2��� , �30�

U�
− =��k + c2

2�k �−
c� · k

�k + c2��

��
� .

Here, � consists of the Pauli matrices and �� are two-
component basis spinors.

The spectral decomposition of the Dirac Green’s function,

G����E� = 

�

Xd3k� 
k����+��k����+

E − �k � i0

+

k����−��k����−


E + �k � i0
	 , �31�

has now two terms corresponding to the positive-energy and
negative-energy parts of the spectrum.

Substituting the expansion �22� in the Dirac equation �21�,
we obtain

�E − Has − U1�
�N�+�� = �V1 +
Za

r1
− U1 + V12 + �E − H�P12	

�
�N�+�� , �32�

Using the Green’s function �31�, we can transform Eq. �32�
to the momentum-space Lippmann-Schwinger equation


�N�+�� = 
ki
�+��ibi�i

N�

+ 

n

X

b,�
dk3 
k�−��b�n��k�−��b�n

N
VU
�S
�+��

E − �n
N − b�k + i0

.

�33�

Here, 
k�+��b��= 
k�+��b�
�� and

VU
N = V1 +

Za

r1
− U1 + V12 − E�I1

N + �E�1 − �� − H�P12.

�34�

Any nonzero constant � implements the condition �24� �see
Refs. �4,32� for details�.

We premultiply Eq. �33� by �k f
�−�� fbf� f

N
VU
N to obtain a set

of Lippmann-Schwinger equations,
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Tfi
++�k f

�−�� f,ki
�+��i� = Vfi

++�k f
�−�� f,ki

�+��i� + 

n=1

N

X

�
d3k

Vfn
++�k f

�−�� f,k
�−���Tni

++�k�−��,ki
�+��i�

E − �n − �k + i0

+ 

n=1

N

X

�
d3k

Vfn
+−�k f

�−�� f,k
�−���Tni

−+�k�−��,ki
�+��i�

E − �n + �k + i0
, �35�

Tfi
−+�k f

�−�� f,ki
�+��i� = Vfi

−+�k f
�−�� f,ki

�+��i� + 

n=1

N

X

�
d3k

Vfn
−+�k f

�−�� f,k
�+���Tni

++�k�−��,ki
�+��i�

E − �n − �k + i0

+ 

n=1

N

X

�
d3k

Vfn
−−�k f

�−�� f,k�
�−��Tni

−+�k�−��,ki
�+��i�

E − �n + �k + i0
, �36�

where the T-matrix elements are defined as

Tfi
bfbi�k f

�−�� f,ki
�+��i� = �k f

�−�� fbf� f
N
TU

N
ki
�+��ibi�i�

= �k f
�−�� fbf� f

N
VU
N
�i

�+�� �37�

and

Vnn�
bb��k����,k������� = �k����b�n

N
VU
N
k������b��n�

N � .

�38�

Note that for clarity, we dropped indexes N and U.
The T-matrix element Tni

−+�k� ,ki�i� describes transition
from a positive-energy state to a negative-energy state. The
important feature of the Lippmann-Schwinger equation �36�
is that the projectile electron negative-energy states enter the
equation only as virtual states. For a positive total energy E
of the scattering system, the Green’s function associated with
the negative-energy term Tni

−+�k� ,ki�i� has no singularity
�E−�n+�k�0, i.e., we assume here that the energies of target
bound states are much less than the electron rest energy� and
therefore it describes closed states. In what follows, we drop
all negative-energy terms in the Lippmann-Schwinger equa-
tion. For electron-atom or -ion scattering processes, the error
associated with this approximation is negligible as the
Green’s function for the negative-energy terms is of order
1 /2c2. The resulting form of the Lippmann-Schwinger equa-
tion is the same as for the nonrelativistic case and involves
transitions between positive-energy states only, however, it
contains relativistic kinematics. Exclusion of the negative-
energy states in both target structure and scattering formula-
tion is equivalent to the so-called no-virtual-pair approxima-
tion �33,34�.

The following choice for the distorting potential U has
been used in our calculations:

U�r� = Vpol�r� −
Nc + 1

r
+ 


�c

� d3r�

�c�r��
2


r − r�


+� d3r�

�n�r��
2


r − r�

, �39�

where we typically take �n to be the ground state. This
choice leads to a short-ranged potential while at the same

time it allows us to minimize the numerical problems arising
from large Z /r terms in V-matrix elements. Finally, we note
that similar to the nonrelativistic CCC method �4�, the physi-
cal T matrix �U=0� can be extracted from the distorted-wave
T matrix via

�k f
�−�� f + � f

N
T
ki
�+��i + �i� = �k f

�−�� f + � f
N
TU
ki

�+��i + �i�

+ �k f
�−�� f+
U
ki

�+��i+�� f ,i,

�40�

where the absence of index U in the left-hand side indicates
that the final T matrix must be independent of the choice of
this distorting potential.

C. Partial wave expansion

The Lippmann-Schwinger equation for the partial-wave T
matrix can be obtained from Eq. �36� by performing a
partial-wave expansion of the T matrix and V matrix. In or-
der to do this, we need to specify a partial-wave representa-
tion of the �positive-energy� Dirac distorted waves �35�


k����+� =��k + c2

��k

�

�,m

iLCLm−�,1/2�
jm YL

�m−��k�e�i���+��� 1

kr

u�,k

m � ,

�41�

where Cj1m1,j2m2

jm is a Clebsch-Gordan coefficient, �� is the
Dirac-Coulomb phase shift, �� is the distorted-wave phase
shift, j= 
�
−1 /2, and

�r
u�,k
m � = � uk�

L �r���m

iuk�
S �r��−�m

	 . �42�

The radial functions uk�
L/S�r� are calculated numerically us-

ing an Adams-Moulton predictor-corrector integration
method as described by Sienkiewicz and Baylis �36�. In Eq.
�41�, the normalization of the radial function uk�

L/S�r� is cho-
sen such that at large values of r, the radial function oscil-
lates with unit amplitude and has the following asymptotic
form:

RELATIVISTIC CONVERGENT CLOSE-COUPLING… PHYSICAL REVIEW A 80, 022717 �2009�

022717-5



uk�
L/S�r� � cos����F�

L/S�kr� + sin����G�
L/S�kr� , �43�

where FL/S and GL/S are the regular and irregular Dirac-
Coulomb functions, respectively. We use the program DCOUL

of Salvat et al. �37� to calculate Dirac-Coulomb phase shifts
��. The same program is also used to find values of the
Dirac-Coulomb functions in the asymptotic region �U=0� in
order to determine distorted-wave phase shifts �� and to
choose the correct normalization of the uk�

L/S�r� functions.
The partial-wave expansion of the V and T matrices can

now be defined as

�k�−��,n:�J
V
k��+���,n�:�J�

= 

M�mnM���mn�

CLM,1/2�
jmj CL�M�,1/2��

j�mj� Cjmj,jnmn

JMJ Cj�mj�,jn�mn�

JMJ

�� dk� dk�YL
�M�k�YL�

M��k���k�−�� + ,�n
N
V
k��+�

��� + ,�n�
N � , �44�

where J and MJ are the total angular momentum of the scat-
tering system and its projection, �=��−1�L=���−1�L� is the
total parity, and 
k� ,n :�J� stands for the angular-
momentum-coupled projectile-target wave function. The
partial-wave V matrix �44� is complex, but a real quantity
can be defined via

Vn,n�
�J �k�,k���� = �i�L�− i�L�

�e−i�e−i���k�−��,n:�J
V
k��+���,n�:�J� ,

�45�

where ��=��+��. The V-matrix elements �45� can be easily
evaluated using standard techniques of relativistic atomic
structure �29,34�. Adopting for the partial-wave T matrix the
same definition as in Eq. �45�, the Lippmann-Schwinger
equation �36� reduces to the following partial-wave form:

Tfi
�J�kf� f,ki�i� = Vfi

�J�kf� f,ki�i�

+ 

n



�

Xk2dk
Vfn

�J�kf� f,k��Tni
�J�k�,ki�i�

E − �n
N − �k� + i0

.

�46�

This equation can be solved numerically using complex
arithmetic. However, we find it more convenient to define a
real K matrix and solve the corresponding set of equations in
real arithmetic. The transformation from the complex T ma-
trix to real K matrix is similar to the nonrelativistic case

Kni
�J�kn�,ki�i� = 


��



n�=1

No

Tnn�
�J �kn�,kn����

���n�,i���,�i
+ i��n�Kn�i

�J�kn���,ki�i�� ,

�47�

where No specifies the number of open channels for which
�kn

=E−�n�0 and

�n = kn

�kn

c2 . �48�

The difference compared to the nonrelativistic result ��n
=kn� comes from the difference in the relation between en-
ergy and momentum in relativistic and nonrelativistic theory.
The Lippmann-Schwinger equation for the K matrix can be
written as

Kfi
�J�kf� f,ki�i� = Vfi

�J�kf� f,ki�i�

+ 

n



�

PXk2dk
Vfn

�J�kf� f,k��Kni
�J�k�,ki�i�

E − �n
N − �k�

,

�49�

where P stands for a principal-value integral. The V matrix in
the above equation is real and symmetric which leads to the
real and symmetric K matrix.

The important advantage of obtaining the T matrix via Eq.
�47� is that the resultant T matrix is symmetric and unitary by
construction

Im�Tfi
�J�kf� f,ki�i��

= − �

n



�n

�nTfn
��J�kf� f,kn�n�Tni

�J�kn�n,ki�i� . �50�

The coupled set of integral equations �49� is solved for
each value of total parity � and angular momentum J by
replacing integration over momentum by a quadrature rule.
The choice of quadrature rule and reduction to the set of
linear equations is practically the same as in the nonrelativ-
istic CCC method �4,30�.

D. Scattering amplitude and cross section

We define the scattering amplitude Ffi
�f�i��� in the colli-

sion frame �z axis is along the incident momentum of the
projectile and � is the angle between scattered electron mo-
mentum and z axis� for a transition from a state �i with
parity �i, angular momentum ji, its projection mi to a state � f
with parity � f, angular momentum j f, its projection mf as

Fmfmi

�f�i��� = − 

�f�iJ�

iLi−Lfe�� f
+��iCLfMf,1/2�f

jmj CLi0,1/2�i

j��i

�Cjmj,j fmf

JMJ Cj��i,jimi

JMJ YLf

Mf�k f��2Li + 1

4�
Tfi

�J�kf� f,ki�i� ,

�51�

where mj =mi+�i−mf and Mf =mj −� f. The differential cross
section corresponding to the transition described by the scat-
tering amplitude �51� for the case of unpolarized target atom
and electron beams can be obtained as

d� fi

d�
= �2��4kf

ki

� f�i

c4

1

2�2ji + 1� 

�f�imfmi


Fmfmi

�f�i���
2. �52�

Compared to the nonrelativistic case, it has an additional
term � f�i /c4 which appears due to the relativistic relationship
between the velocity and momentum �38�.

The cross section integrated over electron-scattering
angles is given by
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� fi =� d�
d� fi

d�
= 


J�

� fi
J�, �53�

where the partial-wave integrated cross sections � fi
J� can be

expressed via the partial-wave T matrix as

� fi
J� = �2��4kf

ki

� f�i

c4

1

2�2ji + 1�
2J + 1

4�


�f�i


Tfi
�J�kf� f,ki�i�
2.

�54�

For scattering from neutral targets, the unitarity of the T
matrix �50� leads to the optical theorem that relates the elas-
tic forward-scattering amplitude and total scattering cross
section for a target atom in the initial state with magnetic
sublevel mi and incident electron with spin projection �i,

�mi�i

tot = 

f

�mi�i

f = �2��4 1

ki

�i

c2

1

�
Im�Fmimi

�i�i�0�� , �55�

where

�mi�i

f = �2��4kf

ki

� f�i

c4 

�fmf

� d�
Fmfmi

�f�i���
2. �56�

The scattering of polarized electrons from polarized Cs
atoms has been studied in a series of experiments conducted
by the Bielefeld group �7�. These experiments measured the
scattered electron intensities for all four possible combina-
tions of relative polarization �with respect to the scattering
plane� of incident electron �up or down� and target Cs atom
�up and down�. This makes it possible to determine the DCS
for scattering of unpolarized electrons and target Cs atoms,
as well as three spin asymmetries describing scattering of
unpolarized electrons from polarized Cs atoms �A1�, polar-
ized electrons from unpolarized atoms �A2�, and
“antiparallel-parallel” asymmetry �Ann� for scattering of po-
larized electrons from polarized Cs atoms. Asymmetries A1
and A2 are zero in nonrelativistic calculations and offer a
sensitive test to account for relativistic effects in theoretical
models. We also note that all spin asymmetries are zero when
calculated in the first Born approximation, providing, there-
fore, a test for importance of channel coupling in e-Cs scat-
tering.

The spin asymmetry parameters Ai can be expressed in
terms of differential cross sections in the following way �39�:

A1 = �q�1

2
,
1

2
	 + q�1

2
,−

1

2
	 − q�−

1

2
,
1

2
	

− q�−
1

2
,−

1

2
	�/4qu, �57�

A2 = �q�1

2
,
1

2
	 + q�−

1

2
,
1

2
	 − q�1

2
,−

1

2
	

− q�−
1

2
,−

1

2
	�/4qu, �58�

Ann = �q�1

2
,−

1

2
	 + q�−

1

2
,
1

2
	

− q�1

2
,
1

2
	 − q�−

1

2
,−

1

2
	�/4qu, �59�

where the magnetic sublevel DCS is defined as

q�mi�i� = �2��4kf

ki

� f�i

c4 

�fmf


Fmfmi

�f�i���
2, �60�

with

qu��� =
d�

d�
=

1

4
�q�1

2
,−

1

2
	 + q�−

1

2
,
1

2
	 + q�1

2
,
1

2
	

+ q�−
1

2
,−

1

2
	� . �61�

E. Scattering amplitude and the analytical Born subtraction
technique

In any practical calculation, the partial-wave expansion
has to be terminated at some value of total angular momen-
tum Jmax. At high incident electron energies, the Jmax value
has to be sufficiently large in order to achieve convergence in
the partial-wave expansion. We can use the analytical Born
subtraction technique to reduce the size of the partial-wave
expansion. This technique has been widely used in nonrela-
tivistic electron-atom scattering methods �see, for example,
Inokuti �40��, but probably it is less common in the relativ-
istic techniques though recently Fontes and Zhang �41� pro-
vided a useful review of it. The analytical Born subtraction
technique relies on the property that at large values of total
angular momentum J, the partial-wave T matrix becomes
equal to the partial-wave V matrix

Tfi
�J�kf� f,ki�i� = Ṽfi

�J�kf� f,ki�i� , �62�

where the partial-wave Ṽ matrix is calculated with the direct
only part of the potential �34�,

Ṽ = V1 +
Zas

r1
+ V12, �63�

using Dirac plane waves �29�. This is equivalent to calculat-
ing the T matrix in the first-order Born approximation �FBA�
for the large J values. The above expression holds for scat-
tering from both neutral and charged targets as the centrifu-
gal term becomes dominant at large values of J.

In order to take advantage of the relation �62�, we redefine
the scattering amplitude �51� as

Fmfmi

�f�i��� = − 

�f�iJ�

CLfMf,1/2�f

jmj CLi0,1/2�i

j��i Cjmj,j fmf

JMJ

�Cj��i,jimi

JMJ iLi−Lfe�� f
+��iYLf

Mf�k f��2Li + 1

4�

��Tfi
�J�kf� f,ki�i� − Vfi

�J�kf� f,ki�i��

− �k f� f + ,� f
Ṽ
ki�i + ,�i� . �64�
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Calculation of cross sections and other scattering parameters
discussed in the previous section with use of the amplitude
�64� normally does not require a large partial-wave expan-
sion leading to substantial saving in computer time.

Calculation of the scattering amplitude via Eq. �64� re-
quires evaluation of the FBA plane-wave V matrix which can
be done using the expressions for the Dirac plane waves �29�

�k f� f + ,� f
Ṽ
ki�i + ,�i� = A�f�i
���

1

�2��3

4�

q2 Rmfmi
��� ,

�65�

where q=ki−k f is the momentum transfer,

Rmfmi
��� = �� f
eiq·r
�i� − � f ,i

��1 −� d3r1eiq·r�Vd
FC�r� +

Zas + 1

r
	� , �66�

A�f�i
��� = U�f

+†U�i

+ = Nfi���f,�i
�1 +

c2kikf cos �

�� f + c2���i + c2�	
+ �−�f,�i

2� fc
2kikf sin �

�� f + c2���i + c2�� , �67�

and

Nfi =�� �i + c2

2�i
	� � f + c2

2� f
	 . �68�

The DCS calculated using the FBA amplitude leads to

d� fi
FBA

d�
=

kf

ki

� f�i

c4

1

2ji + 1

4

q4 

mfmi


Rmfmi
���
2 


�f�i

1

2
A�f�i

��� ,

�69�

with



�f�i

1

2
A�f�i

��� =
1

2� f�i
�� f�i + c4 + c2kfki cos �� . �70�

In the case of elastic scattering, kf =ki, the last expression
leads to the well-known Mott elastic-scattering formula.

TABLE I. Ionization energies �eV� of Cs bound low-lying states
�relative to the Cs+ ground state� in the RCCC calculations. Experi-
mental data are from Moore �46�.

RCCC Experiment

6s1/2 3.893 3.893

6p1/2 2.509 2.507

6p3/2 2.444 2.439

5d3/2 2.265 2.096

5d5/2 2.260 2.084

7s1/2 1.594 1.595

7p1/2 1.195 1.195

7p3/2 1.174 1.173

6d3/2 1.135 1.093

6d5/2 1.131 1.088

4f5/2 0.859 0.860

4f7/2 0.859 0.860
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RCCC27
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0.1

0.2

Ann

−0.06

−0.03

0.00

0.03

0.06
A1

−0.3

−0.2

−0.1

0.0

0.1

0.2
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A2

FIG. 2. �Color online� Differential cross sections and spin asym-
metries for elastic electron scattering on the ground state of Cs at 15
eV incident electron energy. Convergence of DCS and spin asym-
metries is illustrated by performing 12-, 27-, 75-, and 89-state
RCCC calculations. Experiment is due to Gehenn and Reichert �43�
and Baum et al. �7�.
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Calculation of the FBA-integrated cross sections,

� fi
FBA =� d�

d� fi
FBA

d�
, �71�

allows for an alternative implementation of the analytical
Born subtraction technique for integrated cross sections that
does not require evaluation of the scattering amplitude �64�.
This can be achieved by adopting the following expression
for integrated cross sections:

� fi = 

J�

�� fi
J� − � fi

J�,FBA� + � fi
FBA, �72�

where � fi
J�,FBA is defined as in Eq. �54� but with

Ṽfi
�J�kf� f ,ki�i� matrix elements.

III. RESULTS

We have performed calculations of e-Cs scattering in the
intermediate energy region from 4 to 25 eV using four mod-
els which differ in the number of states included in the close-

1
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4 eV

DCS(a.u.)

RCCC
DBSR
BP40
CCC
RPOM

−0.4

−0.2

0.0

0.2

0.4

0.6
Ann

0.00

0.05

0.10 A1

−0.2

−0.1

0.0

0.1

0.2

0 30 60 90 120 150

A2

5 eV

Gehenn and Reichert
Baum etal

0 30 60 90 120 150

6 eV

0 30 60 90 120 150

7 eV

0 30 60 90 120 150
scattering angle θ (deg)

FIG. 3. �Color online� Differential cross sections and spin asymmetries for elastic electron scattering on the ground state of Cs at 4, 5,
6, and 7 eV incident electron energies. Present calculations �RCCC� are described in the text. Comparison is given with the results from the
Dirac R-matrix �DBSR� calculations �16�, 40-state semirelativistic Breit-Pauli R-matrix �BP40� calculations �7�, nonrelativistic CCC calcu-
lations �7�, and relativistic polarized-orbital method �RPOM� calculations �19�. Experiment is due to Gehenn and Reichert �43� and Baum et
al. �7�.
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coupling expansion, namely, 12, 27, 75, and 89 states. The
target states have been obtained by diagonalization of the
cesium Hamiltonian in Dirac L spinor basis with exponential
fall-off �=3.0 and N=75 for each value of �
= �1, �2, �3,4. We have used the polarization potential
obtained from the polarized-orbital method of McEachran et
al. �23� and kept it the same for all target symmetries. The
ionization energies of the lowest 12 states are presented in
Table I and are found to be in good agreement with experi-
mental values. More accurate treatment of the Cs target
structure is possible via rescaling of the polarization poten-
tial to fit low-lying energy levels for each target symmetry.
We will discuss the influence of the polarization potential on
Cs atomic structure and e-Cs scattering calculations else-
where.

The 12-state RCCC model includes the 12 lowest Cs
bound states, the 27-state model includes all discrete spec-
trum states obtained from diagonalization, and the 75- and
89-state models include also a large number of pseudostates
that allow us to model increasing coupling to the ionization
continuum. Comparison between the results of these four
models allows determining the convergence rate of the
RCCC calculations. We have performed such a comparison
at a number of energies with the 15 eV results presented in
Fig. 2 being characteristic of other energies as well. Little
difference between the RCCC�89� and RCCC�75� results
demonstrates convergence for the parameters considered.
Comparison between results from smaller models, eight-state
and 27-state RCCCs, with the converged RCCC results
shows that DCS and spin asymmetries A1 and A2 have a very
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FIG. 4. �Color online� Same as in Fig. 3 but at 8, 9, 10, and 13 eV incident electron energies.
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fast convergence rate as opposed to spin asymmetry Ann

which is strongly affected by channel coupling and requires
inclusion of ionization channels to obtain a convergent re-
sult. We note also that a large partial-wave expansion �num-
ber of partial waves �60� combined with O’Malley-style
extrapolation technique �42� to account for even higher par-
tial waves is required to achieve smooth curves for asymme-
tries A1 and A2.

We present results of our RCCC 75-state calculations for
elastic scattering in Fig. 3 for 4–7 eV, Fig. 4 for 8–13 eV, and
Fig. 5 for 15–25 eV incident electron energies. Comparisons
to previous calculations are presented for the nonrelativistic
CCC method �7�, relativistic polarized-orbital method
�RPOM� �19�, 40-state Breit-Pauli R-matrix method �BP40�

�7�, and at 4 and 7 eV with 30-state Dirac B-spline R-matrix
�DBSR� method �16�. Experimental spin asymmetries and
DCS are due to Baum et al. �7�, as well as Gehenn and
Reichert �43� and Klewer et al. �44� for DCS only. We have
normalized both sets of �relative� DCS data to achieve the
best visual fit to the RCCC�75� DCS.

Good agreement with experimental DCS is found across
all considered energies. At some energies, 13 and 15 eV, our
results seem to favor the shape of the DCS of Gehenn and
Reichert �43�. At a number of other energies, from 4 to 10
eV, the shape of the RCCC�75� DCS is somewhat different to
the measured data �7� at intermediate scattering angles where
the DCSs are particularly small. We find that in this region,
the DCS are strongly influenced by the choice of the polar-
ization potential. For example, the choice of a simple model
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FIG. 5. �Color online� Same as in Fig. 3 but at 15, 18, 20, and 25 eV incident electron energies. In addition, an experiment due to Klewer
et al. �44� is shown.
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polarization potential �4� which has been adopted in our pre-
vious publication �1� leads to a little better DCS shapes at
low energies, but slightly worse shapes at 13 eV and larger
energies. This is illustrated in Fig. 6 at the two energies of 5
and 25 eV. We will discuss this issue in more detail else-
where. Comparing to other calculations of the DCS, we find
generally good agreement between all the close-coupling cal-
culations regardless of whether they have been performed in
a fully relativistic formulation �RCCC, DBSR�, a semirela-
tivistic Breit-Pauli approach �BP40�, or in a nonrelativistic
method �CCC�. Occasional differences between close-
coupling theoretical results are likely to be due to the differ-
ences in the atomic structure details. On the other hand, the
RPOM results of Ahmed et al. �19� are in substantial dis-
agreement with our and other close-coupling calculations for
all considered energies. Given that RPOM is a first-order
method, its region of validity is the high energies. Therefore,
it is perhaps not surprising to see such discrepancies at the
considered energies. Accurate account of channel coupling
effects, which are neglected or severely approximated in
first-order methods, is apparently important to obtain correct
DCS shapes and absolute values even at 25 eV, which is a
relatively higher energy �4 times the ionization threshold� for
e-Cs scattering.

It is interesting to note that the region below 10 eV, where
our calculations exhibit some differences with the experi-
mental DCS, is also where we have very good agreement
with the experimental spin asymmetries �7�. Similarly good
agreement is found at energies above 10 eV. The spin asym-
metries are ratio parameters. Hence, they are free from un-
certainties associated with DCS normalization and have
proved to be a very reliable set of experimental data. The
asymmetry Ann, also known as the exchange asymmetry, is
strongly influenced by the projectile-target electron exchange
and is the only asymmetry parameter that is nonzero when
calculated in nonrelativistic methods. The nonrelativistic
CCC method proved to be very successful in predicting ac-
curate exchange asymmetry Ann. The BP40 results are gen-
erally in good agreement with experiment at most of the
considered energies. Our investigation indicates that treat-
ment of the exchange with the Cs core electrons in a local

exchange approximation in the BP40 model and the choice
of polarization potential are responsible for most of the dif-
ferences. The DBSR method results presented at 4 and 7 eV
in Fig. 3 are generally in very good agreement with our
results. We note that for A2 at 4 eV, the DBSR results are in
better agreement with experiment. The DBSR method differs
from RCCC and other methods in its treatment of interaction
with the Cs core electrons. It is likely that at low incident
electron energies, the full treatment of core-valence correla-
tions adopted in the DBSR method becomes important. The
results from RPOM calculations of Ahmed et al. �19�, avail-
able for the A2 asymmetry parameter only, are in a reason-
ably good agreement with experiment across all energies,
which is somewhat unexpected given the rather poor agree-
ment for the DCS. We also note very close agreement be-
tween RPOM and RCCC results, especially for larger ener-
gies. Both methods share practically the same Cs structure
model of one active electron above a frozen Dirac-Fock core
with the addition of the same polarization potential. Good
agreement between RPOM and RCCC indicates that the cor-
rect account of relativistic effects and the Cs atomic structure
seems to play a more important role than an accurate account
of interchannel coupling. The insensitivity of the A2 asym-
metry parameter to channel coupling effects can also be seen
in Fig. 2.

IV. CONCLUSION

In this paper, we have presented a detailed formulation of
the RCCC method and verified it against a comprehensive
set of DCS and spin asymmetry measurements for e-Cs elas-
tic scattering. Treatment of the relativistic effects in the
RCCC method is carried out fully ab initio via solution of
the Dirac equation. The important advantage of the nonrela-
tivistic CCC method, its ability to produce accurate results
across all energy ranges, is retained in the relativistic formu-
lation as well. This is achieved by using the relativistic
equivalent of the Sturmian �Laguerre� representation of the
target Hamiltonian �25�.

Application of the RCCC method to e-Cs elastic scatter-
ing demonstrated the high accuracy of the RCCC method
and in a number of cases provided significant improvement
over previous theoretical results. It has also revealed a num-
ber of problems that require further investigation. We find
that modeling core-valance electron-electron interaction via
a frozen-core model generally produces good results al-
though the choice of the core-polarization potential becomes
an important issue for a target as heavy as cesium.

The presented formalism allows for a straightforward ex-
tension to scattering problems involving highly charged ions
via the inclusion of relativistic correction terms to the Cou-
lomb electron-electron interaction potential �45�. Extension
of the RCCC method to electron scattering from quasi-two-
electron atoms is underway.
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