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Direct calculation of the ground-state two-electron reduced density matrix �2-RDM� and its energy has
recently been achieved for many-electron atoms and molecules by solving the anti-Hermitian part of the
contracted Schrödinger equation �ACSE� �D. A. Mazziotti, Phys. Rev. Lett. 97, 143002 �2006��. In this paper
the ACSE method is extended to computing the 2-RDMs and energies of excited states without the many-
electron wave function. The contracted Schrödinger equation �CSE� is an important ingredient for excited-state
2-RDM methods because it is a stationary-state condition for both ground and excited states. We develop the
theoretical framework for the ACSE as a stationary-state condition through its connections to the CSE and the
Schrödinger equation. As in previous ground-state calculations, the indeterminacy of the ACSE is removed by
reconstructing its 3-RDM as a functional of its 2-RDM through a cumulant theory for RDMs �D. A. Mazziotti,
Chem. Phys. Lett. 289, 419 �1998��. We calculate the initial 2-RDM from a multiconfiguration self-consistent-
field calculation that includes multireference electron correlation, which can be especially important for excited
states. The excited-state ACSE method is applied to computing absolute excited-state energies and vertical
excitation energies of the molecules HF, H2O, and N2 as well as ground and excited potential-energy curves of
HF. Comparisons are made to traditional multireference methods as well as full configuration interaction.
Computed excited-state 2-RDMs nearly satisfy necessary N-representability conditions.

DOI: 10.1103/PhysRevA.80.022507 PACS number�s�: 31.10.�z

I. INTRODUCTION

Knowledge of the two-electron reduced density matrix �2-
RDM� of a given quantum-mechanical state determines its
energy and fundamental electronic properties �1�. In the mid-
1950s Joseph Mayer and others �2� considered the possibility
of computing the ground-state 2-RDM without the many-
electron wave function. Simple calculations showed that the
two-electron density matrix must be constrained by non-
trivial conditions to ensure that it can be produced from in-
tegration of an N-electron density matrix �3–5�. Coleman
called these constraints N-representability conditions �4�, and
the search for such conditions became known as the
N-representability problem �6–8�. After 50 years two
complementary approaches to the direct calculation of the
2-RDM have emerged: �i� variational minimization of the
ground-state energy as a functional of the 2-RDM �9–15�
that is constrained by necessary N-representability conditions
known as positivity conditions �1,5� and �ii� solution of the
contracted Schrödinger equation �16–32� or its anti-
Hermitian part �33–42� for the 2-RDM. These recent meth-
ods have focused largely on ground-state electronic energies
and 2-RDMs. In the present paper we extend the latter class
of methods for the direct calculation of excited-state energies
and 2-RDMs.

Excited electronic states of atoms and molecules are criti-
cally important throughout physics and chemistry including
the study of light-activated or nonadiabatic chemical reac-
tions from fluorescence to photochemistry. Despite their fun-
damental importance, nonetheless, the calculation of excited

states has received much less attention than the calculation of
ground states. In part this is because excited states can be
much more difficult to compute. Variationally, the excited
states must be constrained to be orthogonal to the lower ly-
ing states. Moreover, excited states are generally much fur-
ther from a mean-field solution than their ground-state coun-
terparts. Multiple determinants often contribute significantly
to the excited-state wave function in its zeroth order of per-
turbation theory, which is usually called multireference cor-
relation �43,44�. Many ground-state methods, such as density
functional theory and coupled cluster theory, use the re-
sponse of the ground state to a weak time-dependent electric
field to generate energy spectra �45,46�; a related response
method has been developed for the variational 2-RDM
method �47,48�. With these response methods, however, it
can be difficult to extract the properties and 2-RDMs of the
excited states. The solution of the Schrödinger equation in a
finite basis set, known as full configuration interaction �FCI�,
produces both ground- and excited-state wave functions, but
such solutions scale exponentially in computational cost with
respect to the number N of electrons. Multireference meth-
ods, which build correlation upon more-than-one reference
determinant, are probably the most effective techniques for
excited states, especially for states with significant correla-
tion �43�. Multireference configuration interaction with
single-and-double excitations, however, can be rather costly
while multireference second-order perturbation theory
�MRPT2� may not be sufficiently accurate.

Integration �or contraction in a matrix formulation� of the
density-matrix version of the Schrödinger equation over all
electrons save two produces the contracted Schrödinger
equation �CSE� �16–32�. The CSE was first obtained in a
coordinate representation in 1976 by Cohen and Frishberg*damazz@uchicago.edu
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�49� and Nakatsuji �50�; the anti-Hermitian part of the CSE
�or ACSE� was first examined by Harriman �51,52� in 1979.
Neither the CSE nor the ACSE, however, can be solved for
the 2-RDM because they both depend on higher-particle
RDMs. In 1993 Colemenero et al. �16� recognized that the
CSE could be solved if its higher-particle RDMs were ex-
pressed as functionals of the 2-RDM. One of the authors �22�
in 1998 systematized the reconstruction of the higher RDMs
from the 2-RDM by developing a cumulant theory for RDMs
�22,23,25,26,28,53,54�. Applications of the CSE to comput-
ing ground-state energies and 2-RDMs of atoms and mol-
ecules were made by Colmenero and Valdemoro �18,32�, Na-
katsuji and Yasuda �19,20�, and Mazziotti �21,30�. In 2006
ground-state energies and 2-RDMs of greater accuracy were
obtained from solving the ACSE with cumulant reconstruc-
tion of the 3-RDM �33–42�.

In this paper we extend the contracted Schrödinger meth-
ods to computing energies and 2-RDMs of excited states
without the many-electron wave function. The CSE is an
important ingredient for excited-state 2-RDM methods be-
cause it is a stationary-state condition for both ground and
excited states. By Nakatsuji’s theorem, if the RDMs in the
CSE are N-representable, then for energetically nondegener-
ate states there is a one-to-one mapping between solutions of
the Schrödinger equation and solutions of the CSE
�21,50,52�. To treat excited states, we choose to solve the
ACSE subset of the CSE which, although it does not appear
to have a complete equivalent to Nakatsuji’s theorem, has
several advantages: �i� unlike the CSE, the ACSE depends
upon only the 3-RDM �29,33,51� and �ii� with a first-order
reconstruction of the 3-RDM by cumulant theory, it is accu-
rate to one additional order of a renormalized perturbation
theory than the CSE �29,33�. Because the ACSE does not
depend upon a mean-field reference, it can be seeded with an
initial 2-RDM from either a mean-field �Hartree-Fock�
�33–37� or a correlated calculation �38,40,41�. In previous
ground-state calculations on reactions with significant multi-
reference correlation, such as the electrocyclic ring opening
of bicyclobutane �40� and the hydrogenic sigmatropic shift
in propene �41�, the ACSE has been successfully initiated
with 2-RDMs from multiconfiguration self-consistent-field
�MCSCF� calculations whose wave functions are linear com-
binations of more than one determinant �or configuration�.
Because excited states are in general more likely to contain
substantial multireference correlation than ground states, we
seed the ACSE method for excited states with 2-RDMs from
MCSCF calculations. After its theoretical development in
Sec. II the excited-state ACSE method is applied in Sec. III
to computing absolute excited-state energies and vertical ex-
citation energies of the molecules hydrogen fluoride, water,
and nitrogen as well as ground and excited potential-energy
surfaces of hydrogen fluoride.

II. THEORY

After the Hermitian and anti-Hermitian parts of the CSE
are obtained from the Schrödinger equation in Sec. II A,
their properties as stationary-state conditions for both ground
and excited states are discussed in Sec. II B. In Sec. II C we

develop a system of differential equations to solve the ACSE
for ground- and excited-state energies and 2-RDMs. The de-
pendence of the ACSE and its differential equations on the
3-RDM is approximately removed through the cumulant re-
construction of the 3-RDM as a functional of the 2-RDM.

A. Hermitian and anti-Hermitian contracted
Schrödinger equations

For a quantum N-electron system with Hamiltonian Ĥ the
stationary-state energies En and wave functions �n can be
computed from the time-independent Schrödinger equation

Ĥ�n = En�n �1�

or its density-matrix formulation

Ĥ NDn = En
NDn, �2�

where the N-particle density matrix for the nth state is given
by NDn=�n�n

�. The density-matrix Schrödinger equation
can be divided into two separate Hermitian and anti-
Hermitian equations:

1

2
�Ĥ NDn + NDnĤ� = En

NDn, �3�

1

2
�Ĥ NDn − NDnĤ� = 0. �4�

Integration of Eqs. �2�–�4� over the spin and spatial coordi-
nate of electrons 3 to N yields the CSE �16–32,49,50�

� Ĥ NDnd3 . . . dN = En
2Dn �5�

as well as the Hermitian contracted Schrödinger equation
�HCSE� �24,51,55� and anti-Hermitian contracted
Schrödinger equation �ACSE� �17,29,33–42,51,55� parts of
the CSE:

1

2
� �Ĥ NDn + NDnĤ�d3 . . . dN = En

2Dn, �6�

1

2
� �Ĥ NDn − NDnĤ�d3 . . . dN = 0. �7�

By definition, the sum of the HCSE and the ACSE produces
the CSE. If the Hamiltonian contains at most pairwise inter-
actions, both the CSE and the HCSE depend on the 2-, 3-,
and 4-RDMs, while the ACSE depends only on the 2- and
3-RDMs. Second-quantized formulations of the CSE and the
ACSE as well as explicit spin-orbital expressions in terms of
matrix elements of the reduced Hamiltonian and RDMs have
been given elsewhere �1,17,21,29,33�.

B. Stationary-state conditions for ground and excited states

The time-independent Schrödinger equation is the
stationary-state condition for a nonrelativistic quantum-
mechanical system. The density-matrix Hermitian and anti-
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Hermitian Schrödinger equations in Eqs. �3� and �4� are im-
portant parts of the stationary-state condition. Taking the
trace of both sides of the Hermitian Schrödinger equation
yields the energy relation

E = Trˆ �Ĥ ND� , �8�

while multiplying the Hermitian Schrödinger equation by the

Hamiltonian operator Ĥ before taking the trace yields the
energy-squared expectation value

E2 = T̂r�Ĥ2 ND� . �9�

Assuming that the density-matrix is pure �that it can be ex-
pressed in terms of a single wave function where ND
= �������, Eqs. �8� and �9� imply the energy dispersion rela-
tion �� ���=0 with

��� = �Ĥ − E���� , �10�

which is true if and only if the wave function ��� satisfies
the Schrödinger equation ���=0. Importantly, the anti-
Hermitian Schrödinger equation can also be shown by a dif-
ferent mechanism to imply the Schrödinger equation. The
anti-Hermitian Schrödinger equation with a pure-state
density-matrix states that

Ĥ������ − ������Ĥ = 0. �11�

If ���= Ĥ��� and �������� where � is any real scalar con-
stant, then ������ is non-Hermitian, which means that

������ − ������ � 0, �12�

and hence, satisfaction of the anti-Hermitian Schrödinger
equation with a pure-state density matrix implies the
Schrödinger equation. Therefore, either the Hermitian or the
anti-Hermitian Schrödinger equations with a pure-state den-
sity matrix is equivalent to the Schrödinger equation in terms
of its strength as a stationary-state condition.

A central question in treating excited states with 2-RDMs
is the respective strengths of the CSE and ACSE as
stationary-state conditions. Any subset or particle contraction
of the N-electron Schrödinger equation will be a necessary
stationary-state condition. In 1976, however, Nakatsuji
proved that if the 2-, 3-, and 4-RDMs in the CSE are re-
stricted to be pure N-representable �meaning that the RDMs
correspond to a pure N-electron density matrix�, then the
RDMs satisfy the CSE if and only if they correspond to a
wave function that satisfies the Schrödinger equation �21,50�.
Whether in first �50� or second �21� quantization the proof
follows from showing that the CSE implies the energy dis-
persion relation which, as shown above, is satisfied if and
only if the Schrödinger equation is satisfied. Importantly, for
quantum systems with pairwise interactions Nakatsuji’s theo-
rem shows that the CSE with appropriate N-representability
conditions on the RDMs is a necessary and sufficient
stationary-state condition for both ground and excited states.

Because the Hamiltonian is Hermitian, the Hermitian part
of the CSE �HCSE� also implies the energy dispersion rela-
tion, which leads to a Nakatsuji-like theorem, and hence, for
systems with pairwise interactions it is also a complete

stationary-state condition for the N-representable RDMs. Be-
cause the Hermitian and anti-Hermitian parts of the
Schrödinger equation are equivalent stationary-state condi-
tions for a pure-state density matrix, one might conjecture
that either the HCSE or the ACSE is equivalent to the CSE
as a stationary-state condition for pure N-representable
RDMs. Calculations with the Lipkin quasispin model, how-
ever, have shown that a wave function can be computed that
satisfies the ACSE and yet does not exactly satisfy either the
CSE, the HCSE, or the N-particle Schrödinger equation �33�.
Nevertheless, the ACSE is theoretically an important subset
of the CSE, and practically, the distinction between the
ACSE and the CSE or HCSE may be unimportant. Calcula-
tions demonstrate that the computational error introduced
from approximating the 3-RDM by 2-RDM cumulant recon-
struction is generally larger than the error from approximat-
ing the stationarity of the Schrödinger equation by the
ACSE.

The CSE is variationally equivalent to the stationarity of
the energy of a quantum state with respect to all differential
two-body transformations applied to the wave function. Con-
sequently, the author has shown that a trial wave function
��� formed by repeatedly applying differential two-body
transformations to a reference wave function ��0� will mini-
mize the energy if and only if it satisfies the CSE and the
Schrödinger equation �Nakatsuji’s theorem�:

��� = e�Ŝm
¯ e�Ŝ2e�Ŝ1��0� , �13�

where Ŝm is the mth two-body operator and � is a differen-
tially small quantity �56�. If the reference wave function ��0�
is chosen to have an energy below that of the first excited
state with the same spin and spatial symmetry as the ground
state, then the variational ansatz for the wave function in Eq.
�13� is sufficiently flexible to converge to the exact ground-
state wave function within a given finite-orbital basis set

�56�. By constraining the Ŝm operators to be Hermitian, we
can construct an analogous variational ansatz that implies the
HCSE at its minimum. The ansatz for the wave function in
Eq. �13� can also be refashioned to imply the ACSE at its
variational minimum by restricting each of the two-body op-
erators Sm to be anti-Hermitian. As is shown in the next
section, this series of differential unitary transformations can
be practically employed to solve the ACSE for both ground
and excited states.

C. Solving the ACSE for ground and excited states

In this section, having established the ACSE as an impor-
tant stationary-state condition, we develop a method for solv-
ing it for both ground and excited states. We consider a se-
quence of infinitesimal two-body unitary transformations of
an initial wave function ����, which are ordered by a con-
tinuous timelike variable �:

���� + ��� = e�Ŝ��������� , �14�

where Ŝ��� is an anti-Hermitian two-body operator. Although
we develop the equations with the wave function, the final
equations are exactly expressible in terms of ground- or
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excited-state 2- and 3-RDMs only; furthermore, the depen-
dence on the 3-RDM is removed by its cumulant expansion
in the next section.

After an infinitesimal transformation over the interval �,
the 2-RDM at �+� is

2Dk,l
i,j�� + �� = ������e−�S��� 2�̂k,l

i,je�S��������� = 2Dk,l
i,j���

+ ��������2�̂k,l
i,j , Ŝ���������� + O��2� , �15�

or in the limit that �→0, �33–35,38�

d2Dk,l
i,j

d�
= �������2�̂k,l

i,j , Ŝ���������� , �16�

where the operator 2�̂k,l
i,j is the two-electron reduced density

operator �2-RDO�

2�̂k,l
i,j = ai

†aj
†alak. �17�

If the differential equation for the 2-RDM in Eq. �16� is
traced against the one- and two-electron reduced Hamil-
tonian matrices comprising the Hamiltonian operator �35�,
we obtain an analogous equation for the change in the energy
with �

dE

d�
= �������Ĥ, Ŝ���������� . �18�

To find a ground- or excited-state root of the ACSE from
an initial guess for the RDMs, we select the two-body opera-

tor Ŝ��� to minimize the energy. Specifically, the operator

Ŝ��� is expressible in terms of the matrix elements of the
two-particle matrix 2S���

Ŝ��� = 	
p,q,s,t

2Ss,t
p,q���2�̂s,t

p,q. �19�

At each � we select the elements of the two-particle matrix
2Ss,t

p,q��� to minimize dE /d� along its gradient with respect to
these matrix elements to produce

2Sr,s
p,q��� = �������2�̂s,t

p,q,Ĥ������� . �20�

Importantly, the left side of Eq. �20� is simply the residual of
the ACSE. If the residual in the ACSE vanishes, the unitary
transformations become the identity operator, and the energy
and 2-RDM cease to change with �. Hence, Eqs. �16�, �18�,
and �20� collectively provide a system of differential equa-
tions �33–35,38� for evolving an initial 2-RDM to a final
2-RDM that solves the ACSE for either a ground or excited
state.

Without additional N-representability conditions, the dif-
ferential equations in Eqs. �16�, �18�, and �20� are indetermi-
nate since they depend upon not only the 2-RDM but also the
3-RDM. This indeterminacy can be removed by reconstruct-
ing the 3-RDM as an functional of the 2-RDM by its cumu-
lant expansion �22,23,25,26,28,54�

3Dq,s,t
i,j,k = 1Dq

i ∧ 1Ds
j ∧ 1Dt

k + 32	q,s
i,j ∧ 1Dt

k + 3	q,s,t
i,j,k �21�

where

2	k,l
i,j = 2Dk,l

i,j − 1Dk
i ∧ 1Dl

j , �22�

and the operator ∧ denotes the antisymmetric tensor product
known as the Grassmann wedge product �21,57�. As in Ref.
�38�, we approximate the cumulant 3-RDM as zero; calcula-
tions show that this approximation is sufficient when the
2-RDM is initialized from an MCSCF calculation. For both
ground and excited states the first-order reconstruction of the
3-RDM in the solution of the ACSE yields 2-RDMs with all
second-order as well as many higher-order correlation ef-
fects. Because the cumulant reconstruction of the 3-RDM is
approximate, the resulting system of differential equations is
evolved in � until either �i� the energy or �ii� the least-
squares norm of the ACSE increases.

Even though the unitary rotations are selected in Eq. �20�
to minimize the energy, the system of differential equations
in Eqs. �16�, �18�, and �20� is capable of producing energy
and 2-RDM solutions of the ACSE for both ground and ex-
cited states. Because excited states correspond to local en-
ergy minima of the ACSE and the gradient in Eq. �20� leads
to a local rather than global energy minimum, an excited-
state solution can be readily obtained from a good guess for
the initial 2-RDM. A guess will be good when it is closer to
the minimum of the desired solution of the ACSE than to any
other minimum. Such 2-RDM guesses can be generated from
MCSCF calculations. Importantly, choosing an initial MC-
SCF 2-RDM directs the optimization of the ACSE to a de-
sired excited state because it contains important multirefer-
ence correlation effects that identify the state.

III. APPLICATIONS

After discussing some additional computational details,
we apply the ACSE to computing excited-state energies of
water, methylene, and nitrogen as well as their excitation
energies. We also calculate potential energy curves of hydro-
gen fluoride for its X 1
+, B 1
+, 1�, and 1
− states.

A. Computational details

For excited states we initiate the solution of the diffe-
rential equations in Eqs. �16�, �18�, and �20� with 2-RDMs
from a special MCSCF technique that is often called
the complete-active-space self-consistent-field �CASSCF�
method �43,44,58�. Computation of a CASSCF wave func-
tion and 2-RDM proceeds by the following four steps: �i�
division of initial orbitals into four classes, frozen core orbit-
als that are always occupied and unchanged throughout the
calculation, core orbitals that are always occupied, active or-
bitals that are partially occupied, and virtual orbitals that are
completely unoccupied, �ii� diagonalization of the Hamil-
tonian in the space of the active orbitals, �iii� rotation of all
orbitals by unitary transformations to lower the energy, and
�iv� repetition of steps �ii� and �iii� until convergence. There-
fore, the CASSCF procedure generates a wave function
where the active orbitals are treated by a configuration inter-
action calculation while the inactive orbitals �frozen core,
core, and virtual� are treated by a mean-field �Hartree-Fock�
calculation. In CASSCF calculations the size of the active
space is usually denoted by the notation �X ,Y�, where X is
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the number of active electrons and Y is the number of active
orbitals.

A second important computational detail is that we filter

the two-body anti-Hermitian operator Ŝ��� governing the
unitary transformations to exclude transitions that involve �i�
only active orbitals or �ii� more than two virtual orbitals. As
discussed elsewhere �38,40�, the first exclusion prevents
multireference effects in the 2-RDM from affecting the ac-
curacy of the cumulant 3-RDM reconstruction in the ACSE.
It is a reasonable approximation because after the active
space is optimized in a CASSCF calculation, two-body rota-
tions of the active orbitals account for a secondary correla-
tion effect that is much smaller in magnitude than the corre-
lation of the inactive spaces. The second exclusion
eliminates terms that, while computationally expensive, are
essentially unimportant for the accuracy of the final energies
and 2-RDMs. With this second restriction the ACSE solution
scales in floating-point operations as �rc+ra� 2rv

4, where rc,
ra, and rv are the numbers of core, active, and virtual orbit-
als, respectively. By contrast, both MRPT2 and multirefer-
ence configuration interaction �MRCI� with single and
double excitations have an exponential dependence on the
size of the active space; even with further approximations in
what is often described as a fully contracted theory the scal-
ings of MRPT2 and MRCI with respect to the active space
are ra

8 and ra
10, respectively.

B. Results

Excited-state energies and excitation energies

The ACSE method is applied to computing both singlet
ground- and excited-state energies as well as excitation en-
ergies of H2O, CH2, and N2. For water and the nitrogen

molecule we employ the correlation-consistent polarized va-
lence double-zeta �cc-pVDZ� basis set �59�, supplemented
with diffuse functions in the case of water; the geometries
and additional details of the basis sets can be found in Ref.
�60�. For methylene we treat the ground and excited states in
the augmented cc-pVDZ basis set �61� at the experimental
geometry of its 1 1A1 state for which RCH=1.107 Å and
AHCH=102.4° �62�. The energies from the ACSE are com-
pared with those from the CASSCF method �58�, MRPT2
�63�, MRCI with single and double excitations, MRCI plus
the Davidson correction �MRCI+Q� �64�, and FCI. The
CASSCF, MRPT2, and MRCI calculations were performed
with the GAMESS electronic structure package �65�, while the
ACSE and FCI calculations were performed with the au-
thors’ codes. For the nitrogen, water, and methylene mol-
ecules the CASSCF, MRPT2, MRCI, and ACSE methods
employ �10,8�-, �6,6�-, and �6,6�-active spaces, respectively.

The errors in the excited-state energies from the ACSE
relative to FCI are compared in Table I with the errors from
the multireference methods CASSCF, MRPT2, MRCI, and
MRCI+Q. Among the excited-state energies for water the
CASSCF, MRPT2, MRCI, MRCI+Q, and ACSE methods
have maximum energy errors of 168.9, 14.7, 5.8, −8.8, and
2.7 millihartrees �mH� and minimum energy errors of 137.4,
12.8, 3.0, −2.9, and 0.8 mH. For this molecule the ACSE
yields more accurate excited-state energies than the more
traditional multireference methods based on perturbation
theory or configuration interaction. For methylene the
CASSCF, MRPT2, MRCI, MRCI+Q, and ACSE methods
have maximum energy errors of 97.0, 22.0, 7.2, −1.8, and 6.4
mH and minimum energy errors of 88.1, 11.0, 1.9, 0.15, and
0.33 mH. While the MRCI+Q performs slightly better than
the ACSE with respect to maximum and minimum errors
when all four excited states are considered, for the lowest

TABLE I. Accuracy of absolute energies for selected singlet states of water, methylene, and the nitrogen
molecule. The results from the ACSE are compared with other multireference methods such as CASSCF,
MRCI, MRCI+Q, and MRPT2, as well as the results from FCI.

Molecule State FCI

Energy error relative to FCI
�mH�

CASSCF MRPT2 MRCI MRCI+Q ACSE

H2O 1 1A1 −76.258208 162.75 12.93 3.92 −2.88 0.79

1 1B1 −75.984532 137.41 14.71 3.00 −3.21 1.92

1 1A2 −75.919727 158.97 12.81 4.41 −3.20 0.96

2 1A1 −75.895339 164.01 14.71 4.73 −8.77 2.67

1 1B2 −75.831492 168.87 13.55 5.79 −4.47 0.90

CH2 1 1A1 −39.032135 88.08 16.93 1.85 −1.59 0.33

1 1B2 −38.968737 92.81 11.38 2.22 −1.76 0.64

1 1A2 −38.821386 95.96 11.02 2.80 −1.72 −0.73

1 1B1 −38.748720 97.04 21.96 7.21 0.15 6.35

N2
1
g

+ −109.276528 174.29 18.24 5.75 −2.42 5.05
1�g −108.924305 193.19 10.43 6.97 −3.66 −5.08
1
u

− −108.896956 203.65 11.76 7.26 −4.52 −4.36
1	u −108.882636 200.05 9.92 7.23 −4.07 −0.44
1�u −108.776427 207.52 6.36 8.17 −4.94 8.51
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three states the ACSE outperforms all of the multireference
methods including the MRCI+Q; furthermore, the computa-
tional cost of both MRCI and MRCI+Q is significantly more
expensive than that of the ACSE. Finally, for the nitrogen
molecule the CASSCF, MRPT2, MRCI, MRCI+Q, and
ACSE methods have maximum energy errors of 207.5, 18.2,
8.2, −4.9, and 8.5 mH and minimum energy errors of 174.3,
6.4, 5.8, −2.4, and −0.4 mH. Interestingly, the maximum
error for both the ACSE and the MRCI methods occurs for
the 1�u state, which in the FCI solution displays significant
contributions from double excitations from the ground state
in contrast to the other states that are dominated by single
excitations �60�; the maximum error of 18.2 mH for MRPT2
occurs for the 1
g

+ state.
As shown in Table II, the ACSE vertical excitation ener-

gies are greater in accuracy than those from CASSCF and
similar in accuracy to those from MRPT2, MRCI, and
MRCI+Q. The most accurate excitation energies from the
ACSE are obtained for H2O, where the maximum error rela-
tive to FCI is 1.9 mH for the 2 1A1 state. For methylene, the
errors in the vertical excitation energies for the 1 1A2 and
1 1B2 states, −1.1 and 0.3 mH, respectively, are more accu-
rate than those from MRPT2, −5.1 and −5.6 mH, respec-
tively. While the ACSE vertical excitation energy for the
2 1B1 state is 6.0 mH above FCI, it is similar in accuracy to
the 5.0 and 5.4 mH errors from MRPT2 and MRCI. For the
nitrogen molecule, all post-CASSCF methods significantly
improve upon the CASSCF excitation energies, and the
MRCI methods yield the best agreement with FCI. The
ACSE and MRPT2 methods yield excitation energies with
similar accuracy, their maximum deviations relative to FCI
being −10.1 mH and −11.9 mH, respectively.

C. Excited-state potential energy curves

The potential energy curves for the X 1
+ ground state of
hydrogen fluoride and its B 1
+, 1�, and 1
− excited states

were computed by the ACSE as well as the CASSCF,
MRPT2, MRCI, MRCI+Q, and FCI methods in the cc-
pVDZ basis set �59�. For all computational methods except
FCI we employed a �6,6�-active space including the occupied
�, x, and y orbitals and their corresponding antibonding
orbitals. The CASSCF for the B 1
+ state was performed
with an averaging of the B 1
+ and X 1
+ states with weights
of 0.95 and 0.05. The post-CASSCF and FCI calculations
correlated all ten electrons. The CASSCF, MRCI, and
MRPT2 results were computed with the electronic structure
package GAMESS �65�, while the FCI calculations were per-
formed with the package PSI 3.3 �66�.

The ground and lowest singlet excited states of hydrogen
fluoride from the ACSE are shown as a function of internu-
clear distance in Fig. 1. Both the X 1
+ ground state and the
1� excited state dissociate into ground-state atomic frag-
ments, and hence, they become degenerate at long bond
lengths. In contrast, the B 1
+ excited state dissociates into
H+ and F−�1S� ionic fragments, and the higher-in-energy 1
−

state dissociates into H−�1S� and F+�1S� fragments. While
both of the B 1
+ and 1
− excited states have bound vibra-
tional states with a potential-energy minimum around 2 Å,
the 1� is purely repulsive. The potential-energy curves from
the CASSCF, MRPT2, MRCI, and MRCI+Q methods, not
shown here, are qualitatively similar to the ACSE results.

The accuracy of the electronic energies from the ACSE
for the X 1
+ ground state and the B 1
+, 1�, and 1
− ex-
cited states of hydrogen fluoride are shown at selected bond
lengths in Table III. The errors in the energies from the
ACSE, relative to the FCI energies, are compared to the er-
rors from other multireference methods such as CASSCF,
MRPT2, MRCI, and MRCI+Q. The ACSE results for the
X 1
+ ground state have been reported previously �38�. For
the B 1
+ excited state the CASSCF, MRPT2, MRCI,
MRCI+Q, and ACSE methods have maximum absolute er-
rors of 154.4, 9.7, 2.5, 7.9, and 1.3 mH; for the 1� excited
state these methods have maximum absolute errors of 149.3,

TABLE II. Vertical excitation energies for selected singlet states of water, methylene, and the nitrogen
molecule. The results from the ACSE are compared with other multireference methods such as CASSCF,
MRCI, MRCI+Q, and MRPT2, as well as the results from FCI.

Molecule State

Vertical excitation energy
�mH�

FCI CASSCF MRPT2 MRCI MRCI+Q ACSE

H2O 1 1B1 273.68 248.33 275.46 272.75 273.35 274.81

1 1A2 338.48 334.70 338.37 338.97 338.17 338.65

2 1A1 362.87 364.13 364.66 363.68 356.98 364.75

1 1B2 426.72 432.83 427.34 428.58 425.13 426.82

CH2 1 1B2 63.40 28.13 57.85 63.77 63.23 63.70

1 1A2 210.75 218.63 204.84 211.70 210.62 209.68

1 1B1 283.42 292.38 288.45 288.77 285.16 289.43

N2
1�g 352.22 371.13 344.41 353.44 350.98 342.09
1
u

− 379.57 408.94 373.09 381.08 377.48 370.16
1	u 393.89 419.65 385.87 395.38 392.24 388.40
1�u 500.10 533.33 488.22 502.53 497.58 503.56
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12.6, 2.3, 2.1, and 1.0 mH, and finally, for the 1
− excited
state these methods have maximum absolute errors of 135.0,
12.7, 3.6, 1.0, and 1.0 mH. For the excited states B 1
+, 1�,
and 1
− the ACSE significantly improves the nonparallelity
errors �67� of 10.7, 12.9, and 12.4 from CASSCF to 2.54,
0.83, and 1.11 mH, which are similar in accuracy to those
from MRPT2, MRCI, and MRCI+Q. Finally, vertical exci-
tation energies relative to the ground state from the ACSE as
well as the CASSCF, MRPT2, MRCI, MRCI+Q, and FCI
methods are given in Table IV for RHF=0.9 Å and 1.75 Å.
The CASSCF consistently predicts excitation energies that
are 10–30 mH larger than those from FCI because the dy-
namic correlation has an important role of lowering the en-
ergies of the excited states relative to the ground state. The
ACSE yields excitation energies that are within a few milli-
hartrees of those from FCI, which is similar to the accuracy
from MRCI and MRCI+Q.

The ground- and excited-state 2-RDMs, produced by the
ACSE, maintain the N-representability of the 2-RDM within
the accuracy of the 3-RDM reconstruction. Necessary
N-representability constraints, known as two-positivity con-
ditions �5,10,55�, require keeping the eigenvalues of three

TABLE III. Accuracy of the electronic energies for the X 1
+ ground state and the B 1
+, 1�, and 1
−

excited states of hydrogen fluoride are shown at selected bond lengths. The errors in the energies from the
ACSE, relative to the FCI energies, are compared to the errors from other multireference methods such as
CASSCF, MRPT2, MRCI, and MRCI+Q.

State
R

�Å� FCI �H�

Eapprox−EFCI

�mH�

CASSCF MRPT2 MRCI MRCI+Q ACSE

X 1
+ 1.0 −100.22472 120.45 10.87 1.40 −0.98 0.38

1.5 −100.11564 120.66 9.27 1.28 −1.23 0.49

2.0 −100.05103 120.57 8.30 1.21 −1.27 −3.38

2.5 −100.03317 120.42 8.11 1.18 −1.28 −1.59

3.0 −100.02964 120.38 8.09 1.18 −1.28 0.36

4.0 −100.02883 120.33 8.08 1.18 −1.28 0.94

B 1
+ 1.0 −99.68844 143.76 7.99 2.02 −6.70 −1.26

1.5 −99.77376 145.96 8.17 2.05 −7.86 1.28

2.0 −99.79165 150.85 8.30 2.26 −4.82 0.32

2.5 −99.76967 154.42 9.24 2.47 −5.02 −0.62

3.0 −99.73895 154.17 9.69 2.45 −5.43 −0.94

4.0 −99.69338 153.40 9.52 2.38 −5.20 −1.12
1� 1.0 −99.86846 149.29 12.63 2.34 −2.05 0.97

1.5 −99.98535 140.26 11.50 1.88 −1.96 0.45

2.0 −100.01910 137.10 11.21 1.75 −1.84 0.14

2.5 −100.02730 136.63 11.04 1.74 −1.66 0.16

3.0 −100.02873 136.50 11.06 1.74 −1.59 0.19

4.0 −100.02882 136.40 11.06 1.73 −1.57 0.19
1
− 1.0 −99.21774 135.02 12.61 3.57 −1.02 1.03

1.5 −99.46495 130.65 12.71 3.30 −0.88 0.06

2.0 −99.50106 125.49 11.27 2.98 −0.73 −0.08

2.5 −99.48333 123.37 10.61 2.89 −0.68 −0.06

3.0 −99.45717 122.77 10.43 2.87 −0.67 −0.06

4.0 −99.41538 122.61 10.37 2.86 −0.67 −0.08
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FIG. 1. Ground and lowest singlet excited states of hydrogen
fluoride from the ACSE are shown as a function of internuclear
distance.
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different forms of the 2-RDM, known as the 2D, 2Q, and 2G
matrices, non-negative; these three matrices correspond to
the probability distributions for two particles, one particle
and one hole, and two holes, respectively. While the two-
positivity conditions are not sufficient N-representability
constraints as seen computationally in calculations by Mazzi-
otti �1,9,10�, as well as Nakata et al. �11,12�, they are an
important set of necessary constraints whose near satisfac-
tion by 2-RDM solutions of the ACSE offers an effective
measure of N-representability, particularly because the two-
positivity conditions are not enforced in the solution of the
ACSE �33�. For the ground and excited states of hydrogen
fluoride at both 1 Å and 2 Å, Table V provides the lowest
eigenvalues of these matrices, normalized to N�N−1�, �r

−N��r−N−1�, and N�r−N+1�, respectively, where r is the
rank of the spin-orbital basis set. The most negative eigen-
values are three-to-five orders of magnitude smaller than the
largest positive eigenvalues, which are on the order of unity
save for the largest eigenvalue of 2G that is on the order of
N. Furthermore, for each state of hydrogen fluoride at either
bond distance the expectation value of the N-electron spin

operator Ŝ2, computed with respect to the ACSE 2-RDM,
equals zero.

IV. DISCUSSION AND CONCLUSIONS

The contracted Schrödinger equation �CSE� is a
stationary-state condition for both ground and excited states
of many-electron atoms and molecules. If the RDMs in
the CSE are pure N-representable, then by Nakatsuji’s theo-
rem there is a one-to-one mapping between the RDM solu-
tions of the CSE and the wave-function solutions of the
N-electron Schrödinger equation. Consequently, for the set of
N-representable 2-, 3-, and 4-RDMs the CSE is a complete
stationary-state condition that is fully equivalent to the
N-particle Schrödinger equation. The correspondence be-
tween solutions of the CSE and those of the Schrödinger
equation for many-electron atoms and molecules reveals a
fundamental reduction in the complexity of the N-particle
Hilbert space for particles with at most pairwise interactions.
For such systems the wave functions in the N-particle Hilbert
space are at most functionals of the N-representable 4-RDM;
by an extended Rosina’s theorem, for each energetically non-
degenerate state there is a one-to-one mapping between its
4-RDM and its wave function �21,24�. Therefore, the CSE
has a central role in the development of 2-RDM methods for
excited states. Despite the explicitness of Nakatsuji’s theo-
rem in stating that the CSE is a stationary-state condition for
both ground and excited states, recent solutions of either the
CSE or its anti-Hermitian part �ACSE� have focused on the
calculation of the ground-state 2-RDM. In the present paper
the solution of the ACSE has been theoretically and practi-
cally extended to the direct computation of excited-state en-
ergies and 2-RDMs.

TABLE IV. Vertical excitation energies relative to the ground state from the ACSE as well as the
CASSCF, MRPT2, MRCI, MRCI+Q, and FCI methods are given for RHF=0.9 and 1.75 Å. The CASSCF
consistently predicts excitation energies that are 10–30 mH larger than those from FCI because the dynamic
correlation has an important role of lowering the energies of the excited states relative to the ground state.
The ACSE, with an accuracy similar to MRCI and MRCI+Q, yields excitation energies that are within a few
millihartrees of those from FCI.

R �Å� State

Vertical excitation energy
�mH�

FCI CASSCF MRPT2 MRCI MRCI+Q ACSE

0.9 1� 405.94 434.58 407.72 406.87 404.87 406.53

B 1
+ 583.29 603.56 580.45 583.79 577.93 582.10
1
− 1110.01 1121.83 1110.37 1111.89 1109.94 1111.09

1.75 1� 67.45 84.7 70.31 68.00 66.79 68.96

B 1
+ 285.92 312.76 285.32 286.77 281.35 288.47
1
− 579.38 586.25 582.68 581.25 579.85 580.60

TABLE V. For the ground and excited states of hydrogen fluo-
ride at both 1 and 2 Å the table provides the lowest eigenvalues of
the 2D, 2Q, and 2G matrices, normalized to N�N−1�, �r−N��r−N
−1�, and N�r−N+1�, respectively, where r is the rank of the spin-
orbital basis set. A necessary set of N-representability constraints,
known as the two-positivity conditions, requires these matrices to
be positive semidefinite �that is, have nonnegative eigenvalues�.
The most negative eigenvalues are three-to-five orders of magnitude
smaller than the largest positive eigenvalues, which are on the order
of unity save for the largest eigenvalue of 2G that is on the order of
N. The number in square brackets denotes the power of 10.

R �Å� State

Lowest eigenvalues

2D 2Q 2G

1.0 X 1
+ −1.14�−4� −2.16�−5� −1.10�−4�
B 1
+ −2.32�−3� −2.97�−4� −3.50�−3�

1� −1.39�−3� −8.01�−5� −7.98�−4�
1
− −1.35�−3� −1.36�−4� −2.28�−3�

2.0 X 1
+ −3.05�−3� −5.64�−4� −4.18�−3�
B 1
+ −1.42�−3� −1.52�−5� −8.45�−4�

1� −1.11�−3� −9.09�−5� −7.71�−4�
1
− −1.41�−3� −1.39�−4� −2.19�−3�
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Neither the CSE nor the ACSE can be solved for the
2-RDM without additional information because they also de-
pend upon the 3-RDM and/or 4-RDM. The indeterminacy of
these equations, however, can be removed by reconstructing
the higher RDMs as functionals of the lowers RDMs via
cumulant theory for RDMs �22,23,25,26,28,54�. The ACSE
is an important subset of the CSE. While the ACSE is not
necessarily a complete stationary-state condition for
N-representable RDMs, it has two practical advantages: �i�
the ACSE, unlike the CSE, only depends on the 3-RDM and
�ii� setting the cumulant 3-RDM to zero within the ACSE is
correct to one additional order of renormalized perturbation
theory than it is within the CSE. Solution of the ACSE for
both ground and excited states can be accomplished through
the system of differential equations in Eqs. �16�, �18�, and
�20� that evolve an initial 2-RDM by a sequence of differen-
tial unitary transformations, which minimize the energy until
convergence to a final 2-RDM.

Two important issues that arise in the extension to excited
states are: �i� because excited states are generally more mul-
tireferenced than ground states �meaning that they depend on
more than one determinant at zeroth order of perturbation
theory�, the initial 2-RDM must be chosen to reflect the mul-
tiple determinants in the zeroth-order wave function, and �ii�
the initial 2-RDM must be chosen to be sufficiently close to
the given excited state to converge to the desired solution of
the ACSE. We select initial 2-RDMs from MCSCF calcula-
tions which, in all computations performed, satisfy both cri-
teria �i� and �ii�. In practice, these two issues are interrelated.
The MCSCF calculation captures the important zeroth-order
multireference correlation and then the projection of this cor-
relation in the 2-RDM acts as a strong state-identifying sig-
nature for directing the ACSE solution to the correct energy
and 2-RDM. While most solutions of the CSE for the
2-RDM have focused on the ground states of quantum sys-
tems, there have been a few CSE studies of excited states. In
1998 Mazziotti �21� extended the solution of the CSE to
excited states in the context of the Lipkin model, and in 2000
Nakata et al. �27� solved the CSE for open-shell systems as
well as some atomic and molecular excited states. The latter
work, however, differs from the present molecular study in
that �i� the initial 2-RDM guesses were computed by the
Hartree-Fock method whose single-determinant wave func-
tion limits the treatment of excited states with significant
multireference correlation and �ii� the computed excited
states were mainly ground states of different spin symme-
tries. Other notable differences include choices of: �iii� the
contracted equation �CSE versus ACSE�, �iv� the optimiza-
tion algorithm, and �v� the basis-set size.

In this paper the ACSE method has been applied to com-
puting the ground- and excited-state energies of H2O, CH2,
and N2 at their equilibrium geometries as well as the ground-
and excited-state potential energy curves of hydrogen fluo-
ride. By introducing significant dynamic correlation in the
inactive spaces, the ACSE substantially lowers the energy
from CASSCF. Furthermore, because the cumulant recon-
struction of the ACSE includes third-order and many higher-
order correlation effects in the energy, the computed absolute
energies are generally much closer to FCI than second-order
multireference perturbation theory �MRPT2�. The results

from the ACSE are similar to those from multireference con-
figuration interaction calculations, which are computation-
ally more expensive. The potential energy curves of the
B 1
+, 1�, and 1
− excited states of hydrogen fluoride also
show that the ACSE accurately predicts the excited-state en-
ergies at both equilibrium and nonequilibrium geometries.
The computed 2-RDMs at all geometries are also nearly
N-representable.

The computation of both ground and excited states by the
ACSE has applicability to a broad range of problems in
quantum many-particle chemistry and physics. Contracted
Schrödinger theory has an important connection to another
general class of many-body methods, known as flow equa-
tions or continuous unitary transformations �68�, that were
developed in the early 1990s by Glazek and Wilson �69� and
Weniger �70�. The flow equations remove correlation from
the Hamiltonian by a series of unitary transformations before
application of perturbative or renormalization-group meth-
ods. The key stationary equation in the flow equations is
equivalent to the ACSE in the Heisenberg representation
�33�. The ACSE method, however, has important differences
including: �i� the ACSE is solved in the Schrödinger repre-
sentation in contrast to the Heisenberg representation, �ii�
because of �i�, the fundamental variable of the ACSE is the
2-RDM while the basic variable of the flow equations is an

effective Hamiltonian, �iii� in the ACSE the Ŝ operators for
the unitary transformations are chosen to minimize the
ground-state energy, while in the flow equations the unitary
transformations are often designed to precondition the
Hamiltonian for a range of energies, and �iv� in the ACSE the
approximation of 3-body operators or density matrices is per-
formed by cumulant expansions, but in the flow equations
the treatment of three-body operators is often either more
specific to a given problem or more approximate �i.e., ne-
glect of the three-body operators�. These connections may be
harnessed to extend or improve both the ACSE and the flow
equations. Specifically, the cumulant expansion of reduced
density matrices or operators, developed in the context of the
contracted Schrödinger theory, have been useful for improv-
ing the accuracy of the flow equations in certain applications
such as electronic structure �71–73�.

Improved knowledge of the excited-state energies and
properties of many-electron atoms and molecules has impor-
tant applications throughout chemistry and physics. Many
excited-state methods produce excited-state energies by the
response of the ground state to a weak electric field without
calculation of the excited-state wave functions or properties.
Contracted Schrödinger theory provides an important theo-
retical framework for the calculation of an excited-state
2-RDM and its energy without explicit computation of the
many-electron wave function. In this paper the solution of
the anti-Hermitian part of the CSE �ACSE� has been ex-
tended to treat both ground and excited states with illustra-
tive applications. As shown in recent ground-state calcula-
tions of the electrocyclic rearrangement of bicyclobutane
�40� and the sigmatropic shift in propene �41�, the direct
ACSE calculation of 2-RDMs for both ground and excited
states has the ability to provide new insight into strong mul-
tireference correlation of quantum many-electron systems in
chemistry and physics.
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