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We present a spectral method of configuration-interaction type for three-dimensional helium which com-
bines the complex rotation method with an appropriate expansion of the atom wave function in a basis of
products of Coulomb-Sturmian functions of the electron radial coordinates with independent dilation param-
eters for the two electrons and bipolar spherical harmonics of the angular coordinates. The matrix elements of
the kinetic energy and of the electron-nucleus interaction term are calculated using Gauss-Laguerre integration
techniques. A combination of Gauss-Laguerre integration techniques with the generalized Wigner-Eckart theo-
rem and recurrence relations allows an efficient and stable calculation of the matrix elements of the electron-
electron interaction. The freedom of the choice of the dilation parameters permits us to access highly excited
states with rather small sizes of the basis. Highly doubly excited states up to the tenth ionization threshold of
singlet and triplet S states of helium are presented.
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I. INTRODUCTION

As was first realized through an experiment by Madden
and Codling �1�, doubly excited states of helium cannot in
general be described by a simple model based on
independent-particle angular momentum quantum numbers
Nl1nl2. Since then, the regime near to the double ionization
threshold represents a paradigm for electron correlations in
atomic systems and has therefore attracted the continuous
interest of both theoreticians and experimentalists. A large
amount of theoretical and computational effort has been in-
vested in the attempt to improve our understanding of elec-
tron correlations in two-electron atoms, see, e.g., �2–7� and
references therein.

Doubly excited states of two-electron atoms are organized
in series converging toward the single-ionization thresholds
�SITs� IN of He�N�+ states. The inherent strongly correlated
nature of doubly excited states requires the introduction of
new classification schemes, e.g., consisting of the approxi-
mate quantum numbers �n ,N ,K ,T� �8,9�. Starting from the
fourth SIT, members of higher-lying series interfere with
lower series. Above the eighth ionization series the widths of
the resonances can be larger than their separation �4,10�. In
the recent years an improvement of measurement techniques
has allowed a detailed examination of doubly excited states
converging up to the N=16 threshold of He �10–12�. From
the theoretical side, close to the double ionization threshold
the number of open channels increases dramatically. There-
fore, currently available full three-dimensional �3D� ap-
proaches require rather large basis sets for the representation
of the associated eigenvalue problem. Simplified one-

dimensional �1D� models or the s2 model �13–18� of the 3D
atom reduce significantly the calculation difficulties. How-
ever, the former models may underestimate the decay rates
of the resonances by orders of magnitude �19�, and the latter
cannot associate computed states to semiclassical configura-
tions such as the frozen planet �20� or the asymmetric stretch
configuration, which are essential for the discussion of Eric-
son fluctuations in photoionization cross sections �12,21�.
The planar �2D� helium model �21–23�, in which the dynam-
ics are confined to a two-dimensional configuration space,
allows a qualitative description of the helium spectrum near
the total fragmentation threshold for any value of the total
angular momentum L, which enables one to describe the
driven system in the framework of Floquet theory, and, in
particular, a computation of the triplet P-state spectrum up to
the 23rd threshold. For the treatment of the full 3D problem
there are mainly two classes of approaches. On the one hand,
there is the explicitly correlated �EC� approach �24� in which
the interelectronic distance r12 is an explicit coordinate. The
expansion in functions of perimetric coordinates, which is of
EC type, allows at present a very accurate description of the
singlet P-state spectrum up to the N=17 threshold �12�. An
EC basis expansion in terms of Sturmian functions �25,26� of
perimetric coordinates leads to a banded matrix representa-
tion of the Hamiltonian, and all its matrix elements are com-
puted analytically. This allows the treatment of matrices of
rather large size and accurate calculation of the energy and
width of singly and doubly excited states. However, this
method is essentially limited to small total angular momenta
L=0,1 ,2 due to the dramatic increase in selection rules with
L. This also imposes a limitation for the treatment of helium
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under periodic driving and multiphoton single and double
ionization. On the other hand, there are the spectral methods
of configuration-interaction �CI� type, in which the wave
function is expanded in single-particle wave functions and
r12 is not an explicit coordinate. Within these methods the
computation of states with L�3 does not pose any additional
difficulties and are frequently used for the description of
few-photon ionization processes �7,27–32� where highly
doubly excited states do not play a fundamental role. How-
ever, up to now, methods of this type have not been applied
to the computation of highly doubly excited states. These
states are expected to play an important role in the ionization
by low-frequency intense laser pulses �33,34� or in the de-
scription of nondispersive two-electron wave packets �23�.
However, an accurate theoretical treatment of such a problem
defines a formidable theoretical and numerical challenge due
to the field-induced coupling of several total angular mo-
menta and the dimensions of the matrices associated to
single total angular momenta. Note, however, that a 3D ab
initio fully numerical treatment of the ionization of helium in
the low-frequency regime is available �35� and has been
already used to give a rather qualitative description of the
correlations in the ionization process of helium from the
ground state by a 780 nm laser pulse of peak intensity
�0.275−14.4��1014 W /cm2. However, due to the difficulty
to extract physical information from this grid approach and
its high requirements concerning computational resources, an
accurate spectral approach to this problem becomes even
more desirable.

In this paper, we demonstrate that highly doubly excited
states may be computed within a CI approach. For this pur-
pose, we extend the approach presented in �7� in which the
radial part of the wave function is expanded in terms of
products of Coulomb-Sturmian functions with independent
dilation parameters for each electron and coupled spherical
harmonics for the angular coordinates. In particular, we de-
velop an efficient method for the computation of the matrix
elements of the e-e interaction term. Our method combines
the Gauss-Laguerre �GL� integration techniques together
with the generalized Wigner-Eckart theorem and recursion

relations �36,37�, which leads to a significant reduction in
computation time. This is crucial for the study of the highly
excited regime of the spectrum, of which the accurate de-
scription requires rather large matrices, though these are con-
siderably smaller than those used in state-of-the-art methods.
The latter is achieved by an appropriate choice of the dilation
parameters which allows an efficient description of rather
wide regions of the spectrum.

In addition, this approach is equally valid for the descrip-
tion of any total angular momentum manifold. Therefore,
besides the study of the fundamental problem of the under-
standing of the regime close to the double ionization thresh-
old of two-electron atoms, our approach also provides per-
spectives for the treatment of the interaction of helium with
low-frequency intense laser pulses or for the formation of
nondispersive wave packets.

The paper is organized as follows: in Secs. II and III we
outline our theoretical and numerical setups, respectively.
Section IV presents results for L=0 states for singlet and
triplet symmetries up to the tenth ionization threshold. Sec-
tion V concludes the paper. Unless stated otherwise, atomic
units are used throughout this document.

II. THEORETICAL APPROACH

A. Spectral method

The nonrelativistic Hamiltonian H for the helium atom,
under the assumption of an infinitely heavy nucleus, reads as

H =
p�1

2

2
+

p�2
2

2
−

2

r1
−

2

r2
+

1

r12
, �1�

with the interelectronic distance

1

r12
=

1

�r�1 − r�2�
, �2�

and r�1, r�2, p�1, and p�2 the position and momentum vectors of
electrons 1 and 2, respectively. The eigenstate wave function
of the helium atom with a total angular momentum L of
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FIG. 1. �Color online� �Left� Coefficients for �i=�i+1: initial values computed via Eq. �29� are marked by the letter I. Representative for
all coefficients the recursion flow for the computation of one matrix element is indicated with arrows. �Center� Coefficients for ni= li+1:
initial values computed via Eq. �29� are marked by the letter I. The starting values for the coefficients with �i=�i+4 are marked by the letter
S. �Right� Coefficients for �i��i+1: as a representative the coefficients with �i=�i+4 are pictured. The starting values characterized by the
letter S correspond to the values marked by an S in the center picture of this figure. The values for the restart of the recursion are highlighted
by G. All coefficients ��i ,ni �Ni� with Ni��i+ni are equal to zero.
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projection M and total energy E� satisfies the time-
independent Schrödinger equation

�H − E����
L,M�r�1,r�2� = 0. �3�

In our approach �7,38�, which is of CI type, the solutions to
Eq. �3� is expanded as follows:

��
L,M�r�1,r�2� = �

l1,l2

�
s

�
n1,n2

	k1s,k2s,n1,n2,�
l1,l2,L,M 
n1,n2

l1,l2

� A
Sn1,l1

�k1s��r1�

r1

Sn2,l2

�k2s��r2�

r2
�l1,l2

L,M�r̂1, r̂2� , �4�

where 	k1s,k2s,n1,n2,�
l1,l2,L,M is the expansion coefficient and


n1,n2

l1,l2 =1+ �1 /�2−1��n1,n2
�l1,l2

controls the redundancy that
might occur within the basis due to symmetrization. The
symmetry or antisymmetry of the spatial wave function, as
required by the Pauli principle, is ensured by a projection
onto either singlet or triplet states via the operator

A =
1 + P

�2
, �5�

where the operator P exchanges both electrons and  takes
values of +1 or −1 for singlet or triplet states, respectively.
The radial one-electron functions Sn,l

�k��r� are the Coulomb-
Sturmian functions �25,26� defined for a given angular mo-
mentum l and radial index n by

Sn,l
�k��r� = Nn,l

�k��2kr�l+1Ln−l−1
�2l+1��2kr�exp�− kr� , �6�

where k is a dilation parameter and Ln−l−1
�2l+1��2kr� is a Laguerre

polynomial. The normalization constant Nn,l
�k� given by

Nn,l
�k� =�k

n
� �n − l − 1�!

�n + l�! 	1/2

�7�

is chosen in order to satisfy the overlap condition



0

�

drSn,l
�k��r�Sn,l

�k��r� = 1. �8�

With this, the orthogonality relation for the Sturmian func-
tions reads



0

�

drSn,l
�k��r�

1

r
Sn�,l

�k� �r� =
k

n
�nn�. �9�

The radial index n of the Sturmian functions is a positive
integer satisfying n� l+1. The angular part of expansion �4�
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FIG. 2. �Color online� GN1,N2
: a schematic depiction for the com-

putation of matrix G. The matrix is decomposed in subblocks of
dimension B. Within each of these subblocks a set of four initial
values is computed using GL integration from which the rest of the
matrix elements can be calculated employing Eqs. �31� and �32�.

TABLE I. Singlet state resonances below I2: our results on the
left are compared with the results of �3�. The dimension of the
matrices used to obtain these data was n=11472 and p=8304, re-
spectively. The data presented were subject to a stability analysis
with respect to varying values of the complex rotation angle �. By
increasing the excitation of the outer electron �downwards in the
table�, the convergence improves.

−Re�Ei,�� −Im�Ei,�� −Re�Ei,�� −Im�Ei,��

This work Bürgers et al. �3�

0.77787 0.00227 0.777867636 0.002270653

0.6219 0.0001 0.621927254 0.000107818

0.589895 0.000681 0.589894682 0.000681239

0.54808 0.00004 0.548085535 0.000037392

0.544882 0.000246 0.544881618 0.000246030

0.527715 0.000023 0.527716640 0.000023101

0.526687 0.000109 0.526686857 0.000109335

0.518103 0.000015 0.518104252 0.000014894

0.517641 0.000057 0.517641112 0.000056795

0.512763 0.000010 0.512763242 0.000009970

0.5125135 0.0000330 0.512513488 0.000032992

0.5094833 0.0000069 0.509483569 0.000006918

0.5093327 0.0000208 0.509332686 0.000020795

0.507324 0.000005 0.507324340 0.000004959

0.5072258 0.0000139 0.507225835 0.000013936

0.505827 0.000004 0.505827143 0.000003657

0.5057591 0.0000098 0.505759104 0.000009790

0.5047463 0.0000028 0.504746388 0.000002766

0.5046973 0.0000072

0.5039403 0.0000021

0.5039040 0.0000054

0.5033238 0.0000016

0.5032958 0.0000042

0.5028415 0.0000013

0.5028196 0.0000033

0.5024570 0.0000011

0.5024395 0.0000026

0.5021456 0.0000009

0.5021314 0.0000021

0.5018898 0.0000007

0.5018782 0.0000018

0.5016675 0.0000015
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is expressed in terms of bipolar spherical harmonics �39�,

�l1,l2
L,M�r̂1, r̂2� = �

m1,m2

�l1,m1,l2,m2�L,M�Yl1,m1
�r̂1�Yl2,m2

�r̂2� ,

�10�

which couple the two individual angular momenta l1 and l2
in the L-S scheme. Yl,m denotes the spherical harmonics and
�l1 ,m1 , l2 ,m2 �L ,M� is a Clebsch-Gordon coefficient. In order
to preserve parity, which is a good quantum number, the L-S
coupled individual angular momenta of the electrons must
satisfy �−1�L= �−1�l1+l2 �40�. To avoid redundancies in expan-
sion �4�, the orbital angular momenta are restricted to
l1� l2, and if l1= l2 and k1s=k2s to n1�n2.

Within a CI approach, the interelectronic distance 1 /r12 is
not directly accessible. Instead one has to exploit the multi-
pole expansion of the electron-electron repulsion to get an
expression for the interelectronic distance,

1

r12
= �

q=0

�

�
p=−q

q
4�

2q + 1

r�
q

r�
q+1Yq,p

� �r̂1�Yq,p�r̂2� , �11�

with r�=min�r1 ,r2� and r�=max�r1 ,r2�.

TABLE II. Triplet state resonances below I2: our results on the
left are compared with the results of �3�. The dimension of the
matrices used to obtain these data was n=11472 and p=7936, re-
spectively. The data presented were subject to a stability analysis
with respect to varying values of the complex rotation angle �. The
last few resonances are exclusively members of the K=1 series.

−Re�Ei,�� −Im�Ei,�� −Re�Ei,�� −Im�Ei,��

This work Bürgers et al. �3�

0.60257751 0.00000332 0.602577505 0.000003325

0.55974655 0.00000010 0.559746626 0.000000130

0.54884086 0.00000155 0.548840858 0.000001547

0.53250532 0.00000006 0.532505349 0.000000072

0.528413972 0.000000772 0.528413972 0.000000771

0.52054918 0.00000004 0.520549199 0.000000041

0.518546375 0.000000429 0.518546375 0.000000428

0.51418035 0.00000002 0.514180356 0.000000025

0.513046496 0.000000260 0.513046496 0.000000260

0.510378167 0.000000017 0.510378174 0.000000016

0.509672798 0.000000169 0.509672798 0.000000169

0.50792515 0.00000001 0.507925149 0.000000011

0.507456056 0.000000116 0.507456056 0.000000116

0.506250076 0.000000007 0.506250079 0.000000008

0.505922151 0.000000083 0.505922151 0.000000082

0.505055338 0.000000005 0.505055341 0.000000006

0.504817014 0.000000061

0.50399459 0.00000005

0.503366094 0.000000035

0.502875028 0.000000027

0.502484067 0.000000022

0.502167743 0.000000018

0.501902040 0.000000015

TABLE III. Singlet state resonances below I3: our results on the
left are compared with the results of �3�. The dimension of the
matrices used to obtain these data was n=11744 and p=6951, re-
spectively. The data presented were subject to a stability analysis
with respect to varying values of the complex rotation angle �.

−Re�Ei,�� −Im�Ei,�� −Re�Ei,�� −Im�Ei,��

This work Bürgers et al. �3�

0.353538 0.001505 0.353538536 0.001504906

0.31745 0.00333 0.317457836 0.003329920

0.281073 0.000751 0.281072703 0.000750733

0.263388 0.001209 0.263388312 0.001209354

0.25737 0.00001 0.257371610 0.000010564

0.25597 0.00035 0.255972114 0.000350036

0.246635 0.000566 0.246634603 0.000565481

0.244324 0.000021 0.244324739 0.000021400

0.243824 0.000180 0.238524104 0.000318437

0.23853 0.00032 0.243824049 0.000179910

0.237310 0.000016 0.237311202 0.000017021

0.23715 0.00010 0.237147099 0.000102160

0.233900 0.000196 0.233898812 0.000196262

0.233172 0.000012 0.233173689 0.000012347

0.233122 0.000062 0.233121363 0.000062881

0.231002 0.000129 0.231001524 0.000129185

0.230531 0.000009 0.230531347 0.000008810

0.230520 0.000041 0.230519146 0.000041369

0.229065 0.000090 0.229064586 0.000089418

0.228744 0.000028 0.228744234 0.000028755

0.228741 0.000006 0.228741812 0.000006247

0.227706 0.000065 0.227705232 0.000064398

0.227482 0.000021 0.227481269 0.000020794

0.227474 0.000004 0.227473958 0.000004545

0.226715 0.000048 0.22671442 0.00004789

0.226552 0.000015 0.226551500 0.000015492

0.2265427 0.0000033 0.22654299 0.00000342

0.225971 0.000037

0.225848 0.000012

0.2258390 0.0000026

0.225397 0.000029

0.2253023 0.0000092

0.2252943 0.0000020

0.224945 0.000023

0.2248710 0.0000073

0.2248640 0.0000016

0.224584 0.000018

0.2245242 0.0000059
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In general, the CI expansions involving Coulomb-
Sturmian functions use the same dilation parameter k for all
Coulomb-Sturmian functions, which is equivalent to setting
k1s=k2sk and s=1 in expansion �4�. Furthermore, for each
pair of �l1 , l2�, the same number N of Coulomb-Sturmian
functions Sn1,l1

�k� �r1� with l1+1�n1� l1+N and Sn2,l2
�k� �r2�, with

l2+1�n2� l2+N is taken into account. In contrast our ap-
proach is constructed in order to allow the dilation parameter
and the number of Coulomb-Sturmian functions associated
to one electron to be different from those attributed to
the other electron. This leads to the introduction of a set of
Coulomb-Sturmian functions �Sn1,l1

�k1s��r1� ,Sn2,l2
�k2s��r2�� associated

to electron one and two, which is characterized by the
combination �k1s ,N1s

min,N1s
max,k2s ,N2s

min,N2s
max�, with

l1+N1s
min�n1� l1+N1s

max and l2+N2s
min�n2� l2+N2s

max. More-
over, more than one and different sets—labeled by the sub-
script s—may be selected for any angular configuration
�l1 , l2�.

By choosing appropriate sets of Coulomb-Sturmian func-
tions the description of a given energy regime, i.e., below a
certain ionization threshold, is possible with a rather small
number of basis functions.

B. Complex rotation

The electron-electron interaction in helium couples differ-
ent channels of the noninteracting two-electron dynamics
and gives rise to resonance states embedded in the continua
above the first SIT. To extract the resonance states and their
decay rates we use complex rotation �or “dilation”� �41–45�,
which was shown to be applicable for the Coulomb potential
in �46�.

The complex dilation of any operator by an angle � is
mediated by the nonunitary complex rotation operator

R��� = exp�− �
r� · p� + p� · r�

2
	 , �12�

where r� and p� represent the six component vector made up of
r�1, r�2 and p�1, p�2, respectively. Rotation of the position and

TABLE III. �Continued.�

−Re�Ei,�� −Im�Ei,�� −Re�Ei,�� −Im�Ei,��

This work Bürgers et al. �3�

0.2245181 0.0000013

0.2242898 0.0000152

0.2242413 0.0000049

0.22423593 0.00000110

0.2240475 0.0000126

0.2240074 0.0000040

0.22400277 0.00000092

0.223845 0.000010

0.223811 0.000003

0.2238080 0.0000008

TABLE IV. Triplet state resonances below I3: our results on the
left are compared with the results of �3�. The dimension of the
matrices used to obtain these data was n=11744 and p=6760, re-
spectively. The data presented were subject to a stability analysis
with respect to varying values of the complex rotation angle �.

−Re�Ei,�� −Im�Ei,�� −Re�Ei,�� −Im�Ei,��

This work Bürgers et al. �3�

0.28727713833 0.00001491439 0.287277138 0.000014914

0.270283613 0.000023307 0.270283614 0.000023308

0.258133977 0.000009749 0.258133976 0.000009748

0.24996463 0.00000678 0.249964616 0.000006789

0.249000427 0.000006842 0.249000418 0.000006848

0.24480749 0.00000581 0.244807489 0.000005801

0.24031449 0.00000348 0.240314494 0.000003490

0.23969689 0.00000460 0.239696887 0.000004600

0.23767221 0.00000358 0.237672213 0.000003578

0.23496955 0.00000203 0.234969582 0.000002042

0.23456903 0.00000306 0.234569038 0.000003061

0.23343332 0.00000233 0.233433327 0.000002322

0.231692091 0.000001298 0.231692116 0.000001300

0.23142164 0.00000211 0.231421646 0.000002100

0.23071908 0.00000158 0.230719088 0.000001578

0.229535681 0.000000880 0.229535701 0.000000880

0.229345777 0.000001492 0.229345782 0.000001491

0.228880000 0.000001117 0.228880000 0.000001117

0.228040858 0.000000620 0.228040873 0.000000623

0.227902911 0.000001092 0.227902914 0.000001091

0.22757745 0.00000082 0.2275778 0.0000008

0.226961937 0.000000455 0.226962 0.000001

0.226858802 0.000000823 0.226859 0.000001

0.22662254 0.00000061

0.22615767 0.00000034

0.22607865 0.00000064

0.225901438 0.000000473

0.225542108 0.000000264

0.225480290 0.000000496

0.225343862 0.000000371

0.225060490 0.000000209

0.225011251 0.000000400

0.224903928 0.000000297

0.224676582 0.000000169

0.224636744 0.000000323

0.224550762 0.000000241

0.224365627 0.000000137

0.224332952 0.000000265
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momentum operators in the complex plane according to

r� → R���r�R�− �� = r�exp�ı�� ,

p� → R���p�R�− �� = p�exp�− ı�� , �13�

transforms Hamiltonian �1� into a non-Hermitian operator
with complex eigenvalues given by

H��� = � p�1
2 + p�2

2

2
	exp�− 2ı�� − � 2

r1
+

2

r2
−

1

r12
	exp�− ı�� .

�14�

However, the spectrum of the rotated Hamiltonian has the
following important properties �42,44,46�:

�1� The bound spectrum of H is invariant under the com-
plex rotation.

�2� The continuum states are located on half lines rotated
by an angle −2� around the ionization thresholds of the un-
rotated Hamiltonian into the lower half of the complex plane.
In the specific case of the unperturbed 3D helium Hamil-
tonian �1� the continuum states are rotated around the SIT
IN=−2 /N2 �47�, with N�N.

�3� There are isolated complex eigenvalues
Ei,�=Ei− ı�i /2 in the lower half plane corresponding to reso-
nance states. These are stationary under the variation of �
provided that the dilation angle is large enough to uncover
their positions on the Riemannian sheets of the associated
resolvent �47,48�. The associated resonance eigenfunctions
are square integrable �45�, in contrast to the resonance eigen-
functions of the unrotated Hamiltonian. The latter are asymp-
totically diverging outgoing waves �45,49,50�.

The eigenstates of H���=R���HR�−��,

H�����i,�
L,M� = Ei,���i,�

L,M� , �15�

are normalized for the scalar product

�� j,−�
L,M��i,�

L,M� = �ij �16�

and satisfy the closure relation

�
i

��i,�
L,M���i,−�

L,M� = 1. �17�

TABLE IV. �Continued.�

−Re�Ei,�� −Im�Ei,�� −Re�Ei,�� −Im�Ei,��

This work Bürgers et al. �3�

0.224262980 0.000000198

0.224110242 0.000000113

0.224083116 0.000000221

0.22387516 0.00000017

TABLE V. Singlet state resonances below I4: our results on the
left are compared with the results of �3�. The dimension of the
matrices used to obtain these data was n=11744 and p=6576, re-
spectively. The data presented were subject to a stability analysis
with respect to varying values of the complex rotation angle �.
Some more converged resonances have been obtained but are not
displayed for lack of space.

−Re�Ei,�� −Im�Ei,�� −Re�Ei,�� −Im�Ei,��

This work Bürgers et al. �3�

0.200990 0.000970 0.200989572 0.000969178

0.18783 0.00246 0.187834626 0.002458380

0.168261 0.001085 0.168261328 0.001086186

0.165734 0.000605 0.165734021 0.000605047

0.15691 0.00138 0.156904051 0.001377256

0.15083 0.00032 0.150824382 0.000320293

0.147267 0.000412 0.147266965 0.000416449

0.145400 0.000809 0.145397764 0.000808943

0.142603 0.000169 0.142602474 0.000169806

0.141066 0.000010 0.141064156 0.000011739

0.1398403 0.0002400 0.139840342 0.000239815

0.139190 0.000475 0.139189490 0.000475268

0.137686 0.000091 0.137685346 0.000092512

0.137088 0.000002 0.137088229 0.000002490

0.135728 0.000160 0.135728512 0.000160253

0.135439 0.000290 0.135437398 0.000289889

0.134551 0.000049 0.134551108 0.000049711

0.134229 0.000003 0.134228598 0.000002711

0.133141 0.000110 0.133141846 0.000111361

0.132997 0.000184 0.132996200 0.000183914

0.1324519 0.0000233 0.132451935 0.000023393

0.1322133 0.0000030 0.132212660 0.000003293

0.131396 0.000080 0.131396547 0.000080331

0.131320 0.000121 0.131319807 0.000120624

0.1309991 0.0000058 0.130999124 0.000005799

0.1307731 0.0000031 0.130772717 0.000003289

0.130160 0.000059 0.130160039 0.000059877

0.130121 0.000080 0.130120051 0.000080068

0.1299935 0.0000027 0.129993447 0.000002704

0.1297182 0.0000028 0.129717890 0.000002986

0.129251 0.000046 0.129251251 0.000046022

0.129323 0.000033 0.129322969 0.000033799

0.129225 0.000058 0.129224756 0.000057660

0.1289253 0.0000025 0.128925097 0.000002597

0.128777 0.000053 0.128776594 0.000054043

0.1285627 0.0000361 0.128562811 0.000036493

0.128552 0.000041 0.128551852 0.000041001

0.12831547 0.00000213 0.128315304 0.000002218

0.1282625 0.0000396 0.128262189 0.000039756

0.1280296 0.0000312 0.128029833 0.000031311

0.1280257 0.0000274 0.128025335 0.000027559

0.1278368 0.0000018 0.127836684 0.000001881
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C. Matrix representation

After substituting ��
L,M in Eq. �3� by its expansion �Eq.

�4�� and using the complex rotation method described previ-
ously, we obtain the following generalized eigenvalue prob-
lem:

H��i,� = Ei,� S�i,�, �18�

where �i,� is the vector representation of the wave function
��i,��, S is the matrix representing the overlap, and H� is the
matrix associated with the rotated Hamiltonian. The calcula-
tion of matrix elements of S and H� may be performed ana-
lytically, which becomes, however, cumbersome as soon as
various sets of Coulomb-Sturmian functions with different
dilation parameters are introduced. Alternatively GL integra-
tion �38,51� provides extremely accurate results for the ma-
trix elements in Eq. �18� since the GL quadrature formula is
exact in our case where all integrals to calculate involve
products of polynomials and decreasing exponentials. In ad-
dition, the matrix elements of the overlap matrix S, of the
kinetic energy, and of the Coulomb interaction of the elec-
trons with the nucleus can be computed efficiently with GL
integration. The situation for the electron-electron repulsion
is different: the computation of matrix elements associated
with the 1 /r12 term Eq. �11� involves the following radial
double integral:

U = 

0

�

dr1

0

�

dr2S�1,�1

��1� �r1�S�2,�2

��2� �r2�

� � r�
q

r�
q+1	Sn1,l1

�k1� �r1�Sn2,l2

�k2� �r2� , �19�

which can be decomposed into

TABLE V. �Continued.�

−Re�Ei,�� −Im�Ei,�� −Re�Ei,�� −Im�Ei,��

This work Bürgers et al. �3�

0.1278159 0.0000270 0.12781573 0.00002743

0.1276101 0.0000257 0.127610012 0.000025737

0.1276056 0.0000198 0.127605478 0.000019886

0.12745445 0.00000154 0.127454353 0.000001595

0.1274462 0.0000196 0.1274461 0.0000200

0.1272715 0.0000206 0.127271404 0.000020669

0.1272676 0.0000153 0.127267459 0.000015312

0.1271443 0.0000013 0.127144218 0.000001356

0.1271418 0.0000148 0.1271415 0.0000152

0.1269945 0.0000164 0.1269944 0.0000166

0.1269913 0.0000123 0.1269912 0.0000123

0.1268895 0.0000116

0.12688930 0.00000112 0.12688926 0.00000118

TABLE VI. Triplet state resonances below I4: our results on the
left are compared with the results of �3�. The dimension of the
matrices used to obtain these data was n=11744 and p=6386, re-
spectively. The data presented were subject to a stability analysis
with respect to varying values of the complex rotation angle �.

−Re�Ei,�� −Im�Ei,�� −Re�Ei,�� −Im�Ei,��

This work Bürgers et al. �3�

0.169306634 0.000021005 0.169306635 0.000021006

0.161480663 0.000051983 0.161480663 0.000051980

0.15212204 0.00001680 0.152122029 0.000016799

0.15117642 0.00002241 0.151176420 0.000022408

0.14716881 0.00003711 0.147168813 0.000037116

0.14317600 0.00001140 0.143175987 0.000011381

0.14169136 0.00001470 0.141691356 0.000014696

0.14008854 0.00000439 0.140088484 0.000004409

0.13999805 0.00002018 0.139998046 0.000020176

0.13796132 0.00000764 0.137961324 0.000007642

0.13678714 0.00000959 0.136787119 0.000009622

0.13597556 0.00000173 0.135975513 0.000001752

0.13585741 0.00001502 0.135857413 0.000015013

0.13467953 0.00000525 0.134679533 0.000005256

0.13381173 0.00000647 0.133811711 0.000006493

0.133329281 0.000001326 0.133329246 0.000001340

0.13323044 0.00001051 0.133230435 0.000010505

0.13249065 0.00000372 0.132490651 0.000003725

0.13184923 0.00000452 0.131849211 0.000004540

0.131533756 0.000001077 0.131533731 0.000001087

0.13145699 0.00000755 0.131456986 0.000007547

0.130962374 0.000002716 0.130962374 0.000002717

0.13048099 0.00000327 0.130480976 0.000003283

0.130261387 0.000000879 0.130261370 0.000000886

0.130202294 0.000005580 0.130202295 0.000005577

0.129855236 0.000002034 0.129855236 0.000002035

0.129487234 0.000002436 0.129487225 0.000002444

0.129327408 0.000000718 0.129327395 0.000000724

0.129281535 0.000004229 0.129281436 0.000004228

0.129028519 0.000001558 0.129028519 0.000001559

0.128742045 0.000001860 0.128742039 0.000001867

0.128621741 0.000000588 0.128621731 0.000000593

0.128585657 0.000003277 0.128585657 0.000003276

0.128395405 0.000001218 0.128395405 0.000001219

0.128168621 0.000001452 0.128168616 0.000001457

0.128075628 0.000000487 0.128075620 0.000000489

0.128046837 0.000002588 0.128046838 0.000002588

0.127900092 0.000000969 0.127900092 0.000000970

0.127717811 0.000001154 0.127717807 0.000001158

0.127644357 0.000000404 0.127644351 0.000000407

0.127621072 0.000002079 0.127621073 0.000002078

0.127505445 0.000000783 0.12750544 0.00000079

0.127356921 0.000000932 0.127356918 0.000000935
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U = 

0

�

dr1S�1,�1

��1� �r1�Sn1,l1

�k1� �r1�r1
q

�

r1

�

dr2S�2,�2

��2� �r2�Sn2,l2

�k2� �r2�
1

r2
q+1

+ 

0

�

dr2S�2,l2

��2� �r2�Sn2,l2

�k2� �r2�r2
q

�

r2

�

dr1S�1,�1

��1� �r1�Sn1,l1

�k1� �r1�
1

r1
q+1 . �20�

The GL quadrature formula for these integrals involves
double sums over a number of integration points which are
determined by the degree of the polynomial part of the sub-
integral functions �for details see, e.g., �38��. If n1

max and n2
max

are the maximum values of the radial indices of the Sturmian
functions of the electrons 1 and 2 involved in the whole
basis, respectively, then by choosing the number of integra-
tion points Nij =n1

max+n2
max+1 for GL integration allows the

computation of all matrix elements �Eq. �20��. With this
choice all double sums have the same length Nij

2 that scales
quadratically with the sum of n1

max and n2
max. The description

of highly excited states requires rather large values of n1
max

and n2
max for which this choice turns out to be rather ineffi-

cient as briefly mentioned below in Sec. IV. Alternatively
one might adjust the number of integration points to each of
the integrals �Eq. �20��, which would imply to calculate the
integrations points �zeros of Laguerre polynomials� several
times. However, this is even less efficient.

To reduce the number of operations needed to compute
the matrix representation of 1 /r12 we adopt a method, re-
cently developed by Zamastil et al. �36,37�, based on the
generalized Wigner-Eckart theorem and recurrence relations.
In the following, the method is reviewed and adjusted to our
definition of Coulomb-Sturmian functions Sn,l

�k��r�, which are
connected to the Sturmian functions Rn,l�kr� used in �37� by

Rn,l�kr� = Cn
�k�Sn,l

�k��r�
r

, with Cn
�k� =�n

k
. �21�

1. Linearization of the product of two Sturmian functions

The Wigner-Eckhart theorem for Sturmian functions �Eq.
�49� of �37�� reads as �52�

Sni,li

�ki� �r�S�i,�i

��i� �r� = �
Ni=Li+1

�i+ni

��i,�i,�i,ni,li,ki�Ni�SNi,Li

��i� �r� ,

�22�

with �i=�i+ki and Li=�i+ li. Orthogonality relation �9� for
the Sturmian functions leads to

��i,�i,�i,ni,li,ki�Ni� =
Ni

�i



0

�

drSni,li

�ki� �r�S�i,�i

��i� �r�
1

r
SNi,Li

��i� �r� .

�23�

After substitution of the products of two Sturmian func-
tions in the radial integrals of the 1 /r12 matrix elements �Eq.
�20�� by the corresponding expansions �Eq. �22��, we obtain

U = �
N1=L1+1

�1+n1

�
N2=L2+1

�2+n2

�GN1,N2

L1,L2,q��1,�2� + GN2,N1

L2,L1,q��2,�1��

� ��1,�1,�1,n1,l1,k1�N1���2,�2,�2,n2,l2,k2�N2� ,

�24�

where GNi,Nj

Li,Lj,q are the integrals defined by

GNi,Nj

Li,Lj,q��i,� j� = 

0

�

driSNi,Li

��i� �ri�ri
q


ri

�

drjSNj,Lj

��j� �rj�
1

rj
q+1 .

�25�

The advantage of the transcription of Eq. �20� in terms of
coefficient �23� and integral �25� is given through the possi-
bility of an recursive computation of the involved coeffi-
cients as well as of the integrals.

2. Recurrence relation for the coefficients (�i ,�i ,�i ,ni , li ,ki �Ni)

In case of fixed values for �i, �i, li, and ki within an
equation, we employ the shorthand notation

��i,ni�Ni� =��iki

�i

� Ni

�ini
��i,�i,�i,ni,li,ki�Ni� . �26�

These coefficients satisfy the recurrence relation �37�

���i − �i − 1���i + �i���i,ni�Ni�

= 2��i − 1 −
�iNi

�i
	��i − 1,ni�Ni�

− ���i + �i − 1���i − �i − 2���i − 2,ni�Ni�

+
�i

�i

��Ni + Li��Ni − Li − 1���i − 1,ni�Ni − 1�

+
�i

�i

��Ni − Li��Ni + Li + 1���i − 1,ni�Ni + 1� .

�27�

This equation can be used to lower the quantum number �i to
�i+1. Taking into account that

TABLE VI. �Continued.�

−Re�Ei,�� −Im�Ei,�� −Re�Ei,�� −Im�Ei,��

This work Bürgers et al. �3�

0.127297848 0.000000338 0.127297839 0.000000341

0.127278774 0.000001694 0.127278774 0.000001694

0.127186005 0.000000641 0.1271860 0.0000006

0.127063496 0.000000763 0.12706350 0.00000077

0.127015248 0.000000285 0.12701524 0.00000029

0.126999448 0.000001398 0.1269993 0.0000014

0.126923855 0.000000532

0.126821690 0.000000634

0.126781760 0.000000243

0.12676853 0.00000117

0.1267061 0.0000004
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��i,�i,�i,ni,li,ki�Ni� = �ni,li,ki,�i,�i,�i�Ni� �28�

provides the means to lower the quantum number ni to
li+1. The initial conditions for the recursion �Eq. �27�� are
��i

�0� ,ni
�0� �Ni

�0�� and ��i
�0� ,ni

�0� �Ni
�0�+1�, with �i

�0�=�i+1,
ni

�0�= li+1, and Ni
�0�=�i+ li+1. These have simple analytical

expressions given by �37�

��i
�0�,ni

�0��Ni
�0�� = 2��i + li + 1�

�
�i

�i+1ki
li+1

��i + ki��i+li+2� �2�i + 2li + 1�!
�2�i + 1� ! �2li + 1�!

,

��i
�0�,ni

�0��Ni
�0� + 1� = − �2��i + li + 1�

�
�i

�i+1ki
li+1

��i + ki��i+li+2� �2�i + 2li + 1�!
�2�i + 1� ! �2li + 1�!

.

�29�

In addition it holds

��i
�0�,ni

�0��Ni� = 0, Ni � �i + li + 2. �30�

3. Recurrence relations for the integrals GNi,Nj

Li,Lj,q(�i ,�j)

Equations �67� and �72� of �37� provide recurrence rela-
tions for the GNi,Nj

Li,Lj,q��i ,� j� that keep the indices Li, Lj, and q
and the parameters �1 and �2 constant. After transforming
these according to Eq. �21� we obtain

�N1,L1,�1�N2,L2,�2�

= qGN1,N2
+

�N2 + L2�
2

��N2 − 1��N2 − L2 − 1�
N2�N2 + L2�

GN1,N2−1

−
�N2 − L2�

2
��N2 + 1��N2 + L2 + 1�

N2�N2 − L2�
GN1,N2+1, �31�

and

�N1,L1,�1�N2,L2,�2�

= �q + 1�GN1,N2

+
�N1 − L1�

2
��N1 + 1��N1 + L1 + 1�

N1�N1 − L1�
GN1+1,N2

−
�N1 + L1�

2
��N1 − 1��N1 − L1 − 1�

N1�N1 + L1�
GN1−1,N2

, �32�

respectively. Here we have employed—under the condition
of a fixed set of parameters L1, L2, q, �1, and �2—the short-
hand notation:

GN1,N2
= GN1,N2

L1,L2,q��1,�2� . �33�

In addition, Eqs. �31� and �32� include the overlap integral

�N1,L1,�1�N2,L2,�2� = 

0

�

drSN1,L1

��1� �r�SN2,L2

��2� �r� . �34�

These overlaps and the initial conditions for recursions �31�
and �32� are calculated with GL integration. Notice that for

�1=�2 the overlaps have simple analytical expressions which
are implemented in our computations.

III. NUMERICAL TREATMENT

A. Computation of the matrix representation of the
generalized eigenvalue problem

The matrix elements of the kinetic term and the electron-
nucleus interaction of H�, and of the overlap matrix S are
calculated using GL integration that guarantees an accuracy
of the order of the machine precision �in double and qua-
druple precision�. The matrix elements of 1 /r12 can also be
computed very accurately with GL integration, but Eq. �24�
combined with recursive relations �27�, �31�, and �32� pro-
vides a much more efficient method. However, its implemen-
tation is delicate. Recursions �27�, �31�, and �32� are not
numerically stable even for rather small values of Ni and Li
�e.g., Ni−Li�15, Li�10�. Typically one observes a slow
decay in precision at each recursion step up to a certain
point, which is then followed by a rather rapid total break-
down of precision. Consequently, a computation of matrix
elements of 1 /r12 using purely the recursive method de-
scribed in Sec. II C seems not to be feasible. To overcome
the instability issues we limit the length of the recursions and
restart the recursion process. The implementation is de-
scribed in detail in the following.

To compute the coefficients ��i ,ni �Ni� the three-
dimensional coefficient matrix is initialized to zero and de-
composed into two dimensional slices with fixed �i. Using
Eq. �29� the two initial values for the slice with �i=�i+1 are
then evaluated. Looking at Eq. �27� it is easy to spot that for
�i=�i+1 the nonzero coefficients are situated in the upper
right triangle, the diagonal, and the first lower subdiagonal.
These matrix elements are then computed columnwise, start-
ing with the element of the first lower subdiagonal �see Fig.
1 �left��. Analogously we compute the auxiliary matrix for
ni= li+1. From Eq. �28� follows that the coefficients with
ni= li+1 correspond to the initial conditions for the matrix
slices with �i��i+1 �see Fig. 1 �center and right��. The
slices with �i��i+1 are computed in a similar way. The
major difference in their computation is that after a number
R of columns computed via the recursion formula we com-
pute two columns by using GL integration techniques and
then restart the recursion for another “reclength” or R col-
umns �see Fig. 1 �right��. In doing so we ensure that we are
able to contain the loss of precision.

The matrix GNi,Nj
is divided into blocks of dimension

“blocklength” or B �see Fig. 2�. Displaced by two rows
downwards with respect to the center of the block a set of
four initial values is calculated by using GL integration
methods. The displacement of the starting values is done as
to be able to compute efficiently zero values for integrals
with Ni�Nj in the case of equal dilation parameters �i=� j.
Starting from these the rest of the block is computed by
employing recursion formulas �31� and �32�. In doing so we
are able to shorten the length of the recursion and ensure a
certain level of precision.

The computations of the coefficients ��i ,ni �Ni� and the
integrals GNi,Nj

are performed in 128-bit arithmetic if neces-
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sary converted to other precision and then used to compute
matrix elements of 1 /r12 as given by Eqs. �11� and �24�. The
parameters R and B are optimized to yield the desired pre-
cision by as few GL integrated elements as possible, e.g., to
ensure 26 digits of accuracy R=6 and B=10 are sufficient,
while R=18 and B=26 provide at least 15 digits of accu-
racy for coefficients and integrals �Li ,Lj �50, Ni−Li ,
Nj −Lj �100, and 0.02��i ,� j �4.00�.

B. Solution of the eigenvalue problem

The inclusion of many sets of Coulomb-Sturmian func-
tions with different dilation parameters in our basis makes it
numerically overcomplete, which means that some eigenval-
ues of the overlap matrix �which must be positive definite�
can be zero or even negative. This results from a loss of
numerical independence due to finite precision arithmetic. In
order to solve this problem we proceed as follows. Let H�

and S be �n�n� matrices, and let us consider the �n�n�
orthogonal matrix T that diagonalizes S. Therefore,
TTST=s, where s is the diagonal matrix containing the ei-
genvalues of S of which the associated eigenvectors are
stored in columns of T. We define a small cutoff  �of the
order of 10−12� and reject all eigenvalues of S that are smaller

than this cutoff. We denote by p the number of overlap ei-
genvalues that are greater or equal to the cutoff. By rejecting
the n-p overlap eigenvalues and their corresponding eigen-
vectors, the sizes of T and s are reduced to �n� p� and
�p� p�, respectively. Using basic matrix algebra, one can
show that Eq. �18� can be transformed into the ordinary ei-
genvalue problem

H̃��̃i,�
L,M = Ei,��̃i,�

L,M , �35�

with

H̃� = VTHV ,

�̃i,�
L,M = V−1�i,�

L,M , �36�

where H̃� is a �p� p� matrix, �̃i,�
L,M is a �p�1� vector, and V

is a �n� p� matrix given by

�0.7 �0.6 �0.5 �0.4 �0.3 �0.2
Re�E� �a.u.�

�3

�2.5

�2

�1.5

�1

�0.5

0

Im
�E
�
�1

0�
3

a.
u.
�

�0.12 �0.1 �0.08 �0.06 �0.04
Re�E� �a.u.�

�2

�1.5

�1

�0.5

0

Im
�E
�
�1

0�
3

a.
u.
�

(b)

(a)

FIG. 3. Resonance spectrum for singlet symmetry L=0 states.
�a� Shows the data presented in Tables I, III, and V. In �b� the
converged resonances from above I4 to below I10 are displayed. The
used criterion of convergence was maximum relative deviation of
the real part of 10−4 and maximum relative deviation of the imagi-
nary part of 10−2 for at least three values of �. The spectra have
been obtained with matrices smaller or equal than n=12 240 and
p=8778, respectively.
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FIG. 4. Resonance spectrum for triplet symmetry L=0 states. �a�
Shows the data presented in Tables II, IV, and VI. In �b� the con-
verged resonances from above I4 to below I10 are displayed. The
used criterion of convergence was maximum relative deviation of
the real part of 10−4 and maximum relative deviation of the imagi-
nary part of 10−2 for at least three values of �. The spectra have
been obtained with matrices smaller or equal than n=12 240 and
p=8278, respectively. For the energy regime above I5 the conver-
gence of narrow resonances �K=−N+1� is limited due to the small-
ness of the imaginary part of the eigenvalues in comparison with
the real part.
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V = Ts−1/2. �37�

The numerical diagonalization of the eigenvalue problem
�Eq. �35�� is performed by an efficient implementation of the
Lanczos algorithm �53–55�.

IV. RESULTS

The described spectral method and the computation of
matrix elements of 1 /r12 via the restarted recursion method
have been used to compute highly doubly excited states of
helium for singlet and triplet symmetries. We have chosen to
compute resonances for L=0 as these states contain the high-
est degree of symmetry, which makes them converge slower
in this CI approach. The previously described spectral
method is applicable to any value of the total angular mo-
mentum and should give better convergence for higher val-
ues of L, which has already been illustrated in �7� for singly
excited states.

In order to compute the spectra up to the tenth SIT we
have used one choice of parameter sets for each regime be-
tween two SITs and for each symmetry. Each basis expan-
sion consists of an expansion into 16 angular configurations
and five sets �k1s ,N1s

min,N1s
max,k2s ,N2s

min,N2s
max� for each angular

configuration. Up to the fifth ionization threshold the dilation
parameters are, by a rule of thumb, chosen to be k1s=2 /N
and k2s=2 /ns, where N and ns are the excitations of the inner
and the outer electron of the resonance to describe, respec-
tively. The ns are taken as such that they account for different
excitation of the outer electron in order to allow a description
of a whole energy regime. The values of Nis

min,Nis
max

�i=1,2� are then chosen to provide an interval around N and
ns, respectively, i.e., N1s

min�N�N1s
max and N2s

min�ns�N2s
max. In

general the number of Sturmians introduced for the inner
electron is larger for symmetric excitation of both electrons
than in the case of a very asymmetric configuration. For the
higher-lying thresholds the choice of the dilation parameters
has to be amended as they have to account for different se-
ries and screening effects.

To take care of the numerical overcompleteness of the
basis the �n�n� matrices H� and S are transformed into the
basis where the overlap is diagonal. The transformation ma-
trix consists of the eigenvectors of the overlap matrix asso-
ciated to eigenvalues larger than the cutoff =10−12, resulting

TABLE VII. Singlet state resonances below I6 and actual preci-
sion; the dimension of the matrices used to obtain these data was
n=11808 and p=6193, respectively. The used criterion of conver-
gence was maximum relative deviation of the real part of 10−4 and
maximum relative deviation of the imaginary part of 10−2 for at
least three values of �.

−Re�Ei,�� −Im�Ei,�� −Re�Ei,�� −Im�Ei,��

0.07803 0.00040 0.0592650 0.0000218

0.077179 0.000755 0.0592493 0.0002250

0.075259 0.000724 0.05924720 0.00000099

0.07197 0.00083 0.0591693 0.0000474

0.071751 0.000233 0.05903087 0.00000400

0.069767 0.000456 0.058739 0.000158

0.069113 0.000680 0.0587098 0.0000314

0.067934 0.000042 0.05870388 0.00000155

0.067803 0.000059 0.0586368 0.0000295

0.067454 0.000601 0.0585482 0.0000027

0.066339 0.000146 0.0583035 0.0001101

0.066252 0.000119 0.0582713 0.0000023

0.065135 0.000427 0.0582679 0.0000382

0.0646766 0.0002976 0.058214 0.000019

0.0646037 0.0001459 0.05815259 0.00000639

0.0644329 0.0000361 0.0579425 0.0000813

0.0643087 0.0000122 0.0579212 0.0000024

0.063202 0.000310 0.0579127 0.0000421

0.062962 0.000300 0.0578718 0.0000108

0.0628546 0.0000515 0.05782639 0.00000857

0.0627563 0.0000814 0.0576439 0.0000640

0.06229723 0.00001692 0.05763370 0.00000235

0.06205363 0.00000056 0.05755575 0.00000868

0.061872 0.000216 0.0574577 0.0000197

0.0616514 0.0000441 0.0573948 0.0000022

0.061491 0.000177 0.0573938 0.0000378

0.061377 0.000047 0.0573937 0.0000580

0.0609470 0.0000141 0.05732928 0.00000769

0.06084037 0.00000096 0.0572486 0.0000144

0.060732 0.000123 0.05719414 0.00000207

0.060650 0.000181 0.0571939 0.0000285

0.0604259 0.0000869 0.0571928 0.0000580

0.060350 0.000026 0.05713818 0.00000645

0.0599835 0.0000140 0.0570707 0.0000108

0.05993838 0.00000137 0.0570269 0.0000552

0.0598501 0.0000758 0.05702415 0.00000195

0.059850 0.000248 0.0570228 0.0000220

0.0596356 0.0000284 0.05697575 0.00000537

0.0595730 0.0000115

TABLE VIII. Real and imaginary parts of few selected reso-
nances below I10. The dimension of the matrices used to obtain
these data was n=12240 and p=8548, respectively. The used crite-
rion of convergence was maximum relative deviation of the real
part of 10−4 and maximum relative deviation of the imaginary part
of 10−2 for at least three values of �.

−Re�Ei,�� −Im�Ei,�� −Re�Ei,�� −Im�Ei,��

−0.0239821 −0.0000061 −0.0233936 −0.0000775

−0.023951 −0.000190 −0.023265 −0.000062

−0.023929 −0.000163 −0.0231951 −0.0000558

−0.0238002 −0.000345 −0.0230812 −0.0000105

−0.0236262 −0.0000606 −0.0229936 −0.0000248

−0.023619 −0.000025 −0.022926 −0.000062

−0.0235660 −0.0000303 −0.0228979 −0.0000073

−0.0235573 −0.0000713 −0.0228237 −0.0000075

−0.023441 −0.000116 −0.022682 −0.000051

−0.0233989 −0.0000122 −0.022672 −0.000042
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in an effective reduction in the Hamiltonian matrix into an
�p� p� matrix �see Sec. III B� which has then to be diago-
nalized.

The computation of matrix elements of 1 /r12 with GL
integration techniques is rather cumbersome and renders the
optimization of the basis for an energy regime extremely
time consuming and therefore limits the described approach.
The implementation of the computation of 1 /r12 via the re-
started recursion method reduces computation time tremen-
dously and allows for an application of this spectral method
to the computation of highly doubly excited states of helium.
Several performance tests have been done. For instance, we
have computed the matrix representation of 1 /r12 for a ma-
trix designed to describe the resonance spectrum below the
sixth SIT with both methods on an ITANIUM2 processor at the
Linux Cluster of the Leibniz-Rechenzentrum of the Bay-
erische Akademie der Wissenschaften. The computation time
reduces from 22.5 h for pure GL integration to slightly less
than 2 h for the method described in Sec. III A. Moreover,
the speedup of this method compared to GL integration in-
creases with increasing maximum radial and angular indices
of the included Coulomb-Sturmian functions.

Tables I–VI display the real and imaginary parts of reso-
nances up to below I4. Only converged digits are shown. In
Tables I, III, and V our results for the singlet symmetry spec-
tra below I2 to below I4 are compared to reference data from
�3�, while in Tables II, IV, and VI our results for triplet sym-
metry are again presented together with data from �3�. The
presented data has been tested for convergence with respect
to variation of the complex rotation angle �, the dilation
parameters, and the number of angular configurations. For a
given choice of the parameters �k1s ,N1s

min,N1s
max,

k2s ,N2s
min,N2s

max� several values of � in the interval �0.085,0.2�
have been chosen. Note that the data presented in Tables
I–VI have each been obtained with one optimized basis
choice with an effective dimension of the resulting matrix of
p�8500 for singlet and p�8000 for triplet symmetry. In
contrast, the results in �3� where obtained using perimetric
coordinates and the typical basis dimensions were three
times larger for the results presented up to the fourth SIT and
about a factor 5 larger for convergence around the ninth ion-
ization threshold �56�.

In the case of singlet symmetry the data in Tables I, III,
and V show a precision of five to eight significant digits for
the real part and around two significant digits for the imagi-
nary part of the resonance energies. For triplet symmetry �see
Tables II, IV, and VI� the accuracy is around nine significant
digits for the real part and two significant digits for the
imaginary part, respectively. The discrepancy between the
precision for singlet and triplet symmetries is due to the in-
fluence of the Kato cusp �57�, which is a discontinuity of the
derivative of the wave function at r12=0 that is not resolv-
able within our approach. In the case of triplet symmetry the
influence of the Kato cusp is softened by the Pauli principle.
With increasing excitation of the outer electron the number
of converged digits rises in general in contrast to the EC
approach in �3�. This is due to the fact that the Kato cusp is
more important for symmetrically excited configurations.
Along Tables I–VI some resonances converge better than
others, which is a signature that the basis is more ideal for

the description of such resonances. Indeed, the convergence
of single states depends a lot on the used basis, a clear ex-
ample therefore is the triplet I3 ground state, which con-
verges better than anticipated from the above argument,
which is most probably a consequence of an almost ideal
basis for the description of this state. The precision for a
single resonance can be vastly improved by optimizing the
basis for this state instead of optimizing the basis for an
energy regime.

In Figs. 3 and 4 the spectra up to I10 are displayed for
singlet and triplet symmetries, respectively. For resonances
above the fourth SIT the criterion of convergence is given
through a coincidence of eigenenergies for at least three dif-
ferent values of the complex rotation angle � with a maxi-
mum relative deviation of 10−4 of the real part and 10−2 of
the imaginary part. The criterion is designed to exclude the
discretized continuum states, numerical artifacts, and non-
converged resonances in an efficient manner and does not
reflect the actual accuracy of the computed resonances,
which is in most cases significantly higher. To show the ac-
tual precision of our results we give apart from the graphical
data in Figs. 3 and 4 the energy and half width for converged
resonances below the sixth and tenth thresholds in Tables VII
and VIII �only converged digits are displayed�, respectively.
Notice that in Table VIII we present the resonances in a
narrow energy window which by far are not all found con-
verged resonances. Nevertheless, the results presented in
Tables VII and VIII have not been published so far, as much
as we know of, and can thus be considered as benchmark
results. Triplet state resonances with extremely narrow
width, which are usually members of the K=−N+1 series, do
often not suffice the above-mentioned criterion as for these
resonances we usually obtain only one to two significant
digits for the imaginary part. This is clearly visible in Fig. 4,
where for the energy regime above the fifth SIT only few
members of these series are visible. Note that the largest
matrices to diagonalize in order to obtain these spectra were
of dimension p=8778 for singlet and p=8278 for triplet
symmetry and are thus significantly smaller than in state-of-
the-art methods.

V. SUMMARY

We presented an implementation for an efficient compu-
tation of matrix elements of 1 /r12 within our CI approach.
The implementation is based on a combination of a linear-
ization of the product of two Coulomb-Sturmian functions,
recurrence relations, and Gauss-Laguerre integration tech-
niques. The method reduces the computation time by at least
a factor of 10 compared with pure GL integration and ren-
ders an optimization of the basis for doubly excited states
possible. Comparison of the spectrum of singlet and triplet S
states up to the fourth ionization threshold with existing data
shows the accuracy of our calculations obtained with a rather
small effective basis size which did not exceed 9000. In ad-
dition we provided energies and widths of the resonances
converging to the sixth and tenth SITs. Our results show that
the computation of highly doubly excited states is possible
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within our CI approach even in the energy regime where
mixing of series for different ionization thresholds and over-
lapping resonances occur. Therefore, our approach might
also help to shed some light in the understanding of this
region of the spectrum where signatures of the underlying
mixed regular and chaotic dynamics of the atom are expected
to become observable, such as Ericsson fluctuations in the
photoionization cross section �12,21�, loss of approximate
quantum numbers �9,12�, or semiclassical scaling laws for
the photoionization cross section below the double ionization
threshold �58�.

Furthermore, this approach is equally valid for the de-
scription of the spectrum of the manifolds with any value of
the total angular momentum L. Therefore, it makes a treat-
ment of the driven system possible and thus opens up a pos-
sibility for the search for nondispersive wave packets and

gives perspectives in the treatment of multiphoton ionization
processes, in particular in the low-frequency regime.
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