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We examine the quenching reaction Rb�2S�+NH�1��→Rb�2P1/2�+NH�X 3�−�. This reaction may be uti-
lized to produce ground-state NH molecules for studies of ultracold physics or for other purposes and is
interesting in that it involves initial and final states that are nearly degenerate. This near degeneracy is expected
to lead to a large reaction rate. We examine this system using ab initio quantum chemistry calculations and
scattering calculations, which include spin-orbit effects, and find that the reaction rate is large and, in fact,
approaches the quantum-mechanical unitarity limit. We discuss the prospects for an experimental examination
of this system.
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I. INTRODUCTION

Chemical reactions involving free-radical molecules are
important in many dense gas systems including combustion
gases �1� and interstellar clouds �2,3�. The fundamental imi-
dogen free radical �NH� has been detected �4� as an interme-
diate in the combustion of CH4 with N2O. NH has a ground-
state triplet, X 3�−, and a long-lived metastable state �5�, the
singlet delta, labeled a�1 or 1�. This state is doubly forbid-
den to decay via electric dipole radiation �1�→X 3�−�, mak-
ing it amenable to laboratory study �6�.

In addition, there is currently considerable interest in col-
lisions between diatomic molecules, such as NH, and alkali-
metal atoms. This interest stems from the relevance of such
systems to ultracold physics and chemistry �7–13� and the
increased level of control possible through the use of cooling
and trapping techniques. The advent �14� of the Bose-
Einstein condensate �BEC� led to the production of mixed
BECs �15� and engendered work on production and trapping
of cold molecules �16–19�. There has been considerable re-
cent experimental work on creating cold dipolar molecular
samples for collision studies. For example, cold OH �20� and
NH molecules in either the ground �3�−� or the 1� electronic
state �21–25� have been produced. In addition, there are a
growing number of theoretical investigations on interactions
between diatomic molecules and alkali-metal atoms. A broad
survey of interactions of alkali and alkaline-earth metals with
NH was published in Ref. �26�. Other theoretical works on
the Rb-NH system involved examinations of the relevant
potential-energy surfaces �27–29�. Explorations have also
been conducted for related systems such as Rb-OH �30,31�,
He-NH �32–34�, Rb-NH3 �35,36�, and NH-NH �37�.

Our interest aims toward a broad treatment of the Rb-NH
system, including up to the first excited electronic states of
both the atom and the molecule. We have constructed a pre-
liminary treatment and present some initial results here. The
goal is to accurately calculate the dynamics on the higher

excited electronic states. In particular, we concentrate on the
states 3�− and 1� of NH and the states 2S, 2P1/2, and 2P3/2 of
Rb. As it happens, the excitation energies from the 2S state to
the 2P state are nearly equal to the excitation energy of NH,
such that the channels are unusually close in energy; in fact,
the excited NH channel lies between the two spin-orbit com-
ponents of the Rb 2P state. Specifically, the excitation ener-
gies are 12 687.8 cm−1 on NH �5� and 12 578.96 and
12 816.55 cm−1 for Rb 2P1/2 and 2P3/2, respectively �38�.

This situation makes the quenching of the excited NH
�1�� state by Rb, using the reaction

Rb �2S� + NH �1�� → Rb �2P� + NH �X 3�−� , �1�

an interesting one to study for several reasons. First, it opens
up the possibility that this quenching reaction could find
some use in ultracold physics, as it would represent an elec-
tronically inelastic reaction at cold initial and final collision
energies. This is a chemically reactive process, in the sense
that the chemical nature of the products is dramatically dif-
ferent from that of the reactants. Second, it could prove use-
ful as a mechanism for producing ground-state NH from the
exited state.

This quenching reaction can be precisely studied using
techniques to cool and to trap atomic and molecular samples.
The methods of atom cooling and trapping have been refined
over the last 15 years such that one can routinely produce
dense samples �up to 1013 cm−3� with temperatures on the
order of 1–100 �K. More recently, with the development of
Stark deceleration of polar molecules �39�, trapped molecu-
lar samples can be produced with temperatures on the order
of 1–100 mK.

An experimental realization will proceed as follows. The
atoms will be cooled in a magneto-optical trap and trans-
ferred to quadrupole magnetic trap in one region of the
vacuum system. During this process, a pulsed beam of NH
molecules will be slowed using a Stark decelerator and
trapped using electrostatic fields �40�. Because of the weak
interaction between the atom and the electric field, the two
species can be controlled independently. This control will
allow the atoms to be moved to overlap the molecular
sample, setting the initial time for the interaction. There will
be several methods of detection employed in order to gain a
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full understanding of the interaction. A novel signature of
this reaction is the photon produced from the decay of the
excited atom �2P1/2→ 2S1/2�. This dipole-allowed transition
will happen very rapidly after the collisional excitation of
Rb. These photons can be detected efficiently with almost no
background using a spectrally filtered photomultiplier tube.
In addition, both the number and the temperature of the
trapped atom sample can be measured with absorption imag-
ing, while the number and the temperature of the molecular
sample can be measured with resonance enhanced multipho-
ton ionization �REMPI�. Through this procedure, it should be
possible to measure the reaction rate.

II. QUANTUM CHEMISTRY CALCULATIONS

We carry out quantum chemistry calculations using the
COLUMBUS package �41–43� for calculations on the elec-
tronic states of the Rb-NH system. We use an effective core
potential �44,45� that accounts for the 36 core electrons of
Rb, and thus treats the Rb atom as a one-electron system. We
therefore perform calculations on nine-electron states. We
adjust our effective core potential to reproduce the correct
channel energies of the combined Rb-NH system at infinite
separation.

For the moment we have constructed a set of two-
dimensional potential-energy surfaces, fixing the NH bond
length at 1.925a0. We refer to the configuration of the
Rb-NH molecule using Jacobi coordinates. These coordi-
nates are defined as r, the NH bond distance, 1.925a0; R, the
distance between the NH center of mass and Rb; and �, the
angle between the two corresponding vectors, such that �
=0 denotes a linear Rb-H-N configuration.

Owing to our use of a pseudopotential, in addition to the
large number of electronic states treated by a relatively mod-
est configuration-interaction �CI� calculation, the surfaces we
construct are not expected to be of “spectroscopic accuracy”

but instead probably have errors on the order of tens of meV.
They are expected to be sufficiently accurate for the qualita-
tive study presented here and, in any case, the omission of
motion in the Jacobi rNH degree of freedom surely compro-
mises the calculated dynamics more than does any error in
the potential-energy surfaces.

All in all, and without considering spin-orbit coupling,
there are eight doublet states and four quartet states, for a
total of 32 microstates. This odd electron system enjoys the
Kramers degeneracy and thus the electronic Hilbert space is
block diagonal in two 16�16 blocks. For the total angular
momentum J=0, we need only to consider one of these
blocks. The asymptotes of the adiabatic states are listed in
Table I.

At linear geometry, the electronic states are described by
their projections of angular momentum on the molecular
axis. We refer to the electronic states by the standard �, �,
and � quantum numbers. � is the absolute value of the pro-
jection of electronic angular momentum on the molecular

axis—the eigenvalue of the operator lz
̂, such that �=2 de-

notes a � state, etc. ��� is the absolute value of the projection
of the total angular momentum on the molecular axis—the

eigenvalue of the operator jz
̂ = lz

̂ +sẑ. The absolute value of
the eigenvalue of sẑ is denoted by �. The symbol � is also
used to denote a state with �=0, but we will avoid ambigu-
ity by always denoting the multiplicity of a given electronic
state as in 2�.

The Born-Oppenheimer electronic states are first calcu-
lated without spin-orbit coupling. The next step is a diabati-
zation �46� of these potentials, in which we construct diaba-
tic states labeled primarily by integer values of �, by

diagonalizing the electronic angular momentum lz
̂ projected

onto the NH axis. 	� is thus not only the eigenvalue of the
projection of angular momentum at linear geometry for a
given diabatic electronic state, but also its approximate ex-
pectation value at other geometries. We have a pair of 2�

TABLE I. Electronic microstates considered in our study: quantum numbers at linear geometry. Each is a
member of a different Kramers doublet. The quantum numbers also label the members of our diabatic basis
for all geometries and the electronic channels of the scattering calculation. The quantum numbers ��� and �
are the absolute values of the projection of the total and the spin angular momenta on the NH axis.

Doublets

�1� 1��1�� 2S����= 3
2 �2� 2��1�� 2S����= 5

2 �3� 2��3�−� 2S�
�4� 2
 anion ���= 1

2 �5� 2
 anion ���= 3
2

NH 3�−�Rb 2P, ���= 1
2

�6� �NH=0 Rb 2P3/2
�1/2� �7� �NH=1 Rb 2P3/2

�1/2� �8� �NH=0 Rb 2P1/2
�1/2�

�9� �NH=1 Rb 2P3/2
�3/2� �10� �NH=1 Rb 2P1/2

�1/2�

NH 3�−�Rb 2P, ���= 3
2

�11� �NH=0 Rb 2P3/2
�3/2� �12� �NH=1 Rb 2P1/2

�1/2� �13� �NH=1 Rb 2P3/2
�1/2�

NH 3�−�Rb 2P, ���= 5
2

�14� �NH=1 Rb 2P3/2
�3/2�

4� �NH 3�−�Rb 2S�
�15� �= ���= 1

2 �16� �= ���= 3
2
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diabatic states, two pairs of 2
 states, and two 2� states. The
doublet 
 states are distinguished as anionic in character
�NH−�Rb+� or not �NH 3�−�Rb 2P�. The � states are es-
sentially NH 3�− times Rb in either the ground 2S state or the
2P� state. We also have two 4� and one 4
 state.

A diabatization is useful to us for two reasons. First, it
allows for the convenient inclusion of nonadiabatic effects
among the adiabatic surfaces, accounting for conical inter-
sections, for instance. Rovibronic effects such as the Renner-
Teller effect can also be accounted for by such a diabatiza-
tion, although at this stage we do not include the mixing of
electronic and rotational angular momenta.

Second, it appears to allow us to add the spin-orbit terms
“by hand,” and therefore enables us to perform a larger elec-
tronic structure calculation, although we employ a smaller
calculation using the spin-orbit CI capability of COLUMBUS

to verify the accuracy of this procedure. The final steps in
constructing the surfaces are then the addition of spin-orbit
terms to the diabatic electronic Hamiltonian and, lastly, the
transformation to a representation that accounts for the
Kramers degeneracy.

A. Details

We have found it prohibitive to use a basis set large
enough to get a sufficiently accurate NH excitation energy.
Therefore, in order to reproduce the physical energetics, we
artificially modify the effective Rb core potential. We begin
with the Dirac-Fock pseudopotential developed in Refs.
�44,45�. The pseudopotential for the S and the P waves is
then modified by changing their functional forms into

s:45.272 exp�− 1.012r2� → 45.272 exp�− 1.149 730 57r2� ,

p:2.83 exp�− 0.3036r2� → 2.83 exp�− 0.267 230 608r2�
�2�

An uncontracted Dirac-Fock basis set is adopted for the
Rb; while for N and H we use the augmented correlation
consistent polarized valence triple zeta basis set of Dunning
�47�. The excitation energies obtained are approximately
12 98�5� cm−1 on both the Rb �without spin-orbit interac-
tion� and the NH fragments.

The electronic configuration of the NH states of interest is
1s22s22p�

22p�
2 . In addition to these orbitals, we have the four

orbitals on rubidium �s and p�, for a total of nine orbitals in
the valence space. To describe all of these states for all ge-
ometries, it is necessary to include orbitals beyond the mini-
mum set of nine 1−5� and 1−2� orbitals. The anion state is
the highest in energy at infinite Rb-NH separation, but be-
comes the ground state at small Rb-NH separation, and it
undergoes avoided crossings with all of the other states and
so is relevant to the dynamics on the other surfaces. To de-
scribe the anion state, two additional orbitals are necessary: a
� relaxation orbital that accounts for the expansion of the
NH � orbitals in the anion state relative to the neutral states
and a correlating �� orbital on the NH which increases the
Rb-NH bonding on the anion surface. In Ref. �27� a similar

orbital space was used although what we denote as an anion
relaxation orbital was denoted by those authors as a 6p or-
bital.

For the first step, a state-averaged multiconfiguration self
consistant field calculation in the minimum nine-orbital
space is performed on the lowest six doublet states and the
four quartets. This calculation produces a � orbital on the
NH fragment that does not account for the relaxation within
the anion state; that calculation significantly overestimates
the anion state energy at small Rb-NH separations.

The next step is an all-singles-and-doubles CI calculation
on the eight doublets and four quartets in which we are in-
terested. At large R, we must follow the anion state surface
as it rises above several states that we are not interested in.
Twelve averaged natural orbitals are adopted from this CI
calculation, expanding the orbital space to include both the �
relaxation orbitals and the �� correlating orbital. We then
perform an all-singles-and-doubles CI calculation in this
space of twelve natural orbitals. In both CI steps we freeze
the 1−2a�, also known as the 1−2�, orbitals on NH, which
are basically N 1s and 2s. Among the four sets of spin and
space symmetries, the maximum number of configuration
state functions in the CI is 1 110 312 for the doublet A�.

B. Diabatization

At this stage of the calculation there are twelve adiabatic
electronic states as functions of nuclear geometry �eight dou-
blets and four quartets�, and the spin-orbit terms have not yet
been added. A unitary transformation is now applied to these
twelve states, a property-based diabatization �46,48,49�.

The doublets are diabatized using both the electronic di-
pole operator and the z projection of the orbital angular mo-

mentum relative to the NH bond axis �the lz

̂

operator with

eigenvalue 	� at linear geometry�. The lz

̂

operator is first
diagonalized in the adiabatic basis. In order to prevent an
avoided crossing at large Rb-NH separations that would lead
to a problematic mixing of our diabatic basis, a column and

a row of the lz

̂

matrix must be damped. This transformation

of the lz

̂

operator does not affect the eigenvectors, except

near the avoided crossings. The matrix elements of lz

̂

in the
ground-state A� row and column are thus reduced by hand
beyond R=10.4a0. At such large internuclear separations, the
lowest A� state is Rb�2S�+NH�3�−�. We reduce the matrix
elements in this row and column by a geometry-dependent
factor

∀i

� lz

̂

�i,1 → � lz

̂

�i,1

� lz

̂

�1,i → � lz

̂

�1,i

� � 1, R sin  � 10.4a0

10.4

R sin 
, R sin  � 10.4a0. �

�3�

With this damping function, the mixing between the two
states NH �3�−� times Rb �2S� or �2PA�� is suppressed and
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the nonionic 
 state has a lz

̂

eigenvalue, which plateaus
around 1.85.

Figure 1 shows the eigenvalues of lz

̂

for the doublets

only. Figure 1�a� depicts the eigenvalues of lz

̂

in the adia-

batic basis at R=16.0a0. The lz

̂

eigenvalues using the damp-
ing function are plotted in Fig. 1�b�. The final expectation

values of lz

̂

in our diabatic basis are shown in Fig. 1�c�;
these values are nearly integers, which permits the labeling
of these states by the � quantum number labels. We have a
total of two 2�, two 2
, and one 2� and two 4� and one 4

diabatic state.

The electronic dipole operator is used to separate the two
2
 states. These correlate with the anion NH−�2
�+Rb+

state and with NH�X 3�−�+Rb�2P� states at infinity; at small
Rb-NH separations the former is the lower electronic state
and at large separations the latter is the lower. The interaction

between these states is such that they form an avoided cross-
ing of width approximately 1000 cm−1 around RRb-NH
=11a0. The situation is similar to that of Rb-OH �30,31�. The
diagonalization of the electronic dipole operator in the direc-
tion of the Jacobi vector R� is carried out in the 
+ and the 
−

spaces separately, and the electronic Hamiltonian is diago-
nalized in the 2� space. The quartets are diabatized by the

diagonalization of lz

̂

, followed by the diagonalization of the
electronic Hamiltonian in the 4� space. The expectation val-

ues of lz

̂

in our final diabatic basis are all near integers.

C. Adding spin-orbit terms

At this point, then, we have a diabatic basis in which each
member is labeled by a given projection of electronic angular
momentum about the NH bond axis, and in which the spin-
orbit part of the electronic Hamiltonian has not been in-
cluded. Including the spin degrees of freedom, we arrive at
the full 32-microstate basis. Assuming that our diabatic basis
function labels are indeed good quantum numbers, the addi-
tion of the spin-orbit terms is straightforward, requiring only
the enforcement of the Condon-Shortley phase convention
among the members of the diabatic basis, and the spin-orbit
terms have no dependence on the nuclear geometry. The dis-
cussion below verifies that this approximation faithfully re-
produces the true eigenvalues.

After adding these spin-orbit terms we shift the delta di-
abatic potential-energy surfaces slightly �by tens of wave
numbers� such that the asymptotes coincide with their physi-
cal values. A unitary transformation now yields the two un-
coupled 16�16 blocks each containing one member of ev-
ery Kramers doublet. These blocks are complex conjugates
of one another; it is only necessary to choose one of these to
use as the Born-Oppenheimer electronic Hamiltonian for the
total angular momentum J=0. Extensions to include the
electronic angular momentum �the Renner-Teller and the
spin Renner-Teller effects� and nonzero J will instead use the
real-valued 32�32 representation.

D. Description of the surfaces

Results of the non-spin-orbit CI for linear Rb-N-H geom-
etry are shown in Fig. 2�a�. The ground state in the
asymptotic region is Rb�2S�+NH�X 3�−� with an asymptote
of −55.199 316 2 hartree.

The 2
 anion surface comes sweeping down, with a mini-
mum at 5.1192a0 of −55.234 652 3 hartree, giving a depth
of 0.949 eV. In comparison, Ref. �27� found a well depth of
1.372 eV at R=4.911a0, for a NH bond length of 1.948a0. It
crosses the collection of nearly degenerate channels at ap-
proximately 12.0a0 and crosses the surface that is asymptoti-
cally the ground state at 7.3029a0 and at an energy of
−55.199 771 2 hartree. In comparison, Ref. �27� found the
crossing at 7.163a0, also for a NH bond length of 1.948a0.

The final results including the spin-orbit interaction, ob-
tained by adding the spin-orbit terms by hand to the diabatic
Hamiltonian, are plotted in Fig. 2�b�, in a closer view. The
2� state is visible as the flattest line, staying near zero wave
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FIG. 1. Eigenvalues and expectation values of the operator lz
̂ for

diabatic states evaluated at RRb-NH=16.0a0 as a function of the Ja-
cobi angle �. �a� Eigenvalues in the adiabatic basis. �b� Eigenvalues
in the adiabatic basis with damping function of Eq. �3�. �c� Expec-

tation values of lz
̂ for final diabatic states. The absolute values of

these numbers provide the � labels of the diabatic states
�2� , 2
 , 2��.

HAXTON et al. PHYSICAL REVIEW A 80, 022708 �2009�

022708-4



numbers until around 10a0 on the scale of the figure. At the
far edge of the figure, the surfaces have separated into the
Rb�2S��NH �1�� asymptote, in the middle, with Rb �2P3/2�
and Rb�2P1/2��NH�X 3�−� above and below, respectively.

Components of the upper 2P3/2 state split into sets follow-
ing either the 2,4� surface, which rises from its asymptote
inward, or the 2,4
 surfaces. These latter surfaces drop in
energy going inward from their asymptote—the quartet less
so, whereas the 2
 surface undergoes an avoided crossing
with the anion 2
 surface, dropping steeply downward from
the top of the figure. Inward of this avoided crossing around
12.0a0, the 2
 ��Rb 2P�� �NH X 3�−�� state is found drop-
ping downward with decreasing R from the avoided crossing
and crosses the 2� surface around 9.0a0. There are other
crossings farther in �too numerous to mention�.

The long-range behavior of the surfaces is shown in Fig.
3. This behavior is governed by the long-range interactions:
as the NH has a dipole moment, these are dipole- quadrupole
with 1

r4 power law for the Rb �2P� fragment and dipole-
induced dipole with 1

r6 power law for the 2S fragment. The

dipole-quadrupole interaction, acting on the �Rb 2P�
� �NH 3�−� channels, is stronger than the dipole-induced di-
pole interaction for the 2� channel and therefore the cross-
ings are determined by the former. At linear Rb-N-H geom-
etry, this interaction splits the 2P state into the � component
at higher energy and the 
 component at lower energy,
which is behavior we described above for the results in Fig.
2�b�. It is responsible for the crossings around 14.7a0. We
examined these crossings for various Jacobi angles �; for all
angles the crossing is apparently too sharp to provide a
mechanism for coupling between the 2� and the components
of the Rb �2P3/2� state that correlate with 
 symmetry farther
in. Results below seem to indicate that this is indeed the
case. The relevant crossings for collisions at low energy are
those visible in Fig. 2�b�.

E. Verification of treatment of spin-orbit effect

The spin-orbit calculation using the COLUMBUS program
was prohibitively large to perform in the full orbital space.
We thus perform the spin-orbit calculation only at the first
nine-orbital CI step as described above. Results of this cal-
culation are presented in Fig. 4. These results verify that
addition of the spin-orbit terms by hand to the diabatized
Hamiltonian from the non-spin-orbit CI calculation repro-
duces the results of the full spin-orbit CI. �The asymptotes
are not correct for the test calculation shown in this figure.�

III. SCATTERING CALCULATION

We calculate the quantum nuclear dynamics on the
coupled set of diabatic potential-energy surfaces for the total
angular momentum J=0. The standard �50,51� body-fixed
Hamiltonian for R times the wave function, keeping r fixed,
in Jacobi coordinates is

H = −
1

2�R

�2

�R2 + Brĵ
2 +

1

2�RR2 ĵ2 + V�R,r,�� ,

ĵ2 = − � 1

sin���
�

��
sin���

�

��
	 , �4�

where �R is the reduced mass in that degree of freedom; Br is
the rotational constant of NH, taken to be 16.699 cm−1 �52�,
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FIG. 2. �Color online� �a� Non-spin-orbit CI results at �=180°.
�b� Final spin-orbit surfaces used in the study, obtained by adding
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which is the value for the ground electronic state; and V is
the matrix representation of the electronic Hamiltonian in the
diabatic basis.

The scattering calculations employ the R-matrix propaga-
tor technique of Baluja et al. �53�. Our implementation
adopts the discrete variable representation �DVR� �54,55�,
with the Legendre DVR �56� in �—with 80 points—and the
Gauss-Lobatto DVR �57� in R, with six points per element,
960 elements, from 3.25a0 to 43.25a0. The propagation cov-
ers one element at a time. For each diabatic electronic state,
the basis in � is contracted by the calculation of an adiabatic
basis in � as a function of the scattering coordinate R and
include 42 adiabatic states in � per diabatic electronic state.
Slow variable discretization �58� efficiently accounts for the
coupling between these surfaces nonadiabatic in R.

Results of the scattering calculation are shown in Fig. 5.
The total probabilities for transitions from the ground rovi-
brational state of NH�1��+Rb�2S� to the other electronic
states are plotted as functions of collision energy in the inci-
dent channel. Two degenerate 2� channels in the calculation
have ���= 3

2 or 5
2 , but the method permits the evaluation of

four independent cross sections, for both the calculated and
the time-reversed processes corresponding to the other 16
�16 Kramers doublet block �i.e., complex conjugating the
electronic Hamiltonian in the diabatic basis�. The four corre-
sponding sets of scattering amplitudes correspond to two
rows and two columns of the calculated S matrix. The S
matrix cannot be chosen to be symmetric because we have
excluded the time-reversed orthogonal complement of our 16
states, which are the sixteen states of the other Kramers dou-
blet block. The label “TR” in Fig. 5 denotes the time-
reversed partner.

These results indicate that the cross section for the
quenching reaction is indeed large in the present treatment,
and it is in fact comparable to the unitarity limit. In contrast,
the cross section to the ground 2,4� channels is significant for
low collision energy but is at least an order of magnitude
below the quenching reaction cross section at energies above
the Rb 2P3/2 threshold, which is marked with an arrow on the
abscissa of Fig. 5. A qualitative change in the branching
ratios becomes evident near this energy, 128 wave numbers;
the lower three panels of Fig. 5 indicate that, for collisions in
those incident channels, the proportion of Rb�2P�
+NH�3�−� to Rb�2S�+NH�1�� produced increases at higher
energy. However, the correlation of features such as the
change in this proportion with the opening of the 2P3/2 chan-
nels is not perfect, and there is the possibility that it derives
from the opening of different channels �for instance, the
Rb�2S�+NH�1�j=2� channel at 100 wave numbers or
Rb�2P1/2�+NH�3�−j=3� at 91 wave numbers� or another
mechanism altogether. A fuller characterization of these re-
sults will be presented in a forthcoming publication.

IV. TIME-DEPENDENT CALCULATIONS

Time-dependent calculations help to illustrate the dynam-
ics that drives the quenching reaction. These have been car-
ried out using a smaller basis of 20 adiabatic basis functions
in the Jacobi angle � using 50 Gauss-Legendre DVR basis

functions, due to memory constraints, compared with 42 and
80 for the converged R-matrix calculation. �An R-matrix cal-
culation with this smaller basis produces results that are
qualitatively similar to the converged results, in terms of the
magnitude of the various partial cross sections as a function
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FIG. 5. �Color online� Results of scattering calculations: the
probability per collision for a transition from the lowest rovibra-
tional state of 2� �NH 1��Rb 2S� to other electronic states as a
function of collision energy, for J=0. The four unique initial states
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of energy, but with peaks significantly altered.� We used 960
Gauss-Lobatto elements with four points per element and an
element size of 2

90a0, beginning at 3.4a0.
We employ a Lanczos propagator of order 12 with vari-

able step size. The step size is determined by requiring that
the relative error between the 12th-order and the 11th-order
propagator results be less than 2�10−7; we found that this
error criterion was sufficient to ensure convergence of ob-
servables such as the expectation value and standard devia-
tion of the radial coordinate on every potential-energy sur-
face. The step size ranged from approximately 0.12 to 0.25 fs
and was most typically approximately 0.2 fs. After an initial
period of propagation in which the wave packet traveled in-
ward of 20a0, the scattered wave function was absorbed by

the masking function f�R�, where at every time step
��t�→ f�R���t� and

f�R� = �1 �R � 20�

exp
− A�t cot��
R − 20

R0 − 20
	� �R � 20� , � �5�

where R0 is the end of the grid at 24.73̄a0, �t is the step size,
and the constant A is 5�10−5 atomic units.

The propagated incident Gaussian wave packet, with a
width of �2 bohr in the R degree of freedom, starts in the
lowest adiabatic �in R� channel of the 2� ���= 3

2 electronic
state, at a radius of R=22a0. The wave packet is given an
initial translational energy of 90 cm−1, such that the lower
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FIG. 6. �Color online� Results of time-dependent wave-packet propagation described in the text. The density, in arbitrary units, integrated
over �, on each electronic channel is shown as a function of the time of propagation and the value of R. The results for the last 4� state are
the same as the one shown, i.e., insufficient density to be visible on the plot. The first contour is at 1

10th the value of the second one, and the
spacing is linear. The states are in the same order �left to right, top to bottom� as in Table I.
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Rb 2P1/2 channels are open, but the 2P3/2 channels are closed,
although the bandwidth of the initial wave packet is
18 cm−1.

The results are shown in Figs. 6 and 7. Figure 6 shows the
probability density as a function of time and the scattering
coordinate R, summed over the adiabatic states �in R� for

each diabatic electronic channel. In this figure, the initial
state corresponds to the upper left-hand panel. In Fig. 7, the
initial state is colored green �online� and corresponds to the
large area of probability visible in the upper two panels. Both
plots show that the density on the initial state electronic sur-
face does not penetrate much beyond R=10.0a0; instead, it

(b)(a)

(c) (d)

(f)(e)

(g)

(i) (j)

(h)

FIG. 7. �Color online� Time-dependent wave-packet propagation described in the text. Each frame is a snapshot of the wave packets on
each adiabatic curve. The curves are drawn with black lines and the wave packets on each of these curves are drawn above and below the
corresponding curve. Each adiabatic curve corresponds to a different diabatic electronic channel and these are distinguished by the color of
the wave packet �online only�. Green denotes the 2� channels including the incident one, blue denotes Rb�2P� channels, red denotes the
anion state, and orange denotes the ground-state 2� and 4� channels. For readers of the black and white version, the electronic states may
be distinguished as follows. The curves in the left panels fall into three groups according to their asymptotes, which from lowest to highest
energy are 1� ground state 2� and 4�; 2� 2� and Rb 2P; 3� anion. The 2� and Rb 2P curves may be distinguished in the right panels, where
the former appear light gray and the latter appear dark gray. The wave packet is incident in the ground rotational 2����=3 /2 channel.
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couples to several of the Rb 2P surfaces and also reflects.
The cut of the surfaces at linear geometry in Fig. 2�b� shows
the innermost extent of the attractive part of the initial state
2� surface, near R=7.0a0, whereas for the opposite Rb-H-N
geometry the potential well extends only to approximately
10.0a0. It is therefore likely that the reflected part of the
initial wave packet, most clearly visible in Fig. 6, comes
from configurations near linear Rb-H-N geometry, and that
the remaining flux is lost to the other surfaces within 10.0a0.

Some immediate coupling evidently occurs among the
initial state and all of the Rb �2P� states, as is clear from the
similar shape of the lowest contour line in the corresponding
panels of Fig. 6 around 1000 fs. The coupling seems to be
strongest between the initial 2� state and the Rb�2P1/2�
�NH�3�−�NH=0�, ���= 1

2 state �the eighth state in Table I
and Fig. 6�. The transition between the initial Rb �2S�
�NH �1�� and this one is the only transition corresponding
to a conservation of the projection of spin angular momen-
tum on NH ��NH� along with a transition to the Rb 2P1/2
state. This electronic transition does not conserve the projec-
tion of the electronic angular momentum on the NH axis and
therefore must be driven at nonlinear geometries.

Figure 7 shows the density on each adiabatic �in R� curve,
colored �online� according to the electronic channel index. In
viewing this figure one should keep in mind that there is
electronic coupling between these curves, which represent
the energies of adiabatic �in R� basis functions calculated on
each diabatic electronic surface. In particular, the coupling
among some of the excited state curves and the ground-state
sigma curves means that there is repulsion on the excited
state curves and attraction on the ground-state curves that is
not represented in this figure.

This figure shows that the coupling is indeed strongest,
earliest, to one of the Rb �2P1/2� channels, which rises, from
large R to small R around 12a0, and that correlates to
Rb�2P1/2�+NH�3�−j=1�. Although some red and orange
�online� are visible on the left-hand side of this figure, show-
ing the large view including all of the corresponding anion
and ground-state sigma curves, the bulk of the density re-
sides clearly on electronic states involved in the quenching
reaction.

Despite the fact that the wave-function amplitude on the
anion 2
 curves never achieves a large value, these states
have significant influence upon the dynamics, as would be
expected from the large avoided crossings that they create
with some of the Rb 2P surfaces in the electronically adia-
batic picture. R-matrix calculations performed without these
diabatic states produced electronically inelastic cross sec-
tions markedly different �and smaller� than the ones shown
in Fig. 5. The coupling to the anion surfaces clearly involves
a large amount of rotational excitation of the NH fragment,
as can be seen from the fact that all of the adiabatic curves
corresponding to this electronic state have amplitude on
them �colored red �online� in Fig. 7�.

Because the time-dependent calculation shows that the
transition is strongest from the initial state to a Rb 2P1/2

state, it corroborates our estimate that the avoided crossings
around 14.7a0 between components of the higher-energy
closed Rb 2P3/2 surfaces and the 2� states, caused by the
long-range dipole-quadrupole interaction, are sufficiently
sharp such that they do not provide a good coupling mecha-
nism for the quenching reaction �at least for the energy con-
sidered in this time-dependent calculation�. Instead, the evi-
dence suggests that the avoided crossings and conical
intersections involving the 2� surface and the Rb 2P surfaces
farther in, caused by the fact that the anion surface drops
down steeply and undergoes broad avoided crossings with
these surfaces, drive the wave packet onto the Rb 2P1/2 sur-
faces. A more thorough analysis is deferred to a forthcoming
publication.

The time-dependent treatment corroborates the result of
the R-matrix calculations that the coupling to the ground
NH�3�−��Rb�2S� electronic state is relatively small,
whereby most of the outgoing flux avoids these channels.
The quartet components of this state seem uninvolved in the
quenching reaction for the energy studied, as is clear from
Fig. 6. A modest flux is seen in the doublet ground-state
sigma component, much less than in the Rb 2P channels, in
agreement with the results of the R-matrix calculations.
Thus, it appears that the quenching reaction is both efficient
and selective.

V. CONCLUSION

These preliminary results show that the quenching reac-
tion Rb�2S�+NH�1��→Rb�2P1/2�+NH�X 3�−� does indeed
proceed with a high probability as may have been expected
due to the near degeneracy of the electronic states involved.
The reaction is selective, yielding markedly less ground elec-
tronic state products. The coupling mechanism is seen to
involve the complicated set of avoided crossings and conical
intersections that occur inward of 14.7a0, not those due to the
long-range interactions. A more complete study will be pub-
lished in the future, thoroughly analyzing the dynamics that
occurs between the many electronic states involved in the
system, analyzing the effect of the mixing of electronic and
spin angular momenta with rotational angular momentum
�the Renner-Teller and the spin Renner-Teller effects�, and
providing reaction rates for comparison with experiment.
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