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Photoionization cross sections calculated up to the 20th single ionization threshold of triplet P states of
planar helium exhibit fluctuations. These are mainly due to a dominant series of resonances which can be
associated with an approximate quantum number F=N−K in accordance with three-dimensional full calcula-
tions and experimental observations. As the energy increases the dominant role of a single series as sole
contributor is apparently lost as new series start to contribute significantly to the cross sections. This would
result in an earlier onset of Ericson fluctuations as in the picture of a single dominant series, where the onset
is expected around I34.
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I. INTRODUCTION

As first noticed by Poincaré, the classical dynamics of the
three-body problem is nonintegrable, which also remains
true when gravitational forces are substituted by attractive
and repulsive Coulomb forces, such as define the three-body
Coulomb problem. Indeed, the electron-electron interaction
term in the Hamiltonian of the unperturbed helium atom—
which otherwise is just the sum of two hydrogen Hamilto-
nians with amended nuclear charge—renders the two-
electron dynamics in general irregular and chaotic with only
small regions of regular motion in the classical phase space
�1,2�. Due to the scaling properties of the helium Hamil-
tonian the regime of highly doubly excited states can be
described semiclassically. As a consequence, the quantum
spectrum of highly doubly excited states should be influ-
enced by the underlying classical chaotic dynamics and typi-
cal signatures of quantum chaos, such as a Wigner distribu-
tion of the energy spacings between nearest-neighbor
resonances �3� or Ericson fluctuations �4–6�, are expected to
become observable �7�.

Doubly excited states of two-electron atoms are organized
in series converging toward the single ionization thresholds
�SITs� IN of He�N�+ states. Doubly excited states cannot in
general be described by a simple model based on
independent-particle angular momentum quantum numbers
NLnl, as was first realized in 1963 through the famous ex-
periment by Madden and Codling �8�. Since then, the regime
near the double ionization threshold �DIT� represents a para-
digm for electron correlations in atomic systems and has
therefore attracted the continuous interest of both theoreti-
cians and experimentalists. A large amount of theoretical and
computational effort has been invested in the attempt to im-
prove our understanding of electron correlations in two-
electron atoms, see, e.g., �2,9–14� and references therein. For
instance, there are certain highly asymmetric and highly cor-
related states associated to highly correlated classically
stable configurations, such as the frozen planet configuration
�15�. In addition to the possibility to create nondispersive
wave packets �16–18�, these frozen planet states raise the

question of how their presence affects the Ericson scenario
mentioned above, since their autoionization widths become
smaller and smaller toward the breakup threshold.

The inherent strongly correlated nature of the doubly ex-
cited states requires the introduction of a classification
scheme consisting of the approximate quantum numbers
�n ,N ,K ,T� �19,20�. Starting from the fourth single ionization
threshold members of higher lying series interfere with lower
series. Above the eighth ionization series the widths of the
resonances can be larger than their separation �11,21�.
Whether the overlap of these series and the overlap of the
resonances will break down the approximative quantum
numbers and will lead to Ericson fluctuations is not clear yet.
The understanding of these issues indeed poses a challenge
for both experiment and theory. In the recent years an im-
provement of measurement techniques has allowed a detailed
examination of the doubly excited states converging up to
the N=16 threshold of He �21–23�. From the theoretical side,
close to the double ionization threshold the number of open
channels increases dramatically. Therefore, currently avail-
able full three-dimensional �3D� approaches require rather
large basis sets for the representation of the associated eigen-
value problem. Simplified one-dimensional �1D� models or
the s2 model of the three-dimensional atom reduce signifi-
cantly the calculation difficulties. However, the former mod-
els may underestimate the decay rates of the resonances by
orders of magnitude �24� and the latter does not resolve all
resonances that are important for Ericson fluctuations as ob-
served below. Studies on quantum chaos of the 1D helium
atom have predicted Ericson fluctuations in the total photo-
ionization cross sections �TPCS� to be observable above I34
�25,26� and studies within the s2 model find Ericson fluctua-
tions in the partial inelastic cross sections between electrons
and He+ already around I16 �27�. On the other hand currently
available full 3D approaches are able to describe the spec-
trum up to the N=17 threshold �23�. The analysis of the
theoretical and experimental results up to IN=17 in �23� re-
veals a clear dominance of principal Rydberg series in the
total photoionization cross section. The hierarchy in the in-
tensities of the resonances reveals that F=N−K is an ap-
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proximate quantum number for a large fraction of the states.
Consequently Ericson fluctuations are absent in this regime
and no transition to full chaos is observed, in clear contra-
diction with the predictions of simplified models �27�.

In this paper, we investigate the TPCS for planar �2D�
helium up to the 20th ionization threshold. In contrast to 1D
models our approach reproduces correctly the order of mag-
nitude of the widths of doubly excited states �24�. Moreover,
our results are in qualitative agreement with full 3D calcula-
tions �23�. They show that a large part of the states are asso-
ciated to the approximate quantum number F=N−K. Fur-
thermore, we find that the contribution to the TPCS of the
series associated to F=1 is dominant; however, the series
associated to larger values of F start to compete with the
principal series suggesting the onset of Ericson fluctuations
in a regime lower than the one predicted by one-dimensional
models �23,25�.

The paper is organized as follows: in Sec. II we outline
our theoretical and numerical setup. This approach is valid
for the exact quantum description of field-free planar helium,
without adjustable parameters, designed for direct access to
the detailed spectral structure of the problem. Section III
provides a complete description of the spectral properties of
planar helium up to the 20th ionization threshold and dis-
cusses the dominance of Rydberg series in the TPCS. Section
IV concludes the paper.

II. THEORY AND NUMERICAL IMPLEMENTATION

The computation and analysis of fluctuations in photoion-
ization cross sections of helium demands a description of the
helium atom with a minimum of approximations. The elec-
trons are subject to the combined potentials of the nucleus
and of the interelectronic interaction which gives rise to a
very rich resonance structure close to the total breakup re-
gime.

Therefore, our theoretical approach has to account for the
following: �1� the singularities of the Coulomb potentials; �2�
the spectrum of the helium atom consisting of bound states
and of resonances embedded into the atomic continua; �3�
the photon-induced transitions between initial and final states
which provide the cross sections; �4� adequate classification
schemes of the resonances reflecting the underlying classical
chaotic dynamics.

A detailed description of our approach for planar helium
has already been presented elsewhere �17,28,29�. We will
thus give only a brief review of its most relevant aspects.

A. Hamiltonian

The Hamiltonian of a helium atom with fixed nucleus,
neglecting relativistic and QED terms, reads, in atomic units,

H =
p�1

2 + p�2
2

2
−

2

r1
−

2

r2
+

1

r12
. �1�

Here, r1 and r2 are the distances of the electrons from the
nucleus and r12 is the interelectronic separation.

Both, the classical and the quantum dynamics are gov-
erned by Hamiltonian �1�. The classical dynamics generated

by Hamiltonian �1� is invariant under the scaling transforma-
tions �30�

H � �E�−1H ,

r�i � �E�r�i, �i = 1,2� ,

p� i � �E�−1/2p� i, �i = 1,2� , �2�

where E is the energy of the two-electron system. The angu-
lar momentum thus scales as Lsc= �E�1/2L. Therefore, for
moderate values of L and highly doubly excited states
�E�0�, the scaled angular momentum is close to zero, tan-
tamount to an almost planar three-body configuration. Pre-
cisely this is the semiclassical energy regime where one ex-
pects that classical and quantum dynamics are similar. From
now on, we confine the dynamics to two dimensions of con-
figuration space, with the Cartesian positions �x1 ,y1� and
�x2 ,y2� of the electrons. The planar helium dynamics thus
has four degrees of freedom which span an eight-
dimensional phase space.

B. Eigenvalue problem

One of the main difficulties to actually perform the diago-
nalization of Hamiltonian �1� are the Coulomb singularities
therein. Nevertheless, by choosing an appropriate represen-
tation in parabolic coordinates �28�, the singularities are
rigorously regularized. The appropriate set of parabolic co-
ordinates is obtained after three subsequent coordinate trans-
formations, which have been treated in detail in �17,28,29�.
After multiplication by the Jacobian B=16r1r2r12 of the
transformation the Schrödinger equation of the three-body
Coulomb problem takes the form of a generalized eigenvalue
problem,

A��� = EB��� , �3�

where A=BH and B are polynomial functions of the coordi-
nates and their derivatives. This leads to a finite representa-
tion in terms of four sets of creation and annihilation opera-
tors, aj, aj

†, j=1,2 ,3 ,4. Since each of these pairs of
operators can be associated with a harmonic oscillator,
this induces a natural basis set composed of tensor
products of harmonic oscillator Fock states:
�n1n2n3n4�= �n1� � �n2� � �n3� � �n4�. For example, the
total angular momentum L has a simple representation in
terms of the number operators Nj =aj

†aj, j=1,2 ,3 ,4:
L= �N1−N2+N3−N4� /4.

C. Complex dilation

The electron-electron interaction in helium couples differ-
ent channels of the noninteracting two-electron dynamics
and gives rise to resonance states embedded in the continua
above the first single electron ionization threshold. To extract
the resonance states and their decay rates we use complex
rotation �or “dilation”� �31–35�, which was shown to be ap-
plicable for the Coulomb potential in �36�.

The complex rotation of any operator by an angle � is
mediated by the nonunitary complex dilation operator

JOHANNES EIGLSPERGER AND JAVIER MADROÑERO PHYSICAL REVIEW A 80, 022512 �2009�

022512-2



R��� = exp�− �
r� · p� + p� · r�

2
	 , �4�

where r� and p� represent the four component vector made up
of r�1, r�2 and p�1, p�2, respectively. Rotation of the position and
momentum operators in the complex plane according to

r� → R���r�R�− �� = r�exp�ı�� ,

p� → R���p�R�− �� = p�exp�ı�� , �5�

transforms a real representation of Hamiltonian �1� in a com-
plex symmetric operator with complex eigenvalues. How-
ever, the spectrum of the rotated Hamiltonian has the follow-
ing important properties �32,34,36�:

�1� The bound spectrum of H is invariant under the com-
plex rotation.

�2� The continuum states are located on half lines, rotated
by an angle −2� around the ionization thresholds of the un-
rotated Hamiltonian, into the lower half of the complex
plane. In the specific case of the unperturbed 2D helium
Hamiltonian �1�, in analogy to the 3D case �37�, the con-
tinuum states are rotated around the single ionization thresh-
olds IN=−2 / �N−1 /2�2 a.u. �28�, with N�N.

�3� There are isolated complex eigenvalues
Ei,�=Ei− ı�i /2 in the lower half plane corresponding to reso-
nance states. These are stationary under changes in � pro-
vided the dilation angle is large enough to uncover their po-
sitions on the Riemannian sheets of the associated resolvent
�37,38�. The associated resonance eigenfunctions are square
integrable �35� in contrast to the resonance eigenfunctions of
the unrotated Hamiltonian. The latter are asymptotically di-
verging outgoing waves �35,39�.

The eigenstates of H���=R���HR�−��,

H�����i,�� = Ei,���i,�� , �6�

are normalized for the scalar product


� j,−���i,�� = �ij , �7�

and satisfy the closure relation

�
i

��i,��
�i,−�� = 1. �8�

Following �40�, the Green’s function of the rotated Hamil-
tonian writes

G� =
1

E − H���
= �

i

��i,��
�i,−��
E − Ei,�

, �9�

while the relation between the Green’s function of the unro-
tated Hamiltonian and Eq. �9� has been shown �41� to be

G�E� =
1

E − H
= R�− ��G��E�R��� . �10�

The projection operator on a real energy eigenstate is related
to the Green’s function through

��E�
�E� =
1

2ı�
�G−�E� − G+�E�� , �11�

with

G	�E� =
1

E 	 ı
 − H
, 
 → 0+. �12�

Using Eqs. �9� and �10� gives for the projection operator on
a real energy eigenstate, in terms of the eigenstates of the
rotated Hamiltonian,

��E�
�E� =
1

2ı�
�

i
�R�− ����i,��
�i,−��R���

Ei,� − E

−
R�����i,−��
�i,��R�− ��

Ei,−� − E

 . �13�

D. Cross section

Fermi’s Golden Rule yields for the photoionization cross
section:

���� =
4�2�

c
�
�E�T��E

in��2, �14�

where ��E
in� denotes the initial state with energy Ein, ��E� a

state with energy E=Ein+�, and T=e� ·r� the dipole operator
with the light polarization e�. Combining Eqs. �13� and �14�
gives

���� =
2��

ıc
�

i
� 
�E

in�TR�− ����i,��
�i,−��R���T��E
in�

Ei,� − E

−

�E

in�TR�����i,−��
�i,��R�− ��T��E
in�

Ei,−� − E

 . �15�

Changing � to −� is, for a real representation of the Hamil-
tonian, equivalent to changing H��� into its complex conju-
gate, resulting in

Ei,−� = Ei,�,

��i,−�� = ��i,�� . �16�

As has been stated in �40�, Eq. �15� is somewhat formal, as
R�−����i,�� is not a well defined state, and 
�E

in�TR�−����i,��
has to be understood as 
�i,��R���T��E

in�. The last expression
coincides, for an initial state with a real radial wave function,
with 
�i,��R���T��E

in�. The second term of Eq. �15� has to be
understood and translated in an analogous manner. Together
with Eq. �16� this leads to the final result:

���� =
4��

c
Im��

i


�i,��R���T��E
in�2

Ei,� − Ein − � 
 . �17�

Transformation into the appropriate coordinates allows rep-
resenting the matrix elements of the dipole operator in the
creation and annihilation operators, aj, aj

†, j=1,2 ,3 ,4.

E. Expectation value of cos �12

Under complex rotation the expectation value of cos �12
for a given state ��i� of the atom is given by
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�i�cos �12��i� = 
�i�cos �12R�− ��R�����i�

= 
�i,−��cos �12��i,�� . �18�

Here we have inserted the identity in form of R�−��R���. In
addition we have taken into account that cos �12 and R�−��
commute which follows immediately from the definition

cos �12 = −
r12

2 − r1
2 − r2

2

2r1r2
. �19�

After transformation to appropriate parabolic coordinates the
matrix elements of cos �12 can be expressed as polynomials
in the coordinates and thus be represented through the cre-
ation and annihilation operators, aj, aj

†, j=1,2 ,3 ,4.
In practice expression �18� is complex due to numerical

rounding errors and due to the truncation of the basis. Nev-
ertheless, for converged resonances its imaginary part is very
small. Under this consideration and using Eq. �16�, the ex-
pectation value of cos �12 is finally


�E�cos �12��E� = Re�
�i,��cos �12��i,��� . �20�

F. Numerical treatment

Together with the rotation of configuration space by an
angle �, we also introduce a dilation by a positive real num-
ber 
, such that the �Cartesian� coordinates and momenta
transform according to r�→
r�exp�ı�� and p� →p�exp�−ı�� /
.
Since the dilation by a factor 
 is a unitary transformation
described by the unitary operator �39,42�

D
 = exp�ı�log 
�
r� · p� + p� · r�

2

 , �21�

the spectra of a Hamiltonian H and of the dilated Hamil-
tonian H
=D
HD


† are the same. However, when the basis is
truncated, the spectrum does depend on the parameter 
, if
the basis set is not large enough. Therefore, 
 can be used as
a variational parameter that has to be optimized.

Due to the polynomial character of the representation in
creation and annihilation operators the matrix elements of
Eq. �3� have exact analytical expressions. In addition, only a
finite number of basis elements �n1�n2�n3�n4�� are coupled to a
given basis element �n1n2n3n4� which results in a finite num-
ber of selection rules. Therefore, combining the rotation by
an angle � with a dilation by a real positive number 
 �17�
and the representation in creation and annihilation operators,
the generalized eigenvalue problem �3� can be written as

A
�����i,�� = Ei,�B��i,�� , �22�

where A
��� and B are infinite sparse banded matrices. The
basis �n1n2n3n4� is properly symmetrized and truncated
for numerical implementation �for details see �17,29��.
Altogether, in our numerical implementation H
��� and
B are represented by sparse banded matrices with
typically large dimensions �e.g., 325 801�16 293 for
nbase=max�n1 ,n2 ,n3 ,n4�=395 for the description of triplet P
states around the 20th ionization threshold�. The numerical
diagonalization of Eq. �22� combines the Lanczos algorithm
�43–45� and advanced techniques of parallel programming

�46,47� and was carried out on large computers such as the
SGI Altix 4700 of the Bayerische Akademie der Wissen-
schaften �48�.

III. RESULTS

As in the three-dimensional case �2�, the eigenstates of 2D
helium are organized in series converging to single ioniza-
tion thresholds which all converge to the double ionization
threshold at zero energy. The threshold structure of the spec-
trum is essentially the same as for the case without electron-
electron interaction and the location of the various single
ionization thresholds is unaffected by the term 1 /r12, since
the electron-electron interaction vanishes at large distances.
Thus, the Nth threshold energy is given by �28,29�

IN = −
2

�N − 1/2�2 a.u., N � N , �23�

a series which obviously converges to zero with N→�. The
first series of eigenenergies converges to the threshold
I1=−8 a.u., and above this energy all bound states with
N�1 are embedded into the continuum of lower series; i.e.,
they are resonance states with finite width �37�. Due to the
truncation of the basis, the exact thresholds cannot be
reached but only effective thresholds IN

eff �46,49�. The spec-
trum can be classified by the particle exchange symmetry, the
symmetry �x with respect to the x axis and the absolute
value �l� of the angular momentum �or, equivalently, l2�.

In this work we investigate the photoionization cross sec-
tion for dipole transitions from the lowest lying triplet bound
state, with angular momentum l=0 and �x=+1, of planar
helium. The energy of this state is given by

Ein = − 8.295 963 728 090 43 a.u.. �24�

The dipole operator couples this state with �l�=1 triplet states
of symmetry �x=+1. The resolution of the TPCS at high
energies close to the double ionization threshold requires the
accurate calculation of the spectrum associated to these
states. A typical spectrum is shown in Fig. 1�a�, which has
been obtained after the diagonalization of the eigenvalue
problem �22� with 
=0.45 and �=0.25. Besides the dis-
cretized continuum states rotated by 2� in the complex plane
and the resonances there are eigenvalues with positive imagi-
nary part close to I6 due to the truncation of the basis. In
order to exclude these numerical artifacts and nonconverged
resonances, all data points have to be checked for conver-
gence with data for other parameter sets. As criterion of con-
vergence for the resonances we used a coincidence, for reso-
nances with different parameter sets �
 ,� ,nbase�, of at least
three significant digits for Re�Ei,�� and two significant digits
for Im�Ei,��. In Fig. 1�a� the converged resonances are high-
lighted by circles. Figure 1�b� displays all converged reso-
nances with �Im�Ei,����10−4 a.u. converging to IN, with
N=4, . . . ,23. The discretized continuum states depend on the
value of � �see Fig. 1�a�� and to some extent even on the
value of 
. These are not displayed in Fig. 1�b�. As the
energy approaches the total breakup threshold the density of
states increases dramatically. On the one hand series of states
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converging to the different single ionization thresholds will
overlap. In 2D helium the fifth Rydberg series overlaps with
the sixth series �17� in contrast to 3D helium where the over-
lapping of series starts with the fourth series. On the other
hand, as discussed below, single resonances will overlap with
other resonances in the sense that the widths of individual
resonances are larger than the separation from their nearest-
neighbor resonances. Individual Fano profiles are thus hard
or impossible to distinguish and the cross sections exhibit a
strongly oscillating or fluctuating pattern around a smooth
background. The TPCS can therefore be written as

���� = �bg��� + �fl��� . �25�

The continuum states are responsible for the smooth back-
ground �bg��� of the cross sections and do not affect their
fluctuations. Thus, only the resonances contribute to the fluc-
tuating part of the spectrum �fl���. The numerical calcula-
tion of �fl��� has been accomplished with the help of Eq.
�17�, where only converged resonances have been taken into
account. To guarantee the convergence of our results we
have checked the stability of the oscillator strengths

�i,��R���T��E

in� and of the fluctuations as function of the
parameters � and 
. Converged resonances have been found
up to I23 and our calculated fluctuations are numerically
stable up to I20.

Figure 2 displays �fl�E�. At low energies up to I7 the cross
section is dominated by Fano profiles associated to well-
defined isolated resonances. As the energy approaches to the
double ionization threshold the cross sections lose their regu-
larity as a consequence of the dramatic increase in the den-
sity of states. A second feature of �fl�E� is also eye-catching:
the rather rapid decrease of the fluctuations in magnitude.
These two aspects have been subject of intensive investiga-
tion in the recent years. On the one hand, a semiclassical
scaling law �50� for the fluctuations in the cross section be-
low the double ionization threshold has been derived via
closed orbit theory. The scaling law predicts an algebraic
decay of the fluctuations,

�fl�E� � �E�� for E → 0−,

� =
1

4
��100Z − 9

4Z − 1
+ 2�4Z − 9

4Z − 1

 . �26�

On the other hand, due to the increasing density of states,
accompanying an increasing density of fluctuations, near the
double ionization threshold there are speculations about the
existence of Ericson fluctuations �7,11,23,27,51� in helium
�4,5� and their onset.

The scaling law �26� has been corroborated for 1D helium
restricted to the eZe configuration �50� and experimental evi-
dence has been found below the 17th ionization threshold
�52�. An accurate analysis of the fluctuations’ scaling law in
2D helium requires going beyond the energy regime we can
reach at present. Nevertheless the trend of the behavior pre-
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FIG. 1. �Color online� �a� Spectrum of complex rotated triplet
helium below the threshold I6 with parameters 
=0.45, �=0.25,
and nbase=395. The eigenvalues obtained after numerical diagonal-
ization of Eq. �22� �crosses� contain the converged resonances
�circles�, the discretized continuum spectrum rotated by an angle
2�, and some numerical artifacts and nonconverged resonances
around the ionization threshold due to the truncation of the basis.
�b� Spectrum of resonances of triplet planar helium from below
I4 up to below I23. The data were obtained by several runs
of the Lanczos algorithm choosing the shift parameter �29,46� to
provide a continuous spectrum. The displayed spectra show the
converged resonance eigenenergies extracted from computations
with the four parameter sets ��=0.20, 
c=0.45, and nbase=395�,
�0.20, 0.50, 395�, �0.25, 0.45, 395�, and �0.25, 0.50, 395�. As crite-
rion of convergence a coincidence, of eigenvalues computed for
different parameter sets, of at least three �two� significant digits for
Re�Ei,�� �Im�Ei,��� has been used. Numerical artifacts, discretized
continuum states, and nonconverged resonances have been
removed.
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FIG. 2. Calculated fluctuations of the photoionization cross sec-
tion of triplet planar helium from below I4 to I20.
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dicted by Eq. �26� can be already recognized in our calcula-
tions up to I20: the amplitude of the scaled fluctuations,

�fl
scaled�E� = �E�−��fl�E� , �27�

exhibits rather small variations along the energy regime from
I4 to I20 as seen in Fig. 3. Since the exponent � can be
written in terms of stability exponents of the triple collision,
the total cross sections are expected to be dominated by the
low-dimensional collinear eZe dynamics. This interpretation
is consistent with the observations by Jiang et al. �23�: only
very few resonances contribute significantly to the photoion-
ization cross section in the region from I9 to I16 and the series
of contributing resonances are associated with �small� con-
stant values of F=N−K, where N and K are approximate
quantum numbers from Herrick’s algebraic classification
�19,20�. In addition, the eZe configuration can indeed
be identified with the maximum value of K=N−1, i.e.,
F=N−K=1. More precisely, the number K is related to the
expectation value of cos �12, where �12 is the angle between
the two electron position vectors r�1 and r�2, through the rela-
tion


cos �12� →
n→�

−
K

N
. �28�

Therefore, K approaches Kmax=N−1 when cos �12 is close to
−1.

The algebraic classification can be applied to the 2D
model of helium by setting the value T=0 �24�. Thus, the
expectation value of cos �12 provides information about the
approximative quantum number F also in the planar case.
Figure 4 presents a plot of the calculated expectation values
of 
cos �12� as a function of ��Re�E��� for all converged reso-
nances below I4 up to I23. A clear decomposition into series
of resonances can be identified for 
cos��12���−0.5. The
values of 
cos��12�� in such series decrease smoothly with
decreasing values of ��Re�E���. This may be ascribed to the
influences of perturbers with different K values that belong
to Rydberg series below the next higher thresholds, i.e., a
strong mixing of resonances with different N and K, but the
same N−K. The approximate quantum number F=N−K thus
allows the classification of these series of resonances, of
which all members lie on straight lines. The data presented in
Fig. 4 illustrate that the number of these series increases with
decreasing distance to the double ionization threshold and no
mixing of resonance subsets with different F is found for

cos��12���−0.5. In addition the straight lines for series
classified by a constant value of F would cross each other at
a value of 
cos��12��=−1 at the double ionization threshold.
In this limit these resonances correspond to the eZe configu-
ration, which is stable under angular perturbations, but un-
stable under radial perturbations. Therefore, the existence of
the approximative quantum number F can be understood by
the regularity in the angular direction in helium, though the
radial motion remains chaotic.

In Fig. 4 it is also possible to identify different series of
resonances in the region where 
cos��12�� is close to +1. The
value of 
cos��12�� for each of such series increases system-
atically, however, its behavior is not smooth. The lowest
states of a Rydberg series are apparently always above the
next lowest single ionization threshold. Therefore, no mixing
between N and K takes place. Resonances in this region can
be associated with the Zee configuration �also called the fro-
zen planet configuration�. The stability of this configuration
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FIG. 3. Scaled fluctuations �fl
scaled of the cross sections of triplet

planar helium. �a� presents �fl
scaled between I3 and I20. �b� gives a

closeup of the region from below I9 to below I20. The amplitude of
the fluctuations remains approximately constant as function of the
energy.
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FIG. 4. �Color� Calculated 
cos �12� values as a function of
resonance energy E below the 20th threshold. The region
�
cos �12���0.5 also includes some converged resonances up to be-
low I23. Each point represents a particular triplet state resonance
with �x=+1 and �l�=1. The resonances are displayed in color ac-
cording to their allocation to Rydberg series: • �first�, • �second�, •
�third�, • �fourth�, • �fifth�, and • for resonances not identified with
any one of these series.
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in both the radial and the angular directions explains why
also N and K remain approximate quantum numbers.

The region �
cos��12����0.5 is characterized by strong
mixing between the numbers N, K, and F, in agreement with
the instability of the classical motion of the associated con-
figurations. Thus, the electron motion in this region is highly
uncorrelated, which is also reflected in the convergence of
our results: resonances above I20 are convergent almost ex-
clusively if �
cos��12����0.5.

The approximate classification of helium resonances un-
veiled in Fig. 4 allows us to study separately the contribu-
tions of different series to the photoionization cross sections.
Indeed, only a small fraction of states contribute significantly
to the cross section. For triplet states the resonances which
yield major contributions are characterized by odd values of
F,

F = 2m + 1, m � N0, �29�

while series with even F and all resonances that cannot be
characterized by F—e.g., those resonances close to the DIT
for which −0.5� 
cos �12��0.5—result in almost no contri-
bution. This is a consequence of the nodal structure of the
initial and final wave functions which leads to the propensity
rules for dipole transitions �12,53,54�. In the case of singlet
states the main contributors correspond to even values of F
�23�.

The data available at present demonstrate that the size of
the contributions decreases with increasing value of m in Eq.
�29� resulting in a dominant series with F=1. In Fig. 5, a
comparison of the fluctuations of the photoionization cross
section of the dominant resonance series and the one includ-
ing all resonances is presented. The comparison illustrates
that the subset of resonances with F=1 resembles the cross
section quite well and therefore that this group of resonances
truly yields the dominant contributions.

The picture described above seems also to be reflected in
the structure of the contributing series in the complex plane.
Figure 6 depicts the imaginary part of the resonances of the
first up to the fourth Rydberg series identified in Fig. 4 as a
function of N�E�=�−2 /E+1 /2, with E=Re�E��. Odd series
�Figs. 4�a� and 4�c�� are distributed almost homogeneously
even at low energies, while the noncontributing even series
exhibit a regular distribution at rather high energies. In Figs.
4�b� and 4�d� it is possible to recognize the Rydberg series
converging to the single ionization thresholds IN up to
N�12, which indicates the absence of intruders from other
series.
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FIG. 5. �Color online� Comparison of the fluctuations of the
photoionization cross sections from I9 up to I20 including all reso-
nances �solid line� and resonances with F=1 only �dashed line�.
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FIG. 6. �Color online� Resonances of triplet planar helium from I3 up to I23 belonging to the series labeled by F=1 �a�, F=2 �b�,
F=3 �c�, and F=4 �d� identified in Fig. 4. To illustrate the underlying structure the half width of the resonances is shown as a function of
N�E�=�−2 /E+1 /2, with E=Re�E��. Integer values of N�E� denote the single ionization thresholds. The series associated to the odd values
of F exhibit a disorder structure already at low energies in contrast to the even series.
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The existence of a dominant subset of resonances has im-
portant consequences for the discussion of Ericson fluctua-
tions in the cross sections. We will demonstrate this in a
rather crude way by computing a kind of local mean level
spacing s̄ for converged resonances �see the Appendix� and
comparing this to the resonance widths. In Fig. 7 the reso-
nance widths in units of the computed local mean level spac-
ing are displayed. Figure 7�a� clearly illustrates that if one

considers all resonances the condition �̄� s̄ is already met
around I9 and therefore the Ericson regime is reached. At
energies as high as I20 more than 90% of the resonances
overlap. From this one might expect that single peaks in the
cross sections observed in Fig. 3 have random character and
are not the result of individual resonances. However, Fig.
7�b� indicates that the resonances of the dominant series have
not reached the Ericson regime yet, since the condition
�i� s̄ is only fulfilled by a small fraction of resonances and

therefore �̄� s̄ is not satisfied. The expected value of cos �12
for the resonances belonging to the F=1 series is close to −1
even at low energies and approaches −1 rather fast as the
energy increases. Therefore, practically all of these reso-
nances can be associated to the collinear eZe configuration.
Provided the picture of a dominant series remains valid for
high enough energies, Ericson fluctuations in helium are ex-
pected around I34.

On the one hand, neither currently available studies of the
full 3D problem nor experimental observations �23� supply
any evidence for the mixture of series with different approxi-
mative quantum numbers F or for the loss or existence of the
dominant role of a single series above I17. On the other hand,
the decay behavior of fluctuations from different series is not
known at low energies, though it is expected to decay ac-
cording to Eq. �27� at the breakup threshold. Therefore, it is
not entirely clear whether the picture described above holds
for the whole energy region up to the double ionization
threshold. In particular the influence of other series charac-
terized by F has to be understood. In order to investigate this
issue we have studied the contributions to the photoioniza-
tion cross section of the first five series of resonances sepa-
rately. In Fig. 8 the contributions of the series with F=1,
F=3, and F=5 and the contribution of the remaining reso-
nances are presented. A direct comparison of the plots in Fig.

8 provides a rough estimate of the amplitudes of the fluctua-
tions. The typical magnitude of the fluctuations for the reso-
nance series F=1 around I9 is about three times larger than
the one for the F=3 series and about ten times larger than the
one for the F=5 series. Nevertheless, we observe that the
decay of the magnitude of the fluctuations is more rapid for
series with smaller F; e.g., around I18 the rate for the typical
magnitude of the fluctuations for the series F=1 to the one
for the series F=3 decreased from three to slightly less than
two and the one between F=1 and F=5 from ten to around
five. This might eventually lead to a breakdown of the domi-
nant series picture. Instead one might have to consider more
and more resonance series with odd F the closer one gets to
the double ionization threshold, where the fluctuations of
each of these series are comparable in magnitude and which
lead to an earlier onset of Ericson fluctuations than expected
for the 1D helium picture. The slower decay of the fluctua-
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FIG. 7. �Color online� Widths in units of the mean level spacing s̄. �a� shows the widths of all resonance states found in this energy
regime, with the inset giving a closeup of the regime around I7 to I9, while �b� includes exclusively resonances characterized by F=1. The
way s̄ is determined is described in the Appendix with �=0.1, m=30 000, and �=1.
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FIG. 8. �Color online� Contributions of subsets of resonances to
the fluctuations of the photoionization cross section from below I9

to below I20. The fluctuations due to the series F=1, F=3, and
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tions for larger vales of F might be due to the fact that these
states are still farther from being collinear than the ones with
F=1 at low energies, though at the total fragmentation
threshold all those series apparently converge to the collinear
configuration.

IV. SUMMARY AND CONCLUSIONS

We have presented the computed fluctuating part of the
TPCS of doubly excited triplet P states in planar helium up
to the ionization threshold I20. The fluctuations of the TPCS
follow the behavior predicted by the scaling law given in
�50�. F=N−K is found to be an approximate quantum num-
ber of states as in the full 3D atom �23�. This imposes a
hierarchy on the contributions to the TPCS, where the subset
of resonances with F=1 gives the dominant contribution.
The regime of overlapping resonances is already reached
around ionization threshold I9; however, the resonances of
the dominant series do—at least up to I20—not fulfill the

overlap criterion �̄� s̄. Therefore, Ericson fluctuations are
absent in the TPCS. Nevertheless, with decreasing distance
to the double ionization threshold the dominance of the
F=1 series of resonances apparently breaks down as more
and more other subsets of resonances start to contribute sig-
nificantly to the TPCS. This would lead to an earlier onset of
Ericson fluctuations than expected in the picture of a single
dominant series.
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APPENDIX: COMPUTATION OF s̄

The concern of this appendix is the method for the com-
putation of a local mean level spacing s̄ at energies within
the energy interval �Emin,Emax� �Emax�0�. The main diffi-
culty to achieve this purpose is the inhomogeneous distribu-
tion of the resonances, of which the density increases drasti-
cally close to the SIT. For the computation of s̄, m equally
spaced points E�, �=1, . . . ,m, are chosen within the interval
�Emin,Emax�. Around each E� the resonances in the interval
I�= �E�− �

�+1x ,E�+ ��
�+1x� are considered. Here x=Emax−E�, �

defines the relative length of the interval I� compared to x,
and � is the proportion of the interval I� which is situated
above E� to the one below E� �see Fig. 9�. For a given value
of ��1 the length of intervals I� decreases as the E� gets
closer to Emax. Though we do not have control on the number
of resonances Nres

��� within the intervals I�, in this way we

guarantee that the variations on Nres
��� for different values of �

are not as dramatic as for the case when all intervals have the
same length. Similarly the parameter � is used to tune the
ratio of the number of resonances above E� within I� to the
number of resonances below. The local mean level spacing is
computed via

s̄� =
��Emax − E��

Nres
��� . �A1�

Now we calculate an estimate for � for which the number of
states contained in the lower part of the interval is equal to
the one of the upper part. For this we consider a single Ry-
dberg series below a determined threshold. For this crude
estimate we assume that we have only one active electron.
Starting from an interval �En−�n ,En+�n� around the state En,
which includes �n states above and below the state En, the
absolute values of energy differences between En and the
upper and lower boundary of the interval are given by

�E+ = En+�n − En

= −
1

2�n + �n −
1

2
	2 +

1

2�n −
1

2
	2

=
�n�2n + �n − 1�

2�n −
1

2
	2�n + �n −

1

2
	2 ,

�E− = En − En−�n =
�n�2n − �n − 1�

2�n −
1

2
	2�n − �n −

1

2
	2 , �A2�

where n is the excitation of the state with energy En. Since
we are interested in the behavior immediately below single
ionization thresholds, this leads to the assumption n��n,
under which the proportion �=�E+ /�E− gives
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FIG. 9. �Color online� Schematic illustration of the determina-
tion of s̄.
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� =

�2n + �n − 1��n − �n −
1

2
	2

�2n − �n − 1��n + �n −
1

2
	2 →

n��n

1. �A3�

A comparison of computations of s̄ with varying � and �
��� � 1

3 ,1�, �� �0.05,0.2�� shows that there is almost no de-
pendence of s̄ on these parameters.
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