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Electron exchange between a dipole-bound anion and a polar molecule and dimer formation
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V. E. Chernov™
Department of Mathematical Physics, Voronezh State University, University Square 1, Voronezh 394006, Russia

A. V. Danilyan and B. A. Zon'
Department of Mathematical Physics, Voronezh State University, Voronezh 394693, Russia

(Received 25 April 2009; published 5 August 2009)

We consider collision between a dipole-bound molecular anion and a neutral polar molecule and show that
the excess electron can bind two neutral molecules into a dimer. Using a variational approach similar to the
Heitler-London model of H,* ion, we obtain the energy terms of such a dimer. Their difference determines the
cross section of electron transfer from the anion to the neutral molecule in quasiclassical near-resonant Born-
Oppenheimer approximation. We obtain for the cross section an analytical expression containing the weak
(logarithmic) factor depending on the molecular dipole moment and the collision velocity. With the preloga-
rithmic factor proportional to inverse binding energy of the electron in the molecular anion, such weak
dependence on the collision velocity is somewhat similar to the expressions appearing in the hard-sphere
collision model. However the large logarithmic factor connected with long-range dipole-dipole interaction
between the colliding molecules contradict to the hard-sphere approximation even for qualitative description of
the charge transfer. Our analytical calculations are in a good accordance with the results of a recent experiment
[Y. Liu, M. Cannon, L. Suess, F. B. Dunning, V. E. Chernov, and B. A. Zon, Chem. Phys. Lett. 433, 1 (2006)].
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I. INTRODUCTION

Dipole-bound anions (DBAs) have been attracting great,
both experimental and theoretical, interests [1-3]. Almost
any neutral molecule with dipole moment d>2.5 D can
form DBA, i.e., bind an extra electron due to its dipole po-
tential. As a rule, the electron is bound in a diffused orbital
with large (about of tens of angstroms) size and weak (about
of tens of meV) binding energy [4], and this fact suggests
that DBAs should possess high reactivity.

There are several types of charge-transfer reactions in-
volving DBA. The DBA themselves are formed under colli-
sions of polar molecules with Rydberg atoms, which also
contain an electron in a diffused weakly bound orbital. The
capture of such “essentially free” electron can result in for-
mation of long-lived valence-bound anions [5-10]. Electron
transfer in collisions between CH;CN~ DBA (d=3.92 D)
and nonpolar targets such as SF; and CCl, (which are able to
capture free low-energy electrons) can also be treated in
terms of capture of the essentially free dipole-bound electron
[11]. Another type of charge-transfer reactions can be colli-
sion between two polar molecules with dipole moments large
enough to bind the electron. An example of such charge
transfer is the reaction

CH;CN™ + CH;NO, — CH;CN + CH;NO; (1)

studied in Ref. [12]. The measured cross-section values of
=10""2 cm cannot be predicted using rough hard-sphere ap-
proximation. Indeed, it implies that the hard-sphere radius is

*slava@niif.vsu.ru
"Also at Belgorod State University, Belgorod 308015, Russia;
zon @niif.vsu.ru

1050-2947/2009/80(2)/022702(7)

022702-1

PACS number(s): 34.70.+¢

=60 A, which is more than twice greater than the mean-
square radius of the excess electron orbital. This work pre-
sents a simple but consistent theory of charge-transfer reac-
tions between two polar molecules and shows that the cross
section of such reactions differ from the hard-sphere approxi-
mation by a logarithmic factor, which is large for common
values of dipole moments and velocities of the colliding mol-
ecules and is due to the long-range character of the dipole
interaction.

As it was mentioned above, the main role in charge trans-
fer is played by intermolecular distances comparable with
the electron localization radius in a DBA. For typical DBAs
moving with thermal velocities v ~ 10° cm/s, the collision
time is about =10712-10"13 s. Strictly speaking, such values
of the collision time require taking into account different
effects of molecular geometry. Indeed, the molecular rota-
tions have the same order of the temporal period. Moreover,
the same orders of value (in energy scale) are inherent to the
inversion splitting, which forms molecular dipole moment.
We remind that, due to the P invariance of the electromag-
netic interaction, the dipole moment is zero in the stationary
states of a quantum system, and it appears, as a classical
object, only due to an interaction of this quantum system
with the fields of other, classical or quantum, systems. A
well-known manifestation of this fact is the maser effect on
ammonia molecular beam. Another example, quantum
anomalies in Rydberg spectra of polar molecules, is consid-
ered in Ref. [13].

Thus the calculation of charge-transfer probability in col-
lisions of polar molecules with thermal velocities is a rather
complicated problem. At the same time, most of theoretical
studies of DBA are limited to large-scale ab initio calcula-
tions [3] that give only the numerical electron affinity values.
Some model-potential calculations, although yielding rea-
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sonable results for one-photon photodetachment from DBA
[14], are hard to use for the description of collisions between
DBA and neutral molecules. More simple analytical theories
can give the electronic affinity as a function of the DBA
dipole moment only numerically [4] and are not able to cal-
culate adequately the cross sections of charge-transfer reac-
tions [15].

Recently a simple analytical model suitable for the de-
scription of DBA structure (electronic affinity as a function
of the DBA dipole moment) and interactions with photons
was proposed in Ref. [16]. After some modifications, we
apply this model to a quantitative study of charge-transfer
reactions in collisions of DBA with neutral polar molecules
on the basis of quasiclassical near-resonant charge exchange
calculation technique of the general collision theory [17].

II. MODEL: ADIABATIC TERMS OF A MOLECULAR
DIMER BOUND BY AN EXCESS ELECTRON

For simplicity, the complex angular dependence of an
electron in the field of two dipoles can be neglected, and
each molecule can be considered as a source of spherically
symmetric dipole potential (the atomic units are used
throughout the work)

Vspher dip(r) == deff/r2~ (2)

Here the effective dipole moment d.¢ is somewhat less than
the true dipole moment of the molecule, d, but, as it will be
shown below, the charge-transfer cross section depends on
ds slow (logarithmically). Such “spherical approximation”
was used by many authors (see, for instance, Refs. [18-20]).

With the above-mentioned spherically symmetric interac-
tion of the outer electron with two molecules a and b, the
Hamiltonian of the system in Born-Oppenheimer approxima-
tion can be written in the center-of-mass reference frame as

[17]

1
H:_EAR-'_HSIJFU(R)’ (3)
1
Hel == EAr+ Va(ra) + Vb(rh)' (4)

Here M is the reduced mass of the molecules a and b, vec-
tors r,;, point to the electron from the molecules a and b
correspondingly, and R is the separation between molecules.
The intermolecular interaction U(R) can be neglected for
large R values which determine the charge-transfer cross sec-
tion (see discussion below). The potentials V,, have form
(2).

It is convenient to express solutions of Schrédinger equa-
tion with Hamiltonian (3) in terms of the “quasimolecular”
adiabatic functions x“ and x’

W(R,r) = X, FA(R)X"(r,R) + 2, FA(R)X2(r,R),  (5)

which satisfy
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Hox“"(r,R) = E, ,(R) x"“*(r.R). (6)

The subscripts m,n enumerate the eigenvalues of Hamil-
tonian (4), while the subscripts a,b indicate the asymptotic
behavior

Xin(r.R — ) ~ ¢1(r,),

Xo(r,R — @) ~ ¢i(r,) (7)

of the quasimolecular functions: at large distances R, they
turn into “quasi-atomic” functions, which are simply the
wave functions of an electron bound by the molecules a or b,

[— 18, + V(D] 20 (r) = 50 2 () (8)

In fact, £*? are the electron affinities of the molecules a,b in
the correspondent electronic states.

In the two-state approximation, we assume that the elec-
tron initially bound by the molecule a in the state |m) is
captured by the molecule b into the state |n), so that the sums
in Eq. (5) disappear. In quasiclassical approximation, one
finds the following expression for the cross section of such
charge-transfer reaction [17]:

0'2:271']oc
0

LXR) = J dr, X2(r,.R)

2
pdp,

f LA(R)e ™Dz

-0

X (ra,R)
/4

b}
ra:const

R*=p’+ 7,

A
AZ)=+ f [E,(R") ~ E\(R))dZ . 9)

—00

Here v is the velocity of relative motion of the colliding
molecules and p is the impact parameter.

The adiabatic terms E, ;,(R) and the quasimolecular wave
functions y“’(r,R) can be found with the help of a variation
procedure similar to that used in the Heitler-London theory
of H," ion [21]. We find the solutions of Eq. (6) in the form

X(r,R) = c(R)§(r,) + c,(R)¢"(r). (10)

Introducing the matrix elements

Vaa = (" (r)|Vi(rp) | 6°(r)),
Vip = (" (1) Val(ra)| ¢°(rp)).
Vap = (¢ (r)|Val(ra)| ¢°(rp)).
Via = (@ (1) [V (1) ()
S =(@" ()| ¢ (r)) = ((r) [ ¢"(r,)),

we obtain the secular equation
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(su - E) + Vuu
(g8,—E)S+Vy,

-E)S+V,
(Sb ) b -0 (11)
(ep—E) + Vy,

that should give two adiabatic terms E, ,(R) and two func-
tions x(r,R) which then should be combined into two linear
combinations to satisfy Egs. (7).

For simplicity, we restrict our further consideration to the
resonant case of two molecules with equal dipole moments:
V. (r)=V,(r)=V(r), e,=g,=¢, ¢*(r)=¢"(r)=(r). Then the
solutions of Eq. (6) can be divided into symmetric y, and
antisymmetric y_ as follows:

X+ T x+ ata<b,

with the corresponding symmetric and antisymmetric adia-
batic terms E. (R).

Then in the above Heitler-London approximation, one has
Vua=Vip» Var=Vpe and the secular equation (11) easily
yields the symmetric and the antisymmetric wave functions

_ ) = Bl

e (12)
X V2(1 £ 85)
and adiabatic terms E.(R)
V..*
E.=g+-— "4 (13)
18

corresponding to ¢,= * ¢, in Eq. (10). Expression (9) for the
cross section is simplified [17] as follows:

o= 27Tfoop sin? &(p)dp, (14)

0

&p)= % f [E_(NZ2+p?) - E\(NZ2+p)dZ.  (15)
0

Thus for the further calculations one needs to know the adia-
batic terms E.(R).
Spherically symmetric solutions of Eq. (8) has the follow-
ing form [16]:
N

Br) = ==K, (), (16)
V4 \r

(2 sinh ws)m (
N= D — =
s

where K is McDonald function. The electron wave function
¢(r) depends on the parameters x=+—2¢ and s. The latter is
related to eigenvalues of the Schrodinger equation with the
angle-dependent point-dipole potential [16]

Vap(r)=—=(d - r)/r. (18)

0 -1/2
f xKi(x)dx) .an

0

The radial Schrodinger equation for the outer electron in
DBA includes the spherical potential (2) with 2d.=s>
+1/4 [16]. For typical dipole moments d 4= d; moreover,
the final expression (26) for the cross section depends on d
logarithmically. This fact suggests that the spherical approxi-
mation (2) should be reasonable as well for the description of
charge-transfer process.
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FIG. 1. Adiabatic terms E, (lower curve) and E_ (upper curve)
for d=4 D, e=—10 meV.

With the account for Eq. (16), the matrix elements in-
volved in Eq. (13) have the following form:

2872
N’ K. K.
S:% Jd/ 13(%ra) m(%rb)’ (19)
dar \y’rarb
d»*N? K; (o) K (oer
Vubz— ) fdl 3( 2()(_( b)’ (20)
4 ravrarb
dx*N? K2 (r
v, =-= Jd, ”g ). (1)
47 Ty

Here d7 stands for the phase volume element (see Appendix
A where an asymptotic calculation of the above integrals is
presented).

To avoid the divergence of integrals (20) and (21) at r,
—0, the point-dipole potential (2) should be regularized at
the origin. The simplest way of such a regularization is the
“nonpenetrative point-dipole” model [16], i.e., V(r<ry)=co,
where ry is the effective radius of the neutral molecular core.
Thus in calculating integrals (20) and (21), we assumed that
r,>ry. It can be shown that the integrals depend on r
slowly (ocIn sry).

III. RESULTS AND DISCUSSION

The adiabatic terms are shown in Fig. 1. Since the charge
transfer takes place at large R, we do not need their behavior
for intermolecular distances much less than the effective ra-
dius of the excess electron orbital, ¢. On the other hand, the
radial dependence of real molecular potential is substantially
different from the point-dipole potential (2) at small dis-
tances. Moreover, in the Heitler-London approach, it is of no
sense to consider the terms at small R. Indeed, for small R
the adiabatic terms E~(R) should converge to the energies of
the first two states of the “united DBA.” However, such
states cannot be described in terms of the basis set (10). As a
result, E_(R) blows up at R—0 due to S— 1 in the denomi-
nator of Eq. (13); and E,(R—0) tends to a value on the order
of —ds?, which has absolutely no connection with the
ground-state energy of the united anion [16].

Nevertheless, even in such rough approximation, Fig. 1
demonstrates a simple, but remarkable fact: since E,(R) is
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FIG. 2. Electron binding energy E, in dimer as a function of
dipole moment d.

negative for all R, there exists a bound state of a DBA dimer,
i.e., a pair of neutral molecules bound by a common excess
electron (in full analogy with two protons bound into H," ion
by a common electron). The structure of such complexes has
been studied since recent years by ab initio methods and by
numerical solution of Schrodinger equation with model
Hamiltonians (see, for instance, [22,23], and references
therein). Simple qualitative analysis shows that the dimer can
be formed at intermolecular distance Rgjpe,=2/%. We re-
mind that 1/ is the order of the DBA geometric size; for the
molecules involved into reaction (1), 1/2%=30 a.u.=15 A.
The binding energy of such dimeric state Egy,.,=¢€. In our
simple model these values may depend also on the param-
eters of the intermolecular repulsion potential U(R) (e.g.,
Lennard-Jones potential). Note again that in the Heitler-
London approximation the exact information on U(R) behav-
ior is not important for the calculation of the charge-transfer
cross section, since it drops out the difference E,—E_ be-
tween the adiabatic terms.

Also, it can be easily shown within our model that the
dependence of electron binding energy E,, in dimer on dipole
moment d is very simple. Thus, for example, Fig. 2 shows
electron binding energy E, in dimer as a function of d for the
case of electron binding energy in monomer £=—10 meV.
This curve was obtained using Egs. (19)—(21).

As it was mentioned above, the charge transfer takes
place at large intermolecular distances R>2/x. Therefore
we can use asymptotic approximations (A6), (A9), and
(A12) for the matrix elements (19)—(21) to express the dif-
ference of terms (13) at large R,

SVaa=Vap _ 2Adx
1-82 R

E -E, =2 e R, (22)

Changing the variables according to VZ*>+p?=R, ZdZ=RdR
reduces Eq. (15) to the form

24dx [© eRdR  2Adx e
&p)= = Ko(xp) = y—,
» VR —p \xp

(23)

where
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,r—Ad%
Y= \"2777, (24)

and the last expression in Eq. (23) is obtained by using the
asymptotic behavior of the McDonald function at large p.
Substitution of Eq. (23) into Eq. (14) gives

2@ (7 o ye "
o= 2], dx x sin < \E ) (25)

For the molecules CH;CN and CH3;NO, studied in the
experiment [12], we assume their average dipole moment d
=3.7 D=1.46 a.u., then Eq. (A9) yields A=8.7. For these
molecules £=-0.017 eV=—-62X10"* a.u., n=v-2¢
=0.035 a.u. At room temperature 7=300 K and molecular
mass M =10%m, the relative velocity v=\2kzT/M=4.6
X 10™* au.=10° cm/s. Thus y=2X 10*> 1 can be consid-
ered as large parameter, so the integral in Eq. (25) can be
calculated asymptotically (for the details, see Appendix B).
So we obtain the following simple expression for the charge-
transfer cross section (with convenient units used in the sec-
ond expression):

T T 2<Adev2wmelsl) 06
7T e 7T dm|e] ! h* '

For the above-mentioned experimental data, Eq. (26) yields
the cross section o=7.83X10* au.=2.19X 1072 cm?.
Note that the numerical calculation of the integrals in Egs.
(14) and (15), i.e., without using the asymptotics from Eq.
(22), leads to a close value o=1.72X 10"'? cm?. Note that
our earlier estimate 0=1.6X10"'? cm? given in Ref. [12]
was obtained based on an approximation of the difference
E_(R)-E,(R) similar to our asymptotic formula (22) with
A=2.1It seems that such a choice of A value is more adequate
to approximate E_(R)—E,(R) at not very large R for the par-
ticular dipole moment d=3.7 D value, while our expression
(A9) is asymptotically exact for R—o° and depends on d
explicitly. The measured value o=1.4X 10712 ¢cm? reported
in Ref. [12] is somewhat less than our theoretical estimates.
But given the fact that we used very rough model, one can
consider the presented theory to explain the experiment ad-
equately. To make a more detailed comparison with the ex-
periment, one needs measurement of the cross section as a
function of the dipole moment and/or the binding energy of
the colliding dipolar molecules that seems to be a rather
challenging task for the experimentalists.

Physically, it is interesting to compare expression (26)
with the corresponding expression for the cross section of
elastic scattering (for slow collisions) in the hard-sphere
framework [17] as follows:

Op = 4R, Mv < 1/Ry, (27)

where Ry is an effective radius of the colliding molecules.
On one hand, similarly to the hard-sphere scattering, the
cross section (26) displays weak (logarithmical) dependence
on the relative velocity v of the colliding molecules. If con-
sidered in hard-sphere approximation (27), the charge trans-
fer is characterized by the effective radius
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1
Rys=—=In(v/v), (28)
2x

which comprises large logarithmic factor In y. Then expres-
sion (28) can be treated as a manifestation of the long-range
character of the dipole interaction, which leads to the above-
mentioned difference of the measured cross-section value
from the rough estimates based on the hard-sphere approxi-
mation (27). On the other hand, this difference can be con-
nected with slowness of the molecules’ translational motion.
In fact, according to Eq. (24), y appearing in Eq. (26) or Eq.
(28) is the well-known Massey parameter [17]. This param-
eter is large for adiabatic collisions when the molecule ve-
locity v is much less than the characteristic “intradimer” ve-
locity defined as the product of the characteristic dimer size
1/% by the characteristic difference Adx’ between the
dimer’s electronic terms. While such adiabatic condition is
valid for many chemical reactions, in charge transfer be-
tween polar molecules the Massey parameter is large also
due to long-range character of the dipole interaction, which
results in large 1/ values.

In conclusion, we theoretically considered near-resonant
charge-transfer reaction between two polar molecules; each
of which is able to capture an excess electron in dipole-
bound state. The obtained simple analytical formula (26)
gives a good agreement with recent experimental data and
contains explicitly the cross-section dependence on the di-
pole moment of the molecules. We also point out that the
formation of dimers of such molecules bound by the excess
electron is possible.
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APPENDIX A: ASYMPTOTIC APPROXIMATIONS OF
MATRIX ELEMENTS

In this appendix we derive the asymptotic approximations
for integrals (19)—(21). It is convenient to use spherical co-
ordinates centered at the “a” molecule with the z axis di-
rected along the R vector. The following notations are used:
v=cos 0, r'=\r’*+R*>-2rRv, p=xr, p'=xr', L=xR, and I,
=xry.

We start with S as follows:

%ZNZ
f dvf dr rKn xr) K (xr')

N? o’ ,
=7 j dv f dp,—r,Kis(p)Kis(p ). (A1)
-1 ) \"p

We use the asymptotic behavior
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N N I

of McDonald function and the following notation: v=cos 6,
r' =\r’+R?>=2rRv, N\=xr, L=xR, and ly=xr,. We start with
S as follows:

%2N2 1 o r3/2
= dv| dr—=K(xr)K;(xr").
2 1 \“’r,

o

(A2)

(A3)

Then we substitute Ki,(»r") in Eq. (A3) by asymptotics (A2).
Indeed, if R is large, xr’ is large elsewhere except in the
neighborhood of the “»” molecule, where r=R, v=1. But
this neighborhood gives exponentially small contribution
into the value of integral (A3) due to the Kj,(»r) multiplier.
Then we have

3
exp(—
G N Kf d,,s/zKuw)f M

%3 +r
\/ il j dr rl/zK”(%r) exp(= zr')dr'

[R—r|

N? %
~ W_f dr rl/ZKiy(%r)[e—x\R—A _ e—x(R+r):|7
RN'8J, :

N Jax) R N 12 .
=— e dr r"“K; (sr)sinh(sr)
RV 2 "

+ sinh(%R)f dr rl/zKiS(%r)e_’”}. (A4)
R

The second integral in Eq. (A4) has an additional exponen-
tial smallness and thus should be omitted in the first approxi-
mation,

N2 -L (L
S = \/E - f A\ NV2K;, (\)sinh(N)

0

d L
= \/%Nze_L— d\ N2K (N)sinh(N)

ar J,, -
T2 112 L
= \/; N?e"LV2K, (L)e|; 1o (AS)
NZ
=”Te-L, (A6)

since the integral in Eq. (A5) diverges proportionally to L as
L— 0o,

Let us consider the next matrix element (20),

d*N? (! 7 K () K (er')
Vab = — dV dr — .
-1 iy \*’l’l’/

(A7)

Its asymptotic approximation can be calculated in a way
completely similar to that used for S. Since the power of r in
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Eq. (A7) is by 2 less than that in Eq. (A3), we can directly
obtain instead of Eq. (A5),

y \/;dszze"‘ f fan (osinh(0
ab =~ PO NEAST sin .
2 L o )\3/2

Since the integral in Eq. (A8) converges at its both upper and
lower limits, we can assume [y=0, L—o° and use for the
resulting integral the expression in terms of hypergeometric
functions available in Ref. [24]. After some simplifications,
one yields

(A8)

Adi* 3 4 sinh s
L T s(4s?+ 1)
Note that both results (A6) and (A9) can be obtained also by

calculating the integrals in elliptic coordinates.
The remaining matrix element (21)

dx*N? (! FrKi(xr)
V= - dv| ar=s
-1 o r

-L

s

Vab = (A9)

2
d*N? ) ! dv
=— AN | 57—
2 ), ST N+ L2 - 2L\
(A10)
d*N?* (* L+\
=— f d\ fos(x)ln‘—‘. (A11)

0

In the N =L domain one can insert the Taylor approximation
ln|i%;‘\| = % into integral (A11). But this approximation can
be leaved also for the A =L domain since this domain makes
an exponentially small contribution into the value of integral
(A11). Then assuming [;,— 0 and using Eq. (17) we obtain

for large L
ds

Vauz_F-

(A12)
This result follows immediately from Eq. (A10) under rough
change r' —R.

Figures 3-5 show the matrix elements S(R), V,;,(R), and

1 2 3 5 10

17-..'0. kR

0.1¢

0.01¢

0.001 ¢

1074 L

-5
7 | | | R(@au)
0 100 200 300 400 500

FIG. 3. S(R) calculated numerically [Eq. (19), dots] and asymp-
totically [Eq. (A6), solid line] in logarithmic scale; d=4 D, &
=-10 meV.
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12 3 5 10
‘-.. kR
0.001 £ e,
..
..
Va (a.u.)
1075¢
10—7 L
1090 ‘ ‘ R (a.u.)
0 100 200 300 400 500

FIG. 4. V_(R) calculated numerically [Eq. (20), dots] and as-
ymptotically [Eq. (A9), solid line] in logarithmic scale; d=4 D, &
=-10 meV.

V,.(R) calculated numerically according Egs. (19)—(21) cor-
respondingly (dots) compared with the asymptotic expres-
sions (A6), (A9), and (A12) given by solid lines. For conve-
nience, the L=xR values are specified in the upper frames.
General considerations suggest that asymptotic formulas
should be valid for L> 1; however, the figures show a good
agreement between the asymptotics and the numerical calcu-
lations for L as low as =1-3 for V,, ,(R) and L=5 for
S(R). Note that the obtained asymptotic approximation for
V.»(R) is somewhat better than that for S(R); this can be
explained by the different contributions of the above-
mentioned singularity domain r=R, v==1 into the integrals
in Egs. (A4), (A7), and (A10). This contribution was omitted
in deriving the above asymptotic expressions due to its ex-
ponential smallness ~exp(—»R) at large R. However, this
contribution has additional smallness for V,, and V,, due to
powers of r in the denominators of integrands in Egs. (A7)
and (A10).

APPENDIX B: ASYMPTOTIC APPROXIMATION FOR
THE CROSS SECTION

In this appendix we derive the asymptotic expression (26)
of the cross section. For large 7y, the monotonically decreas-

I 23 5 10
0.005 - * . ° kR

00017V, (a.u.)
5x107*F

1x 1074
5x107°F

1x107F

‘ N __R@u)
i 510 50 100 500

FIG. 5. V,_,(R) calculated numerically [Eq. (21), dots] and as-
ymptotically [Eq. (A12), solid line] in double logarithmic scale; d
=4 D, e=-10 meV.
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ing (with x) argument of the sine in Eq. (25) can be consid-
ered large until it becomes (at some x=x;) equal to some
value y,=1,

ye 0
— =%- (Bl)
VXo

Due to the large argument of the sine for x<<x,, one can
change sin” to % and neglect the contribution of the x> x,
domain into integral (25) as follows:

g

o= . B2

25 (B2)
The value of x, in turn, can be found from Eq. (B1) asymp-
totically,

xo=In(y/yp). (B3)

To find the unknown parameter vy, we fit the depen-
dence o(y) in Eq. (25) by the asymptotic approximations
(B2) and (B3). Such a fitting is shown in Fig. 6; the ob-

PHYSICAL REVIEW A 80, 022702 (2009)

15r

Y

100 200 500 1000 2000

FIG. 6. %*0(v)/2 calculated numerically [Eq. (25), dots] and
asymptotically [Egs. (B2) and (B3) with y,=0.97, solid line].

tained best-fit value y,=0.97 practically coincides with the
previously suggested y,=1 used in our final formulas
(26).
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