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Local effective potential theory of electronic structure is the mapping from a system of electrons in an
external field to one of noninteracting fermions or bosons with the same electronic density. The energy and
ionization potential are also thereby determined. The mappings may be achieved via either quantal density-
functional theory �QDFT� or Hohenberg-Kohn-Sham density-functional theory �HKS-DFT�. The wave func-
tion for the model fermionic system is a Slater determinant of spin orbitals, whereas that for the model bosons
is the density amplitude. In the QDFT mappings, the contributions of the electron correlations due to the Pauli
exclusion principle, Coulomb repulsion and correlation-kinetic effects are separately delineated. It has been
proved via QDFT that the contribution of Pauli and Coulomb correlations to these model systems is the same;
the difference lies solely in their correlation-kinetic component. In this paper, we apply the QDFT of the
density amplitude to study the mapping to the bosonic model. The application is to atoms and performed at the
Hartree-Fock theory level of electron correlations. A principal conclusion is that correlation-kinetic effects play
a significant role in the mapping to the bosonic model, whereas they are negligible in the mapping to the model
fermions. For the bosonic model, this contribution increases with electron number, becoming nearly as signifi-
cant as those due to the corresponding electron-interaction �the sum of the Hartree and Pauli� term. The
significance of the correlation-kinetic effects will be further enhanced on the inclusion of Coulomb correlations
and the corresponding correlation-kinetic contributions. The consequences of these conclusions for the HKS-
DFT of the density amplitude are discussed, as are directions for future work.
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I. INTRODUCTION

Ground-state local effective potential theory of electronic
structure is the mapping from the ground state of a system of
N electrons in an external field Fext�r�=−�v�r� to one of
noninteracting fermions or bosons also in their ground state
and with the same electronic density ��r�. The corresponding
total energy E and ionization potential I are also thereby
obtained via these model systems. �The models are referred
to as the S and B systems, respectively.� Theories such as
Hohenberg-Kohn-Sham density-functional theory �1,2�
�HKS-DFT� and quantal density-functional theory �3�
�QDFT� fall under the rubric of local effective potential
theory. The raison d’etre for the mapping is that it is easier to
solve the corresponding Schrödinger equation for the model
systems than it is for the interacting system of electrons.

In order to ensure the same density ��r�, the model sys-
tems must account for electron correlations due to the Pauli
exclusion principle and Coulomb repulsion. �We refer to
these as Pauli and Coulomb correlations.� However, as the
kinetic energy of the electrons and those of the noninteract-
ing model particles with the same density are different, the
model systems must also account for this correlation contri-
bution to the kinetic energy. These are the correlation-kinetic
contributions. As the model system particles �fermions or
bosons� are noninteracting, their potential energy in each
case is the same. As a consequence, all the above many-body
effects are represented by a local �multiplicative� effective
potential-energy operator vs�r� and vB�r� in the correspond-
ing Schrödinger equations for the S and B systems, respec-
tively. These effective potentials are in general different. It is

the multiplicative nature of these many-body potentials that
allow for an easier solution of the respective Schrödinger
equations.

For the S system in its ground state, the occupation of
states by the model fermions is according to the Pauli prin-
ciple. The corresponding wave function �S is a Slater deter-
minant ���i� of the N single-particle orbitals �i�x�, where
x= �r�� with �r�� being the spatial and spin coordinates of
the model fermion. The S system Schrödinger equation must
then be solved self-consistently N times to obtain the wave
function �S. The highest-occupied eigenvalue �m of the dif-
ferential equation is the negative of the ionization potential I
�3–6�. In contrast, for the B system, all the noninteracting
bosons are in the same ground state. The corresponding wave
function �B=���r� /N and, thus, the solution of the B system
Schrödinger equation leads directly to the density amplitude
���r�. This differential equation needs to be solved only
once to obtain the density ��r�. The single eigenvalue 	 is
the negative of the ionization potential I �5�. �For details of
the different derivations of this result, we refer the reader to
Chap. 6 of �3�.� Most present day calculations of electronic
structure involve the construction of approximate model S
systems. However, the fact that in the mapping to the B
system only one self-consistent solution is required to obtain
the density is a considerable advantage. The focus of this
paper, therefore, is to better understand the mapping to the
model system of bosons. �Note that the B system may
equally well be thought of as a single particle �fermion or
boson� with wave function �B.�

The mapping to the S and B systems within the frame-
work of HKS-DFT is in terms of universal energy function-
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als of the density in which all the above many-body effects
are embedded. How these electron correlations are incorpo-
rated in these energy functionals is, however, not described
by the theory. The effective potentials of the model particles
are in turn defined as the corresponding functional deriva-
tives of these energy functionals.

The QDFT �3� description of the S and B systems is in
terms of “classical” fields and their quantal sources. The
fields are separately representative of the contributions of
electron correlations due to the Pauli principle, Coulomb re-
pulsion, and correlation-kinetic effects. The effective poten-
tials are then obtained as the work done in the force of a
conservative field, which is the sum of the individual fields.
The components of the total energy are in turn expressed in
integral virial form in terms of these separate fields. As a
consequence of this delineation, it is then possible to study
the contributions of each type of electron correlation to a
property of interest. Furthermore, it has been proved �3� via
QDFT that the contributions of the Pauli and Coulomb cor-
relations to both the S and B systems are the same. Thus, the
difference between the two model systems is solely due to
the difference in the correlation-kinetic contributions.

The principal thrust of this paper is to study the mapping
to the B system of noninteracting bosons within the frame-
work of QDFT �3� as applied to atoms. As there has been
prior application to atoms of the QDFT mapping to the S
system, it is then possible to make comparisons of the two
mappings within QDFT. In Sec. II we describe the interact-
ing system and provide the equations for the corresponding
QDFT mapping to the B system with the same density ��r�.
For details of the proof of this mapping as well as that for the
QDFT mapping to the S system, we refer the reader to �3�.

If the interacting system of electrons is described instead
by the Hartree-Fock �7,8� or Hartree �9� theory, it is then also
possible to map these systems via QDFT to model B systems
that would reproduce the corresponding ground-state densi-
ties and energies. In Sec. III we study the QDFT mapping to
the B system at the Hartree-Fock theory level of electron
correlations as applied to the Be and Mg atoms. A compari-
son of these results with the QDFT description of the corre-
sponding S system for these atoms �10� is made in Sec. IV. In
Sec. V we discuss the consequences of our analysis and con-
clusions for the HKS-DFT of the B system. Conclusions and
endnotes constitute Sec. VI.

For completeness we note that a description of the differ-
ent derivations of the Schrödinger equation for the B system,
and the corresponding expressions for the many-body poten-
tial vB�r� and the energy E, as derived in the context of the
Hohenberg-Kohn theory, or directly from the Schrödinger
equation for the electrons �5,11–15�, is given in Chap. 6 of
�3�. For additional work on the properties of the B system,
see, for example, �16,17�.

II. QDFT OF THE DENSITY AMPLITUDE

Consider a system of N electrons in an external field
Fext�r� such that Fext=−�v�r�. The electrons could be in
their ground or excited state. The time-independent
Schrödinger equation for this system is

Ĥ��X� = E��X� , �1�

where the Hamiltonian in atomic units Ĥ= T̂+ V̂+ Û, the sum
of the kinetic, external potential, and electron-interaction po-

tential operators, respectively: T̂=− 1
2�i�i

2; V̂=�iv�ri�; Û
= 1

2�i,j� 1 / 	ri−r j	. The energy is E, and the wave function
��X�, where X=x1 , . . . ,xN with x=r�. The density ��r� is
the expectation

��r� = 
��X�	�̂�r�	��X�� , �2�

where the Hermitian density operator

�̂�r� = �
i


�ri − r� . �3�

The single-particle density matrix ��rr�� is the expecta-
tion �3,18�

��rr�� = 
��X�	�̂�rr��	��X�� , �4�

where the density-matrix operator �̂�rr�� is the complex sum

of the Hermitian operators Â and B̂,

�̂�rr�� = Â + iB̂ , �5�

where

Â =
1

2�
j

�
�r j − r�Tj�a� + 
�r j − r��Tj�− a�� , �6�

B̂ = −
i

2�
j

�
�r j − r�Tj�a� − 
�r j − r��Tj�− a�� , �7�

Tj�a� is a translation operator such that Tj�a���. . . ,r j , . . .�
=��. . . ,r j +a , . . .�, and a=r�−r. The diagonal matrix ele-
ment ��rr� is the density ��r�. The properties ��r� and
��rr�� constitute quantal sources.

The B system Schrödinger equation that reproduces the
above density is

�−
1

2
�2 + vB�r����r� = 	���r� , �8�

where the effective potential vB�r� of the bosons is

vB�r� = v�r� + vee
B �r� , �9�

and where vee
B �r� is the local potential in which all the many-

body effects are incorporated.
Within QDFT, vee

B �r� is the work done to move a model
boson from a reference point at infinity to its position at r in
the force of a conservative effective field FB

ef f�r�,

vB�r� = − �
�

r

FB
ef f�r�� · d��. �10�

This work done is path independent since �FB
ef f�r�=0.

The effective field FB
ef f�r� is the sum of the electron-

interaction Eee�r� and correlation-kinetic Ztc
B�r� fields,

FB
ef f�r� = Eee�r� + Ztc

B�r� . �11�
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The field Eee�r� accounts for electron correlations due to
the Pauli principle and Coulomb repulsion and is given in
terms of the electron-interaction force eee�r� and density as

Eee�r� =
eee�r�
��r�

. �12�

The force eee�r� is in turn obtained via Coulomb’s law from
the pair-correlation function P�rr��, its quantal source

eee�r� =� P�rr���r − r��
	r − r�	3

dr�, �13�

with P�rr�� the expectation

P�rr�� = 
��X�	P̂�rr��	��X�� , �14�

where the Hermitian pair-correlation operator P̂�rr�� is

P�rr�� = �
i,j

�

�ri − r�
�r j − r�� . �15�

�The ratio P�rr�� /��r�=g�rr�� is the pair-correlation density,
which satisfies the charge sum rule �g�rr��dr�=N−1.�

The field Ztc
B�r� representative of correlation-kinetic ef-

fects is the difference of two kinetic fields ZB�r� and Z�r�
of the model boson and interacting electron systems, respec-
tively,

Ztc
B�r� = ZB�r� − Z�r� , �16�

where

ZB�r� =
zB�r;�B�

��r�
, Z�r� =

z�r;��
��r�

. �17�

The B system kinetic “force” zB�r ;�B� is defined in terms of
the corresponding kinetic-energy-density tensor tB,���r� as

zB,��r� = 2�
�

�

�r�

tB,���r;�B� , �18�

with

tB,���r� =
1

4� �2

�r�� � r��
+

�2

�r�� � r��
�B�r�r��	r�=r�=r, �19�

and where the boson system density-matrix �B�rr�� quantal
source is

�B�rr�� = ���r����r�� . �20�

The kinetic “force” z�r ;�� is defined similarly in terms of
the interacting system density-matrix ��rr�� quantal source.

The total energy E of the electrons can then be obtained
from the B system as the sum of the kinetic energy TB of the
bosons, the external energy Eext, the electron-interaction en-
ergy Eee, and the correlation-kinetic Tc

B energy,

E = TB + Eext + Eee + Tc
B, �21�

where

TB =� ���r��−
1

2
�2����r�dr , �22�

Eext =� ��r�v�r�dr , �23�

and in integral virial form in terms of the respective fields,

Eee =� ��r�r · Eee�r�dr , �24�

Tc
B =

1

2
� ��r�r · Ztc

B�r�dr . �25�

�The energies TB and Eext are given in traditional form. They
may, however, also be written in terms of fields �3�.� The
expressions for Eee and Tc

B are independent of whether the
fields Eee�r� and Ztc

B�r� are conservative or not.
Equations �10� and �21� constitute the QDFT mapping to

the B system. Note that these equations are valid for the
mapping from both the ground and excited states of the in-
teracting system. Irrespective of the state of the interacting
system, the B system is always constructed to be in its
ground state.

The single eigenvalue 	 of the B system differential equa-
tion is the negative of the ionization potential: 	=−I �5� �see
also Chap. 6 of �3��.

As noted previously, the effective field FB
ef f�r� is conser-

vative. Its components Eee�r� and Ztc
B�r� are in general not

curl free. However, for systems of symmetry such that �
Eee�r�=0 and �Ztc

B�r�=0, the potential energy vee
B �r�

may be written as

vee
B �r� = Wee�r� + Wtc

B�r� , �26�

where Wee�r� and Wtc
B�r� are, respectively, the work done in

the fields Eee�r� and Ztc
B�r�,

Wee�r� = − �
�

r

Eee�r�� · d��, Wtc
B�r� = − �

�

r

Ztc
B�r�� · d��.

�27�

The work Wee�r� and Wtc
�r� are separately path independent.

�The field Eee�r� can be further divided into its Hartree
EH�r� and Pauli-Coulomb Exc�r� components and, thus, so
can the energy Eee and potential Wee�r�. The corresponding
quantal sources are the density ��r� and the Pauli-Coulomb
hole charge distribution �xc�rr�� �3�.�

Finally, the above framework of the mapping to the model
boson system remains the same if the interacting system of
electrons is represented at either the Hartree-Fock or Hartree
theory level of electron correlation. The only difference in
the QDFT equations is that the quantal sources P�rr�� and
��rr�� are replaced by their Hartree-Fock and Hartree theory
counterparts.

For the S system, the corresponding differential equation
is

�−
1

2
�2 + vs�r��i�x� = �i�i�x�; i = 1, . . . ,N , �28�

QUANTAL DENSITY-FUNCTIONAL THEORY OF THE… PHYSICAL REVIEW A 80, 022506 �2009�

022506-3



vs�r� = v�r� + vee�r� , �29�

where all the many-body effects are incorporated in the po-
tential vee�r�. The wave function is a Slater determinant
���i� of the orbitals �i�x�, and the density is the expectation
��r�= 
���i�	�̂�r�	���i��=�i,��i

��r���i�r��. Once again,
the QDFT mapping to the S system involves an electron-
interaction field component representative of Pauli and Cou-
lomb correlations that is the same as in the B system, and a
correlation-kinetic field component that is different. As no S
system calculations are being performed in the present paper,
we refer the reader to �3� for the corresponding equations of
the QDFT mapping to this model system.

III. APPLICATION TO ATOMS

If the only electron correlations considered are those due
to the Pauli exclusion principle, then the exact solution of the
interacting system is that of Hartree-Fock theory. Exact fully
self-consistent calculations for atoms in the Hartree-Fock ap-
proximation exist �19�. As described above, it is possible via
the QDFT of the density amplitude to map to B systems that
would reproduce the Hartree-Fock theory density and energy.
In this section, we demonstrate this mapping for the spheri-
cally symmetric Be and Mg atoms.

Rather than use the self-consistent numerical orbitals of
�19�, we employ instead the analytical ground-state Hartree-
Fock theory wave functions of Clementi and Roetti �20�.
Thus, the mapping is from the ground state of the “interact-
ing” system to a B system in its ground state. �The word
interacting is in quotes to indicate that the correlations be-
tween the electrons are those due to the Pauli exclusion prin-
ciple.�

It has been shown �21� that the B system is a special case
of the S system. Now for the S system, it has been proved
�21–23� that the S system electron-interaction potential
vee�r� counterpart of vee

B �r� is finite at the nucleus. This is a
consequence of the cusp in the wave function of the interact-
ing system at the nucleus �24�. In terms of the density, the
electron-nucleus coalescence condition to leading order is
�21–23,25�

��r�r→� � ��0��1 − 2Zr� , �30�

where Z is the atomic number. The fully self-consistent
Hartree-Fock theory wave functions satisfy the electron-
nucleus cusp condition exactly. For the analytical Hartree-
Fock theory wave functions, the satisfaction of the coales-
cence condition is essentially exact. The corresponding
relations for Be and Mg for these analytical wave functions
are

Be: ��r�r→� � 35.4277�1 − 8.0389r� , �31�

Mg: ��r�r→� � 1093.7310�1 − 24.0228r� . �32�

With the analytical Hartree-Fock theory wave functions, the
quantal sources—the Hartree-Fock theory density �HF�r�,
pair-correlation density gHF�rr��= PHF�rr�� /�HF�r�, Dirac
density matrix �HF�rr��, and the bosonic system density ma-
trix �B

HF�rr��—are first determined. �The superscript HF is
dropped in the remainder of the paper.�

The radial probability density r2��r� of the Be atom is
plotted in Fig. 1. The separately conservative electron-
interaction Eee�r� and correlation-kinetic Ztc

B�r� fields for Be
are plotted in Fig. 2. Observe that both the fields exhibit the
two-shell structure of the atom. The field Eee�r� is positive
and has a larger magnitude in the K shell. This field decays
as 3 /r2 asymptotically. This is because the quantal source
g�rr�� of the field, which has a total charge of 3 a.u., be-
comes an essentially static charge distribution for asymptotic
positions of the electron.

The correlation-kinetic field Ztc
B�r� �see Fig. 2� is negative

in the K shell and positive in the L shell. It is interesting that
the magnitudes of the minimum and maximum are greater
than that of the electron-interaction field Eee�r� in the K and
L shells, respectively. However, the field Ztc

B�r� decays as a
positive function more rapidly in the asymptotic classically
forbidden region than the electron-interaction field Eee�r�,
which decays as 3 /r2.

FIG. 1. The Hartree-Fock theory radial probability density of
the Be atom.

FIG. 2. The electron-interaction Eee�r� and correlation-kinetic
Ztc

B�r� fields of the B system for the Be atom.
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The work done Wee�r� and Wtc
B�r� in the fields Eee�r� and

Ztc
B�r�, respectively, and the work vee

B �r� in the effective field
FB

ef f�r� are plotted in Fig. 3. Observe first that vee
B �r� is finite

at the nucleus, a direct consequence of the electron-nucleus
coalescence constraint on the wave function. The two-shell
structure of the Be atom is evident in the potential Wtc

B�r�.
Asymptotically, this work decays more rapidly than Wee�r�
which in turn decays as 3 /r. On the scale of the figure, the
shell structure exhibited by Wee�r� is not that clearly visible.
However, the shell structure is clearly exhibited by the struc-
ture of the potential energy vee

B �r�. Asymptotically, the curves
of Wee�r� and vee

B �r� merge, both decaying as 3 /r. Thus, the
effective potential energy vB�r� decays asymptotically as
−1 /r.

The B system properties for the Be atom, viz., the kinetic
energy TB, the correlation-kinetic energy Tc

B, the external po-
tential energy Eext, the electron-interaction energy Eee, and
the total energy E, as determined from the corresponding
fields, as well as the eigenvalue 	, and the experimental
ionization potential I are quoted in a.u. in Table I. The results
indicate the following. The correlation-kinetic-energy Tc

B

component is 6.3% of the total energy E or, equivalently, of

the �Hartree-Fock theory� kinetic energy T of the interacting
system. The electron-interaction energy Eee in turn is 31% of
E. Thus, in the mapping to the B system, the correlation-
kinetic contribution is significant. �That this is the case is
more dramatically demonstrated in the results for the Mg
atom to be discussed below.� The eigenvalue 	 differs by
10% from the experimental result �26�.

The B system results for Mg are presented as follows: the
radial probability density r2��r� is plotted in Fig. 4; the
electron-interaction Eee�r� and correlation-kinetic Ztc

B�r�
fields in Figs. 5 and 6; the work done Wee�r� and Wtc

B�r� in
the fields Eee�r� and Ztc

B�r�, respectively, and the work vee
B �r�

in the effective field FB
ef f�r� are plotted in Fig. 7; the values

of the properties TB, Tc
B, Eext, Eee, E, 	, and the experimental

I in Table I.
Once again, the potential vee

B �r� is finite at the nucleus as
must be the case. The three-shell structure of the Mg atom

FIG. 3. The potential energies Wee�r�, Wtc
B�r�, and vee

B �r� of the
B system for the Be atom.

TABLE I. Properties of the B system for the Be and Mg atoms
in a.u.

Property

Atom

Be Mg

TB 13.6587 132.5942

Tc
B 0.9143 67.0204

Eext −33.6647 −479.0672

Eee 4.5186 79.8423

E −14.5730 −199.6146

	 0.3077 0.3968

I�experiment� −0.3425 −0.2810

FIG. 4. The Hartree-Fock theory radial probability density of
the Mg atom.

FIG. 5. The electron-interaction Eee�r� and correlation-kinetic
Ztc

B�r� fields of the B system for the Mg atom.
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�see Fig. 4 for the radial probability density� is clearly evi-
dent in the plots for the correlation-kinetic field Ztc

B�r� �see
Figs. 5 and 6�. Observe that the magnitude of the field Ztc

B�r�
is substantially larger than the field Eee�r� �see Fig. 5�, but
again decays asymptotically much faster than Eee�r�
�11 /r2. On the scale of Fig. 7, the shell structure is also
evident in that of the potential energy Wtc

B�r� and, as ex-
pected, it decays asymptotically faster than Wee�r��11 /r.
The potential energy vee

B �r� also exhibits the shell structure
and decays as the potential energy Wee�r� �see Fig. 7�. Thus,
the B system effective potential energy vB�r� for Mg again
decays asymptotically as −1 /r.

The trends observed for the bosonic system properties for
the Be atom are magnified for those of Mg �see Table I�, i.e.,
with an increase in the number of electrons. For Mg, the
correlation-kinetic energy Tc

B constitutes 34% of the total en-

ergy E, whereas the electron-interaction energy Eee is 40% of
E. Furthermore, the eigenvalue 	 differs from the experi-
mental ionization potential by 41%.

The B systems described above reproduce the Hartree-
Fock theory density and energy of the Be and Mg atoms. The
potential energy vB�r� obtained from the various fields gen-
erates the density amplitude ���r� via Eq. �8�, and the energy
E and its components are obtained from these fields via
Eq. �21�.

IV. COMPARISON OF THE B AND S SYSTEMS

As noted in the introduction, the mapping to the B system
requires the solution of a differential equation for a single
orbital ���r�, whereas for the mapping to a S system, the
corresponding differential equation has to be solved for N
orbitals, N being the number of electrons. The calculations of
Sec. III, although performed at the Hartree-Fock theory level
of correlation, indicate yet another significant difference be-
tween the two mappings. The corresponding correlation-
kinetic contributions Tc of the S system and Tc

B of the B
system differ substantially. In �10�, S system calculations at
the Pauli level of correlation were performed. The difference
between the resulting energies and those of Hartree-Fock
theory are an accurate estimate of the correlation-kinetic en-
ergy Tc. These differences for Be and Mg are 108 and 42
ppm, respectively. As noted above, the corresponding B sys-
tem correlation-kinetic energies Tc

B for Be and Mg are 6%
and 34% of the Hartree-Fock theory energy. Obviously, re-
quiring the model noninteracting particles—bosons—to be in
their ground state occupying a single state rather than allow-
ing the model noninteracting particles—fermions—to be in
their ground-state occupying states according to the Pauli
exclusion principle is reflected in the correlation-kinetic
component of the former being very much greater than that
of the latter. It is reasonable to assume that this will also be
the case when all the remaining correlations—those due to
Coulomb repulsion and the corresponding correlation-kinetic
contributions—are included in the mapping.

Note also that whereas for the S system at the Hartree-
Fock level of correlation, with increasing number of elec-
trons, the correlation-kinetic energy Tc diminishes �see �10��,
the trend for the B system is the opposite. As the number of
electrons increases, the correlation-kinetic piece Tc

B in-
creases, thus, becoming a greater fraction of the total energy
E.

Yet another comparison that can be made from the results
obtained above is that between the highest-occupied eigen-
value �m of the S system and the eigenvalue 	 of the B
system. For the mappings when all the electron correlations
are considered, both �m and 	 are equivalent to the negative
of the ionization potential I. However, at the approximate
Hartree-Fock theory level of correlation, they are about the
same for Be: �m and 	 differ from the experimental values of
I by 9% and 10%, respectively, but differ significantly for
Mg. In this case, �m and 	 differ from the experimental val-
ues of I by 7% and 41%, respectively �see �10� and Table I�.
Thus, with an increase in the number of electrons, the single
eigenvalue 	 is far less accurate. This is in spite of the fact

FIG. 6. The electron-interaction Eee�r� and correlation-kinetic
Ztc

B�r� fields of the B system for the Mg atom in the classically
forbidden region.

FIG. 7. The potential energies Wee�r�, Wtc
B�r�, and vee

B �r� of the
B system for the Mg atom.
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that both the S and B system effective potential-energy func-
tions vs�r� and vB�r� decay asymptotically as −1 /r. With the
incorporation of the Coulomb correlations and the remaining
correlation-kinetic effects, the two eigenvalues �m and 	 of
course become equivalent.

V. CONSEQUENCES FOR TRADITIONAL
DENSITY-FUNCTIONAL THEORY

The consequences of the above results and conclusions
for traditional KS-DFT of the density amplitude �see �3�� are
as follows. In the traditional theory, the mapping is from an
interacting system in its ground state to one of noninteracting
bosons in their ground state. The many-body effects of the
Pauli principle, Coulomb repulsion, and the correlation-
kinetic effects of the bosons are all incorporated in the
ground-state electron-interaction energy functional Eee

B ���,
with the potential vee

B �r� being its functional derivative:
vee

B �r�=
Eee
B ��� /
��r� �3�. Since the functional Eee

B ��� is un-
known, approximations to this functional are constructed
with the physics of the various electron correlations being
incorporated extrinsically. Now the QDFT derivations �3� of
the B and S systems prove that the component due to Pauli
and Coulomb correlations of the functional Eee

B ��� and of the
Kohn-Sham electron-interaction energy functional Eee

KS��� of
the S system is the same. Thus, the approximate incorpora-
tion of these correlations into Eee

B ��� can be done in a manner
similar to that presently being employed for the construction
of S system approximate energy functionals Eee

KS���. How-
ever, due the large magnitude of the correlation-kinetic ef-
fects for the bosonic system, the incorporation of these ef-
fects into the functional Eee

B ��� poses a difficult challenge.
Unless these effects, which for bosonic systems are large,
can be reasonably well accounted for in the functional
Eee

B ���, the functional and its derivative will be inaccurate,
and the KS-DFT of the density amplitude will then not lead
to meaningful results.

VI. CONCLUSIONS AND ENDNOTES

In this paper, we have applied the QDFT of the density
amplitude to atoms at the Hartree-Fock theory level of elec-
tron correlations. As such we have studied the mapping from
this ground-state representation of the interacting system to
the B system of noninteracting bosons in their ground state
with the same density. The principal conclusion of this work
is that in such a mapping, correlation-kinetic effects play a
significant role, with its significance increasing with electron
number. The correlation-kinetic contribution is a substantial
fraction of the total energy; it also plays a role nearly as
significant as that of the electron-interaction energy. This is
in sharp contrast to the QDFT mapping to the S system
model of noninteracting fermions with equivalent density in
their ground state. For the latter, correlation-kinetic effects at
this level of electron correlation are negligible.

It is evident that with the incorporation of Coulomb cor-
relations into the mapping to the B system, correlation-
kinetic effects will be even more significant. Work investi-
gating these additional correlation-kinetic contributions is in

progress. Studies of few electron atoms show that in the
mapping to S systems, correlation-kinetic contributions to
the total energy are on the same order of magnitude as that of
Coulomb correlations. For two-electron systems, such as the
Hooke’s atom, the helium atom, and the hydrogen molecule
in their ground state, the mappings to the S and B systems in
a ground state are equivalent. For a quantitative comparison
of the correlation-kinetic and Coulomb correlation contribu-
tions for these two-electron systems, see �3,27,28�. For the
mapping from an excited state of the Hooke’s atom to a B �or
S� system in its ground state, see �3�.

As noted previously, it has been shown �21,22� that the B
and S system electron-interaction potentials vee

B �r� and vee�r�,
respectively, are finite at the nucleus. It is also shown that all
the electron correlations—Pauli, Coulomb, and correlation
kinetic—contribute to this value, i.e., to vee

B �0� and vee�0�.
The asymptotic near nucleus structure of vee�r� for spheri-

cally symmetric or sphericalized systems is of the form
�22,23�

vee�r� = � + �r + �r2. �33�

It has also been proved �23� via QDFT that �a� correlations
due to the Pauli principle and Coulomb repulsion do not
contribute to the linear structure; �b� these Pauli and Cou-
lomb correlations contribute quadratically; and �c� the coef-
ficient � is solely due to correlation-kinetic effects. The co-
efficient � of the linear term has been determined �23,29�. As
the contribution of Pauli and Coulomb correlations to the S
and B systems is the same, it is evident that the near nucleus
structure of vee

B �r� must be of the form

vee
B �r� = 
 + �r + �r2, �34�

with these correlations contributing to the coefficient � of the
quadratic term. The coefficient � of the linear term, due
solely to correlation-kinetic effects, is at present unknown
and may be determined along the lines of �23,29�.

Finally, it has also been shown �30,31� via QDFT that the
asymptotic structure of vee�r� in the classically forbidden
region of spherically symmetric and sphericalized systems is
of the form

vee�r� =
N

r
−

1

r
−

�

2r4 +
�

r5 , �35�

In this expression, the first term is the Hartree or Coulomb
self-energy contribution; the second term is solely due to
Pauli correlations; the term of O�1 /r4� is solely due to Cou-
lomb correlations with � the polarizability; the term of
O�1 /r5� is solely due to correlation-kinetic effects with the
coefficient � known. �The first three terms have also been
derived �6� via the concept of quasiparticle amplitudes. See
�31� for comments on this work.� Again, because the contri-
butions of Pauli and Coulomb correlations to the S and B
systems are the same, it is evident that the asymptotic struc-
ture of vee

B �r� must be of the form
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vee
B �r� =

N

r
−

1

r
−

�

2r4 + higher-order terms. �36�

The higher-order correlation-kinetic contribution to this
structure is unknown and may be determined along the lines
of �30�.

The above asymptotic structures for the electron-
interaction potentials vee�r� and vee

B �r� in the classically for-
bidden region then lead to an asymptotic structure of the S
and B system effective potentials vs�r� and vB�r� of �−1 /r�.
This is consistent with previous work �5�, which proved that
vs���=vB���=0.

We conclude by noting that although there has been prior
work on the B system, more work needs to be done to fully
understand this mapping. The present work within the frame-
work of QDFT, which allows for an investigation in terms of
the separate electron correlations, is a beginning.
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