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We calculate the relativistic corrections of relative order �Z��2 to the two-photon decay rate of higher
excited S and D states in ionic atomic systems, and we also evaluate the leading radiative corrections of
relative order ��Z��2ln��Z��−2�. We thus complete the theory of the two-photon decay rates up to relative order
�3 ln���. An approach inspired by nonrelativistic quantum electrodynamics is used. We find that the correc-
tions of relative order �Z��2 to the two-photon decay are given by the Zitterbewegung, by the spin-orbit
coupling and by relativistic corrections to the electron mass, and by quadrupole interactions. We show that all
corrections are separately gauge invariant with respect to a “hybrid” transformation from velocity to length
gauge, where the gauge transformation of the wave function is neglected. The corrections are evaluated for the
two-photon decay from 2S, 3S, 3D, and 4S states in one-electron �hydrogenlike� systems, with 1S and 2S final
states.
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I. INTRODUCTION

Two-photon decay processes in hydrogenlike ions repre-
sent an intriguing physical phenomenon and are the subject
of intense research. The metastability of the 2S level, which
is limited only by two-photon decay, makes it amenable to
high-precision measurements. Interestingly, though, the two-
photon decay has never been studied within the so-called Z�
expansion beyond the leading order, that is, beyond the order
of �2�Z��6 for the decay width in units of the electron rest
mass �in this paper, we use natural units �=c=�0=1�.

The first study of the two-photon decay rate � of the 2S
state was carried out by Göppert-Mayer in 1931 �1�, and the
well-known nonrelativistic result was derived,

�−1 = �0 = 8.229 352 Z6 s−1 = 1.309 742 Z6 Hz. �1�

This result has been verified experimentally �2–4�.
In the nonrecoil limit, the leading correction terms modi-

fying this result are given by a relativistic correction of rela-
tive order �Z��2 and a radiative correction of relative order
��Z��2ln��Z��−2�. We can write the following expansion:

� = �0�1 + �2�Z��2 + �3
�

�
�Z��2ln��Z��−2� + . . .� , �2�

with coefficients �2 and �3 to be determined.
The next-higher-order term not included in Eq. �2� is a

nonlogarithmic radiative correction of order ��Z��2. Equa-
tion �2� is complete up to order �3 ln���.

The coefficient �3 is known for the 2S-1S transition �5,6�,
but it remains unknown for any other two-photon transition
in a hydrogenlike ionic system. The coefficient �2, which
intuitively could be assumed to represent an easy computa-
tional task, has not yet been calculated for any two-photon
transition, to the best of our knowledge. We address both �2
and �3 in this paper.

The relativistic correction of relative order �Z��2 actually
involves quite a large number of individual contributions: �i�
multipole �quadrupole radiation� correction, �ii� relativistic

corrections to the electron’s transition current, and �iii� rela-
tivistic corrections to the Hamiltonian and to the bound-state
energies of initial and final states, due to Zitterbewegung
�zb�, relativistic kinetic energy �ke�, and spin-orbit coupling.
Each one of these contributions entails a computationally
demanding sum over virtual states and an integration over
the photon energy. We here calculate the corrections one af-
ter the other and check gauge invariance all along the way.
Finally, we obtain rigorous results for �2 and �3.

Our approach is inspired by nonrelativistic quantum elec-
trodynamics �NRQED�, albeit in a restricted way. In a two-
photon decay, the photon energies are bound by the energy
difference of the initial and final states and, therefore, the
problem of separating the energy scales of the high-energy
vertex terms does not arise. However, the interaction Hamil-
tonian still has to be expanded in the sense of NRQED, and
we have the choice between two gauges, which determine
the form of the interaction Hamiltonian. Either the “length”
�Yennie� or “velocity” �Coulomb� gauge can be chosen. The
final result should not depend on the gauge.

In the Appendix of Ref. �7�, the gauge invariance of the
two-photon decay rate was shown to hold within the fully
relativistic formalism, within the class of fully relativistic
gauge transformations given by Eq. �A8� of Ref. �7�. The
Power-Zienau gauge transformation �8�, as given in Eqs. �18�
and �19� of Ref. �9�, has a nontrivial dependence on the
coordinates and allows us to express the QED interaction
Hamiltonian exclusively in terms of observable field
strengths, which in turn correspond to derivatives of the vec-
tor potential. This transformation is most suitable for a non-
relativistic treatment; but due to the nontrivial dependence
on the coordinates and due to problems related to the physi-
cal interpretation of nongauge-invariant quantities �10–12�, a
few subtleties arise.

After considerable discussion on this point within the
community �10–12�, the conclusion has been reached that
gauge transformations have to be considered very carefully
in bound-state problems. E.g., for the radiative corrections to
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the two-photon decay rate �5�, the results are invariant under
a hybrid gauge transformation �11�, where the interaction
Hamiltonian is gauge transformed, but the gauge transforma-
tion of the wave function is neglected, i.e., although a gauge
transformation normally entails a local “pointwise” transfor-
mation of the wave function, this whole transformation is
flatly ignored, and the “usual” Schrödinger eigenstates �13�
are used for initial and final states of the process under in-
vestigation. We show here that the relativistic corrections to
the two-photon decay rate are invariant under such a trans-
formation �the gauge invariance of the leading logarithmic
QED corrections was shown in Ref. �5��. In general, proper-
ties of atomic states which can be formulated using the adia-
batic S-matrix theory are invariant under this kind of hybrid
gauge transformation; whereas in time-dependent problems,
the choice of gauge has to be taken into account even more
carefully �10–12�. In the latter case, the gauge transformation
of the wave function cannot be ignored.

When generalizing the results to higher-excited initial and
final states, one has to overcome a few subtle difficulties
because one has to separate the 3S-1S double-dipole �E1E1�
two-photon decay from the cascade 3S-2P-1S. The 2P state
appears both as a virtual state for the two-photon decay pro-
cess as well as an intermediate state for the cascade process.
In the two-photon decay rate, when regarded as differential
with respect to the photon energy, the presence of the 2P
state causes a �quadratic� singularity. Because we are inter-
ested in the total decay rate, we have to integrate over this
singularity, which is quadratic and thus a priori not inte-
grable. Removing the 2P state from the sum over virtual
intermediate states leads to gauge-dependent results �14–18�.
In order to separate the cascade contribution from the two-
photon correction for the two-photon decay, one has to use a
special integration prescription detailed in Refs. �18–21�; the
prescription constitutes a generalization of the principal-
value integration to quadratic singularities. Here, we extend
the relativistic calculations for two-photon decays to highly
excited initial states using this formalism.

We organize the paper as follows. In Sec. II, we explain
the theoretical methods used in our approach. In Sec. III, we
consider all the corrections separated by their physical origin
for the 2S-1S transition and show explicitly that each contri-
bution is gauge invariant. In Sec. IV, we present numerical
results for the 2S-1S transition and also for transitions from
higher-excited states, and we discuss the separation of the
cascade contribution from the coherent two-photon correc-
tion to the decay rate. Results for the QED radiative correc-
tions of logarithmic order are presented in Sec. V. Conclu-
sions are drawn in Sec. VI. As already mentioned, natural
units �=�0=c=1 are used throughout this paper.

II. THEORETICAL BACKGROUND

The two-photon decay rate is given as the imaginary part
of the two-loop self-energy correction �22� which can be
derived using NRQED �23�. A detailed derivation of the non-
relativistic two-photon decay rate valid for all transitions,
including those involving highly excited states, is contained
in previous works �5,18,19,21� and there is no need to repro-
duce it here.

We recall that in velocity �Coulomb� gauge, the interac-
tion Hamiltonian for the interaction of the electron with the
quantized radiation field is given as

HI = −
e

2m
�p� · A� + A� · p�� +

e2A� 2

2m
, �3�

where p� is the electron momentum, A� is the vector potential,
and m is the electron mass. This interaction leads to the
following expression for the nonrelativistic decay rate:

�� =
4�2

9�m4Re�
0

Ei−Ef

d	1	1	2�	
 f
pi 1

H − Ef − 	1 + i�
pj

i�

+ 	
 f
pi 1

H − Ei + 	1 + i�
pj

i��2

. �4�

Here, “Re” denotes the real part, and the limit �→0 is taken
after all integrations have been performed. The summation
convention is used throughout this paper. The superscript �
denotes the velocity-gauge form of the expression.

For length �Yennie� gauge, the �leading� interaction
Hamiltonian takes the simple form,

HI = − eE� · r� . �5�

If this Hamiltonian is used, we obtain for the nonrelativistic
expression,

�� =
4�2

9�
Re�

0

Ei−Ef

d	1	1
3	2

3�	
 f
ri 1

H − Ef − 	1 + i�
rj

i�

+ 	
 f
ri 1

H − Ei + 	1 + i�
rj

i��2

. �6�

Using the relation �10,24�

	
 f
pi 1

H − Ef − 	1
pj

i� + 	
 f
pi 1

H − Ei + 	1
pj

i�

= − m2	1	2�	
 f
ri 1

H − Ef − 	1
rj

i�

+ 	
 f
ri 1

H − Ei + 	1
rj

i�� , �7�

the equivalence of these two expressions can be shown. Note
that this is only valid if a complete spectrum is used for the
representation of the propagator.

For a fully relativistic calculation of the effect, we would
have to use the Dirac Hamiltonian HD in the propagators
instead of the Schrödinger Hamiltonian H and also the inter-
action Hamiltonian and the wave function would have to be
changed accordingly. However, as we want to work nonrela-
tivistically, we transform the fully relativistic Dirac Hamil-
tonian and its interaction Hamiltonian into effective nonrel-
ativistic operators. This can be achieved by using a Foldy-
Wouthuysen transformation �25�, which identifies the
nonrelativistic Hamiltonian as the leading term, and thus
leads to a systematic way of expressing the relativistic cor-
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rections. Furthermore, it allows us to express the relativistic
corrections to the electron’s transition current within the Z�
expansion.

Alternatively, one can resort to the literature �26�, where
the corrections to the Schrödinger Hamiltonian have been
tabulated. For the noninteracting part, this procedure leads to
the well-known corrections to the Schrödinger Hamiltonian
H,

H → H + �H ,

H =
p2

2m
+

Z�

r
,

�H =
�Z�

2m
�3�r� +

L� · 
�

4m2r3 −
p4

8m3 . �8�

The Darwin term proportional to the Dirac � originates from
the Zitterbewegung of the electron. The next term is the spin-
orbit coupling, and the last is the correction due to the rela-
tivistic kinetic energy. The relativistic corrections to the ref-
erence state wave function and to its energy thus read as
follows:

E → E + �E = E + 	

�H

� , �9�



� → 

� + 
�
� = 

� + � 1

E − H
��

�H

� . �10�

The transition current of the electron can be derived by act-
ing with the Foldy-Wouthuysen transformation on a Dirac
Hamiltonian, which is coupled to an electromagnetic vector
potential. The velocity-gauge result for the interaction
Hamiltonian thus is �see Refs. �9,27��

Hint = −
eA� · p�

m
−

e

2m
�
� � �� � · A� +

e

2m3 �A� · p��p�2

−
e

4m2 �
� � p�� ·
�A�

�t
−

e

4m2 �
� � �� V� · A� 
 − eJ� · A� .

�11�

We remember that the photon emission is characterized by
the creation part of the electromagnetic vector potential op-
erator, which carries a dependence of exp�−ik� ·r��. The tran-
sition current J� can thus be written as

Ji =
pi

m
+ �Ji =

pi

m
�1 − ik� · r� −

1

2
�k� · r��2�

−
pip�2

2m3 −
1

2m2

Z�

r3 �r� � 
� �i −
i

2m
�
� � k��i�1 − ik� · r�� .

�12�

As we are considering a two-photon effect, contributions
from seagull terms also have to be taken into account �here,
two photons emerge from the same vertex�. Terms propor-
tional to A2 are included in the seagull Hamiltonian which is
given by

Hsea =
e2A� 2

2m
−

e2

2m3 �A� · p��2 −
e2

4m3A� 2p�2. �13�

Expanding in powers of �Z�� and extracting the photon cre-
ation part, we obtain the seagull correction in relative order
�Z��2,

�Sij = −
1

2m
�k� · r��2�ij −

pipj

2m3 −
p2

4m3�ij , �14�

written in such a way that it multiplies the �creation part of
the� photon fields AiAj.

The interaction Hamiltonian in length gauge, including
relativistic and multipole corrections, can be obtained by em-
ploying two consecutive Power-Zienau transformations �8�
after the Foldy-Wouthuysen transformation. This has been
shown in Ref. �28�. The interaction Hamiltonian in length
gauge thus reads as

Hint = − er� · E� −
e

2m
�L� + 
� � · B� −

e

2
rirjE,j

i −
e

6m
�Lirj + rjLi�B,j

i

−
e

2m

irjB,j

i −
e

6
rirjrkE,jk

i +
e

4m

� �E�̇ � r�� . �15�

Here, the subscript separated by commas denotes the spatial
derivatives with respect to the indicated Cartesian coordi-
nates evaluated at the origin �28�, which is defined to be the
location of the ionic nucleus. This corresponds to a length-
gauge transition current

Ii 
 ri + �Ii = ri�1 −
i

2
k� · r� −

1

6
�k� · r��2� +

i	

4m
�
� � r��i

+
1

2m	
�
� � k��i�1 − ik� · r�� +

1

2m	
�L� � k��i

−
i

6m	
ˆ�L� � k��i,k� · r�‰ , �16�

where �A ,B�=AB+BA is the anticommutator, and we exam-
ine the emission of a photon with four-vector �	 ,k��. We are
now in the position to discuss how the corrections to the
decay rate can be determined from the transition currents in
the two different gauges. We start with the velocity gauge.

A. Velocity gauge

The nonrelativistic two-photon decay rate in velocity
gauge �see Eq. �4�� can be written as

�� =
4�2

9�
�

0

E
i
−E
 f

d	1	1	2�2, �17�

where the superscript � denotes the velocity-gauge expres-
sion. Here, due to energy conservation, 	2=E
i

−E
f
−	1,

and

� = �1 + �2, �18a�

�1 = 	
 f

pi

m

1

H − E
i
+ 	1

pj

m


i� , �18b�
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�2 = 	
 f

pi

m

1

H − E
f
− 	1

pj

m


i� . �18c�

For the gauge invariance of this nonrelativistic expression,
see Eq. �7�. We only remark that the statement of gauge
invariance can be brought into the compact from

� = − 	1	2� , �19�

where � is defined in Eq. �25� below. Here and in the follow-
ing, we suppress the superscripts ij of the � and � tensors in
order to ensure the compactness of the notation, and we im-
ply that �2
�ij�ij �the indices i and j are summed over� and
that ���
�ij��ij. We define �� to denote the sum of the
corrections due to all the previously discussed perturbations
�Hamiltonian, energy, and current� and express the first-order
relativistic correction �� to the decay rate as �see Ref. �5��

�� = 2
4�2

9�
�

0

E
i
−E
 f

d	1	1	2���

+
4�2

9�
�	max�

0

E
i
−E
 f

d	1	1�2. �20�

The correction �	max=�E
i
−�E
f

is necessary to ensure that
the perturbed energy conservation condition is fulfilled,

	1 + 	2 = E
i
− E
f

+ �	max, �21a�

�	max = 	
i
�H

i� − 	
 f
�H

 f� , �21b�

so that the frequencies of the two quanta add up to the per-
turbed transition frequency. However, due to the presence of
the seagull terms, further corrections have to be taken into
account.

After some algebra, we see that �� can be expressed as
the sum of fifteen terms that account for all the relativistic
and multipole perturbations,

�� = �
k=1

15

��k. �22�

The perturbations of the energies of the initial and final states
lead to the following terms:

��1 = 	
 f

pi

m� 1

H − E
i
+ 	1

�2 pj

m


i�	
i
�H

i� ,

�23a�

��2 = 	
 f
�H

 f�	
 f

pi

m� 1

H − E
f
− 	1

�2 pj

m


i� .

�23b�

The perturbations to the initial and final-state wave functions
lead to the following four effects:

��3 = 	
 f

pi

m

1

H − E
i
+ 	1

pj

m� 1

E
i
− H��

�H

i� ,

�23c�

��4 = 	
 f

pi

m

1

H − E
f
− 	1

pj

m� 1

E
i
− H��

�H

i� ,

�23d�

��5 = 	
 f
�H� 1

E
f
− H��pi

m

1

H − E
i
+ 	1

pj

m


i� ,

�23e�

��6 = 	
 f
�H� 1

E
f
− H��pi

m

1

H − E
f
− 	1

pj

m


i� .

�23f�

The perturbation incurred by the Hamiltonian leads to two
terms �observe the different denominators�,

��7 = − 	
 f

pi

m

1

H − E
i
+ 	1

�H
1

H − E
i
+ 	1

pj

m


i� ,

�23g�

��8 = − 	
 f

pi

m

1

H − E
f
− 	1

�H
1

H − E
f
− 	1

pj

m


i� .

�23h�

The correction to the electron’s transition current can affect
both the initial and the final states, and this gives rise to a
total of four terms,

��9 = 	
 f

pi

m

1

H − E
i
+ 	1

�Jj

i� , �23i�

��10 = 	
 f

pi

m

1

H − E
f
− 	1

�Jj

i� , �23j�

��11 = 	
 f
�Ji 1

H − E
i
+ 	1

pj

m


i� , �23k�

��12 = 	
 f
�Ji 1

H − E
f
− 	1

pj

m


i� . �23l�

The seagull Hamiltonian acting on the unperturbed wave
functions leads to

��13 = − 	
 f
�Sij

i� . �23m�

The minus sign originates because we have written all matrix
elements �second-order perturbations� in the “1 / �H−E�”
form, which corresponds to a negative second-order energy
perturbation. In order to be consistent, we have to use the
negative higher-order seagull Hamiltonian, which is applied
in the first-order perturbation theory. Finally, we have the
seagull terms, which were already present in Ref. �5�, which
account for the emission of two photons from the perturbed
initial state or to the perturbed final state. They are given as

��14 = −
1

m
	
 f
� 1

E
i
− H��

�H

i��ij , �23n�
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��15 = −
1

m
	
 f
�H� 1

E
f
− H��



i��ij , �23o�

where we invoke second-order perturbation theory with the
leading seagull term e2A� 2 / �2m�. Using a complete basis set
of hydrogen eigenfunctions and their orthonormality rela-
tions, we can show that

��14 + ��15 = 0. �24�

The reason is that both ��14 and ��15 are proportional to the
nondiagonal matrix element 	
 f
�H

i� but with opposite
prefactors.

B. Length gauge

The nonrelativistic length-gauge expression in Eq. �6� can
be written as

�� =
4�2

9�
�

0

E
i
−E
 f

d	1	1
3	2

3�2, �25�

where the superscript � denotes the length-gauge expression.
Here, 	2 is defined as in Eq. �17�, and

� = �1 + �2, �26a�

�1 = 	
 f
ri 1

H − E
i
+ 	1

rj

i� , �26b�

�2 = 	
 f
ri 1

H − E
f
− 	1

rj

i� . �26c�

Following the same procedure as for the velocity-gauge ex-
pression, we can write the first-order correction to the two-
photon decay rate in length gauge,

��� = 2
4�2

9�
�

0

E
i
−E
 f

d	1	1
3	2

3���

+ 3
4�2

9�
�	max�

0

E
i
−E
 f

d	1	1
3	2

2�2, �27�

where again �� denotes the sum of all the correction terms
incurred by the relativistic perturbations of the Hamiltonian,
and of the energies of the initial and final states, and of the
length-gauge current. Indeed, in the length gauge, the correc-
tion �� contains only 12 as opposed to 15 terms,

�� = �
k=1

12

��k. �28�

The energies of the initial and final states are perturbed and
this gives rise to the first two correction terms,

��1 = 	
 f
ri� 1

H − E
i
+ 	1

�2

rj

i�	
i
�H

i� , �29a�

��2 = 	
 f
�H

 f�	
 f
ri� 1

H − E
f
− 	1

�2

rj

i� . �29b�

In complete analogy to Eqs. �23c�–�23f�, the perturbations to
the initial and final-state wave functions are accounted for by
the following four terms:

��3 = 	
 f
ri 1

H − E
i
+ 	1

rj� 1

E
i
− H��

�H

i� , �29c�

��4 = 	
 f
ri 1

H − E
f
− 	1

rj� 1

E
i
− H��

�H

i� , �29d�

��5 = 	
 f
�H� 1

E
f
− H��

ri 1

H − E
i
+ 	1

rj

i� , �29e�

��6 = 	
 f
�H� 1

E
f
− H��

ri 1

H − E
f
− 	1

rj

i� . �29f�

Furthermore, the corrections from the perturbed Hamiltonian
give rise to two terms,

��7 = − 	
 f
ri 1

H − E
i
+ 	1

�H
1

H − E
i
+ 	1

rj

i� ,

�29g�

��8 = − 	
 f
ri 1

H − E
f
− 	1

�H
1

H − E
f
− 	1

rj

i� .

�29h�

The length-gauge correction to the current �I gives rise to
four more terms,

��9 = 	
 f
ri 1

H − E
i
+ 	1

�Ij

i� , �29i�

��10 = 	
 f
ri 1

H − E
f
− 	1

�Ij

i� , �29j�

��11 = 	
 f
�Ii 1

H − E
i
+ 	1

rj

i� , �29k�

��12 = 	
 f
�Ii 1

H − E
f
− 	1

rj

i� . �29l�

The seagull term is not present in the length gauge. In the
next section, we analyze these corrections in the light of
gauge invariance. We separate the corrections by their physi-
cal origin and show more than the gauge invariance of the
final result: namely, we are able to demonstrate that each
physically distinguished correction is gauge invariant in it-
self.
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III. GENERAL PROOF OF GAUGE INVARIANCE

A. Orientation

First of all, let us remember that in all bound-state calcu-
lations, we actually use a hybrid gauge transformation �11�,
where we ignore the gauge transformation of the wave func-
tion. The noninteracting relativistic Hamiltonian given in Eq.
�8� by definition is gauge invariant. Thus, we only gauge
transform the electron’s transition current and the photon
field operator or, alternatively, we let the interaction Hamil-
tonian undergo a gauge transformation. We show here that
the full gauge invariance is obtained by carefully considering
the interplay of the relativistic corrections to the wave func-
tion, to the Hamiltonian, and to the energies of the bound
states �the initial and the final states�.

The whole problem becomes simpler when it is divided
into three distinct parts: the first of which is a generalized
correction due to the relativistic Hamiltonian, the second of
which is a quadrupole correction, and the third is a remaining
correction �a further correction to the current�, which can be
shown to vanish after the use of commutator relations.
Gauge invariance can be shown for each of these corrections
separately provided some parts of the velocity-gauge correc-
tion to the electron’s transition current �12� are identified as
being generated by the relativistic Hamiltonian �8� and
treated together with the correction to the Hamiltonian. Here,
the velocity-gauge expression appears to be more compli-
cated. The quadrupole correction by contrast looks a little
more involved in the length gauge. Gauge invariance with
respect to the velocity gauge can be shown provided we in-
clude a part of the seagull term �14� into the velocity-gauge
expression for the quadrupole term. It is then relatively easy
to show that all remaining terms vanish separately.

In the following, we discuss the general approach to the
proof of gauge invariance in some detail. Further aspects are
elucidated in Appendixes A and B.

B. Correction to the Hamiltonian

Let us discuss first the general paradigm and start with the
corrections induced by the relativistic Hamiltonian �8�. The
gauge invariance for the leading-order term �the nonrelativ-
istic result� can be traced to the formula �19�,

� = − 	1	2� , �30�

where � represents the velocity-gauge form and � represents
the length-gauge form.

Both � and � actually carry superscripts ij, which we sup-
press here to leave the notation compact, as already dis-
cussed. Let us now suppose that the total velocity-gauge cor-
rection due to the relativistic Hamiltonian can be expressed
as ��H, and the corresponding length-gauge expression is
��H. The precise definition of ��H and ��H will be discussed
later. We are able to show the following gauge-invariance
relation,

��H = − 	1	2��H − �	max	1� , �31�

based on which we can prove the gauge invariance of the
entire correction ��H due to the relativistic Hamiltonian,

��H
� = 2

4�2

9�
�

0

E
i
−E
 f

d	1	1	2���H

+
4�2

9�
�	max�

0

E
i
−E
 f

d	1	1�2

= 2
4�2

9�
�

0

E
i
−E
 f

d	1	1	2�− 	1	2���− 	1	2��H

− �	max	1�� +
4�2

9�
�	max�

0

E
i
−E
 f

d	1	1
3	2

2�2

= 2
4�2

9�
�

0

E
i
−E
 f

d	1	1
3	2

3���H

+ 3
4�2

9�
�	max�

0

E
i
−E
 f

d	1	1
3	2

2�2 = ��H
� . �32�

Here, again, the superscript � denotes the velocity gauge,
whereas � denotes the length gauge. We are indeed able to
show such a relation for all three terms given in Eqs. �8�, but
only if we include in the definition of ��H specific correc-
tions to the electron’s transition current. Our gauge-
invariance relation can be illustrated as follows. The correc-
tion ��H contains the wave-function correction in the
velocity gauge, the Hamiltonian correction in velocity gauge,
the energy correction in velocity gauge, and the seagull term
in velocity gauge, as well as the current correction due to the
current operator �JH

i 
−i�ri ,�H�. By contrast, ��H equals the
sum of the wave-function correction in length gauge, the
Hamiltonian correction in length gauge, and the energy cor-
rection in length gauge. Note that the term −�	max	1� in Eq.
�31� is related to the modified energy conservation condition
and that �	max here is the correction to the transition fre-
quency due to the relativistic Hamiltonian given in Eq. �21b�.
Using this result, we are able to show that the total correction
to the decay rate due to all three terms given in Eqs. �8� is
gauge invariant.

The current that we add in the velocity gauge is

�JH
i = − i�ri,�H� = − i�ri,−

p�4

8m3� − i�ri,
L� · 
�

4m2r3� = −
pip�2

2m3

−
1

4m2

Z�

r3 �r� � 
� �i. �33�

The seagull term that we add in velocity gauge is due to a
double commutator

�SH
ij = †�ri,�H�,rj

‡ = ��ri,−
p4

8m3�,rj� = �− i
pip2

2m3 ,rj�
= − �ij p2

2m3 −
pjpi

m3 . �34�

This term is part of the seagull Hamiltonian �14�. We are
now in the position to give the precise definition of ��H and
��H,
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��H = �
i=1

8

��i + ��
i=9

12

��i�
�J=�JH

+ ��13
�S=�SH
�35�

and

��H = �
i=1

8

��i. �36�

For further details, see Appendix A.

C. Quadrupole (multipole) correction

The quadrupole correction is not associated with any cor-
rection to the bound-state energy or to the Schrödinger
Hamiltonian. It can be treated separately and identified with
a correction �JQ

i to the current in velocity gauge and with a
correction �IQ

i in length gauge. The velocity-gauge current is

�JQ
i =

pi

m
�− ik� · r�� −

1

2

pi

m
�k� · r��2 → −

1

2

pi

m
�k� · r��2. �37�

We can ignore the first term because it vanishes after angular
algebra, for the first-order correction to the two-photon de-
cay. This is unlike the �Z��2 correction to the Lamb shift,
where this term contributes as a simultaneous perturbation to
both currents because one and the same photon is being
emitted. Here, two photons are being emitted, and angular
averaging occurs for both of them separately.

The quadrupole current in the length gauge is

�IQ
i = ri�−

i

2
k� · r� −

1

6
�k� · r��2� +

1

2m	
�L� � k��i

−
i

6m	
��L� � k��i�k� · r�� + �k� · r���L� � k��i�

→ ri�−
1

6
�k� · r��2� −

i

6m	
��L� � k��i�k� · r��

+ �k� · r���L� � k��i� , �38�

where in the last step we have ignored the terms that vanish
after angular integration. We find that the quadrupole term is
gauge invariant provided we include, in the velocity-gauge
expression, the seagull contribution from the term

�SQ
ij = −

1

2m
�k� · r��2�ij . �39�

Now, the sum of �SQ
ij and �SH

ij is the full higher-order seagull
term �Sij given in Eq. �14�.

We denote the correction to the quadrupole matrix ele-
ment in the velocity gauge by ��Q �it includes the seagull
correction due to �SQ

ij� and use ��Q for the corresponding
correction to the matrix element in the length gauge. We are
able to show that

��Q
� = 2

4�2

9�
�

0

E
i
−E
 f

d	1	1	2���Q

= 2
4�2

9�
�

0

E
i
−E
 f

d	1	1	2�− 	1	2���− 	1	2��Q�

= 2
4�2

9�
�

0

E
i
−E
 f

d	1	1
3	2

3���Q = ��Q
� , �40�

proving the gauge invariance of the quadrupole correction.
The precise definition of ��Q and ��Q reads as follows:

��Q = ��
i=9

12

��i�
�J=�JQ

+ ��13
�S=�SQ
�41�

and

��Q = ��
i=9

12

��i�
�I=�IQ

. �42�

Further details are provided in Appendix B.

D. Remaining corrections

We have by now treated the correction due to the entire
Hamiltonian �8�, the entire seagull term �14�, and the quad-
rupole interaction. The remaining terms are current correc-
tions. In the velocity gauge, these read as

�JR
i = �Ji − �JH

i − �JQ
i = −

i

2m
�
� � k��i�1 − ik� · r��

−
1

4m2

Z�

r3 �r� � 
� �i. �43�

Using commutator relations, it is possible to show that

	
 f
pi 1

H − E
i
+ 	

�
� � k��i

i�

+ 	
 f
�
� � k�� j 1

H − E
i
− 	

pj

i� = 0. �44�

This relation is valid for both k� =k�1,2 if 	 is changed accord-
ing to Eqs. �23i�–�23l�, and for arbitrary initial and final
states. Thus, the contribution of the first term on the right-
hand side of Eq. �43� vanishes. Furthermore, we can replace

−
1

2m
�
� � k��i�k� · r�� → −

i	

4m2 �
� � p��i,

−
1

4m2

Z�

r3 �r� � 
� �i →
i	

4m2 �
� � p��i, �45�

when contracted with the photon propagator. This relation is
known from Lamb shift calculations �see Ref. �29��. There-
fore, the entire contribution from the remaining corrections
to the current vanishes in the velocity gauge.

In the length gauge, the remaining corrections to the cur-
rent are given as
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�IR
i =

1

2m	
�
� � k��i�1 − ik� · r�� +

i	

4m
�
� � r��i. �46�

The first term vanishes in view of Eq. �44�. The remaining
terms also do not contribute to the corrections to the decay
rate. This follows from the relation

i

2m	
�
� � k��i�k� · r�� →

i	

4m
�
� � r��i. �47�

for the last two terms of Eq. �46� when contracted with the
photon propagator. The precise definition of ��R and ��R
reads as follows:

��R = ��
i=9

12

��i�
�J=�JR

�48�

and

��R = ��
i=9

12

��i�
�I=�IR

. �49�

IV. NUMERICAL CALCULATIONS

A. 2S-1S decay

The phenomenologically most important two-photon de-
cay process is the 2S-1S decay. Our gauge-invariant result
for the correction to the decay rate due to the relativistic
Hamiltonian, as discussed in Sec. III B, reads as

��H = �0�− 0.508 2�Z��2� . �50�

For the quadrupole correction, the gauge-invariant result is
�see Sec. III C�

��Q = �0�− 0.155 5�Z��2� . �51�

The remaining current corrections vanish, as discussed in
Sec. III D,

��R = 0. �52�

The total result for the relativistic correction to the two-
photon decay rate thus reads as

�� = ��H + ��Q + ��R = �0�− 0.663 6�Z��2� . �53�

It is instructive to break down the corrections to the Hamil-
tonian further. Namely, according to Eq. �8�, we have the
Zitterbewegung �zb� term,

�Hzb =
�Z�

2m
�3�r�� , �54�

the kinetic energy �ke� term,

�Hke = −
p4

8m3 , �55�

and the spin-orbit �LS� coupling

�HLS =
Z�

4m2

L� · 
�

r3 . �56�

The corresponding results read, for the 2S-1S decay, as

��zb = �0�− 0.757 7�Z��2� , �57a�

��ke = �0�0.249 5�Z��2� , �57b�

��LS = 0. �57c�

This concludes our discussion of the two-photon decay of the
2S state, and we can now proceed to calculate decays from
higher-excited states.

B. Higher-excited states

In principle, one might assume that in order to calculate
the relativistic correction to the two-photon decay from
higher-excited states, only the initial and final-state wave
functions have to be changed accordingly. However, histori-
cally the generalization to higher-excited states has proven to
be problematic. For higher-excited states, the two-photon
transition can take place not only through virtual intermedi-
ate states with an equal or higher energy than the initial state
but also through cascades via intermediates states with a
lower energy. For the 3S initial state, a decay via the cascade
3S-2P-1S is possible. The allowed cascade transitions cause
singularities in the propagators. As we are interested in the
total decay rate, we integrate over the propagators and
thereby also over the singularities. These singularities are
quadratic and thus a priori not integrable.

Finally, after some discussion �14–19,30�, the conclusion
has been reached that the two-photon correction to the decay
width of the initial state can be obtained using an integration
prescription, where the double poles are treated in a manner
inspired by quantum electrodynamics, where the photon en-
ergy integration contour extends infinitesimally into the com-
plex plane �21,31�. Note that the two-photon correction thus
obtained is a further correction that has to be added to the
one-photon decay width that is otherwise responsible for the
cascade transition. Using this procedure, we were able to
determine the relativistic and multipole corrections to the
nonrelativistic decay rate for many higher-excited states,
which fulfill the same gauge relations as for the 2S-1S tran-
sition. Final results are given in Table I.

TABLE I. Results for the �2 coefficient as defined in Eq. �2�.
This coefficient gives the relativistic corrections to the two-photon
decay rate.



 f�= 
1S1/2� 

 f�= 
2S1/2�



i�= 
2S1/2� −0.6636



i�= 
3S1/2� −2.6637 −1.7038



i�= 
4S1/2� −4.5192 −7.8530



i�= 
3D3/2� −2.2978 7.8533



i�= 
3D5/2� −1.0981 −22.2671
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V. LEADING LOGARITHMIC QED CORRECTIONS

The Zitterbewegung term in the relativistic Hamiltonian,
according to Eq. �54�, is given as �Hzb=�Z��3�r�� / �2m�. The
effective potential that gives the leading QED radiative cor-
rections is

�Hrad =
4�

3
�Z��ln��Z��−2�

�3�r��
m2 . �58�

This relation implies that the �3 coefficient can be obtained
as 8�2,zb /3 where �2,zb is the contribution to �2 caused ex-
clusively by the Zitterbewegung term. As this contains no
spin dependence, the �3 coefficient is spin independent. For
the 2S-1S transition, e.g., we have according to Eq. �57a�, the
relation �3= 8

3 �−0.757 7�=−2.020 5. Results for other transi-
tions are given in Table II. The �3 coefficient becomes nu-
merically rather large for 3D-2S transitions. Note that the
correction is the same for the decay from 3D3/2 and 3D5/2
because the potential �58� does not involve any spin-
dependent terms.

VI. CONCLUSIONS

The precise treatment of the two-photon decay width in
ionic hydrogenlike bound systems with low nuclear charge
numbers demands an evaluation of the relativistic and mul-
tipole correction of relative order �Z��2, which is the leading
correction to the classic result �1�. The leading logarithmic
QED correction of relative order ��Z��2ln��Z��−2� also
needs to be determined. These corrections can be param-
etrized according to Eq. �2� in terms of two coefficients �2
and �3, which are given in Tables I and II.

Of particular interest is the result

�2�2S-1S� = − 0.663 6 �59�

for the 2S-1S decay. This result �see Eq. �53�� is the sum of
a correction due to the relativistic Hamiltonian �Eq. �50�� and
a correction due to the quadrupole term �Eq. �51��. We also
generalize our approach to the two-photon decay from
higher-excited states �Tables I and II�. As usual in quantum
electrodynamic calculations, the magnitude of the correction
terms grows with the principal quantum number. The decay
from D states is also treated, and it is worthwhile noting that
the spin-independent logarithmic correction terms of relative
order Z�2 ln�Z�� turn out to be large in magnitude �see Table
II�. Finally, as shown in Appendix C below, a comparison of
our results to those of a nonperturbative �in Z�� calculation
for the 3S-1S decay �Ref. �20�� reveals that the term of rela-

tive order �Z��2 can account for the bulk of the relativistic
correction up to some rather high nuclear charge numbers
�Z�40�.

With our NRQED-inspired approach, we can uniquely
identify the physical origin of the �Z��2-correction terms to
the two-photon decay width, as discussed in Secs.
III B–III D, and give their values separately. It is sometimes
worthwhile to use the effective nonrelativistic treatment of
NRQED because it may yield information, which could not
be obtained by a fully relativistic treatment, regarding the
breakdown of the corrections. Furthermore, the calculation
of the full spectrum of the propagator can be greatly simpli-
fied using lattice methods �32�, increasing the speed as well
as the numerical stability of the evaluation, which is espe-
cially important in the domain of low nuclear charge num-
bers.

Another aspect is that the proof of the gauge invariance,
as carried out in full detail in Appendixes A and B, turns out
to be a surprisingly lengthy calculation. We stress once more
that the gauge invariance is shown to hold even if we ignore
the gauge transformation of the wave function, in the sense
of the hybrid gauge transformation developed in Refs.
�11,12�.
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APPENDIX A: GAUGE INVARIANCE OF THE
HAMILTONIAN CORRECTION

We give further details regarding the gauge invariance of
the seagull term. Useful general relations are pi= im�H−E
+	 ,ri� and 	2=E
i

−E
f
−	1. The term ��1 can be trans-

formed to

��1 = 	
 f

pi

m� 1

H − E
i
+ 	1

�2 pj

m


i�	
i
�H

i�

= − 	1	2	
 f
ri� 1

H − E
i
+ 	1

�2

rj

i�	
i
�H

i�

+ �	2 − 	1�	
 f
ri 1

H − E
i
+ 	1

rj

i�	
i
�H

i�

+ 	
 f
rirj

i�	
i
�H

i� . �A1�

An analogous relation also holds for ��2,

TABLE II. Results for �3 as defined in Eq. �2�.



 f�= 
1S1/2� 

 f�= 
2S1/2�



i�= 
2S1/2� −2.0203



i�= 
3S1/2� 9.6521 16.0424



i�= 
4S1/2� 20.7364 61.7499



i�= 
3D3/2� −5.4681 144.3639



i�= 
3D5/2� −5.4681 144.3639
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��2 = 	
 f

pi

m� 1

H − E
f
− 	1

�2 pj

m


i�	
 f
�H

 f�

= − 	1	2	
 f
ri� 1

H − E
f
− 	1

�2

rj

i�	
 f
�H

 f� + �	1 − 	2�	
 f
ri 1

H − E
f
− 	1

rj

i�	
 f
�H

 f�

+ 	
 f
rirj

i�	
 f
�H

 f� . �A2�

These relations are equal to those found in Ref. �5� for a radiative correction potential. The relations for the correction to the
wave functions are altered because we are considering a different Hamiltonian. Thus, ��3 gives

�A3�

For ��4, this yields

�A4�

For the correction ��5 to the final-state wave function, we get

�A5�

and for ��6
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�A6�

However, the corrections to the wave functions lead to some remainder terms, which have to be analyzed separately. They can
be transformed to give

T3 + T4 =
1

m
	
 f
� 1

E
i
− H��

�H

i��ij + 	
 f
rirj

i�	
i
�H

i� − 	
 f
rirj�H

i� , �A7�

T5 + T6 =
1

m
	
 f
�H� 1

E
f
− H��



i��ij + 	
 f
�H

 f�	
 f
rirj

i� − 	
 f
�Hrirj

i� . �A8�

We observe the seagull terms ��14 and ��15 emerge and cancel, explicitly. The other terms on the right-hand side will be treated
separately, later. The term ��7 arising from the correction of the Hamiltonian can be brought into length-gauge form in the
following way:

��7 = − 	
 f

pi

m

1

H − E
i
+ 	1

�H
1

H − E
i
+ 	1

pj

m


i� = 	1	2	
 f
ri 1

H − E
i
+ 	1

�H
1

H − E
i
+ 	1

rj

i� ,

− 	2	
 f
ri 1

H − E
i
+ 	1

�Hrj

i� + 	1	
 f
ri�H
1

H − E
i
+ 	1

rj

i� − 	
 f
ri�Hrj

i� . �A9�

Finally, for ��8 we have

��8 = − 	
 f

pi

m

1

H − E
f
− 	1

�H
1

H − E
f
− 	1

pj

m


i�

= 	1	2	
 f
ri 1

H − E
f
− 	1

�H
1

H − E
f
− 	1

rj

i�

− 	1	
 f
ri 1

H − E
f
− 	1

�Hrj

i� + 	2	
 f
ri�H
1

H − E
f
− 	1

rj

i� − 	
 f
ri�Hrj

i� . �A10�

Our intermediate result thus reads as follows:

�
i=1

8

��i = − 	1	2�
i=1

8

��i − �	max	1� + 	2	
 f
ri 1

H − E
i
+ 	1

�rj,�H�

i� + 	1	
 f
ri 1

H − E
f
− 	1

�rj,�H�

i�

+ 	2	
 f
�ri,�H�
1

H − E
i
+ 	1

rj

i� + 	1	
 f
�ri,�H�
1

H − E
f
− 	1

rj

i� − 	
 f
†�ri,�H�,rj
‡

i� , �A11�

where �	max is defined in Eq. �21b�. Fortunately, we can rewrite the terms with the �rj ,�H� commutators further,
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	1	
 f
�ri,�H�
1

H − E
i
+ 	1

rj

i� + 	2	
 f
�ri,�H�
1

H − E
f
− 	1

rj

i�

+ 	2	
 f
ri 1

H − E
i
+ 	1

�rj,�H�

i� + 	1	
 f
ri 1

H − E
f
− 	1

�rj,�H�

i�

= − 	
 f
�JH
1

H − E
i
+ 	1

pj

m


i� − 	
 f
�JH

1

H − E
f
− 	1

pj

m


i� − 	
 f


pi

m

1

H − E
i
+ 	1

�JH

i�

− 	
 f

pi

m

1

H − E
f
− 	1

�JH

i� + 2	
 f
†�ri,�H�,rj
‡

i� ,

=− ��
i=9

12

��i�
�J=�JH

+ 2	
 f
†�ri,�H�,rj
‡

i� . �A12�

The current JH=−i�ri ,�H� is defined in Eq. �33�. Combining Eqs. �A11� and �A12�, we obtain the relation

�
i=1

8

��i + ��
i=9

12

��i�
�J=�JH

= − 	1	2�
i=1

8

��i − �	max	1� − ��13
�S=�SH
. �A13�

With the definitions �35� and �36�, this leads directly to our gauge-invariance relation �31�.

APPENDIX B: GAUGE INVARIANCE OF THE QUADRUPOLE CORRECTION

For the proof of gauge invariance of the quadrupole correction, it is more convenient to start from the length-gauge
expression. As the quadrupole term is a correction to the transition current, only the terms ��9,. . .,12 are relevant. The length-
gauge transition current �I is �see Eq. �38��

�IQ
i = ri�−

1

6
�k� · r��2� +

1

6m	
��L� � k��i�− ik� · r�� + �− ik� · r���L� � k��i� . �B1�

It is helpful to rewrite the second part of the transition current as

�L� � k��i�− ik� · r�� + �− ik� · r���L� � k��i = �k� · r��pi�− ik� · r�� − ri�k� · p���− ik� · r�� + �− ik� · r���k� · r��pi − �− ik� · r��ri�k� · p�� . �B2�

Using this and the general relations from Appendix A, we can transform the first term ��9 to give

− 	1	2��9 = 	2
1

6
	
 f
ri 1

H − E
i
+ 	1

�	1�k�1 · r��2rj +
i

m
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For ��10, we obtain in an analogous manner
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For the correction ��11 with the current acting on the left side, this yields
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and finally for ��12,
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Combining these results, we get
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In order to simplify the resulting expression, we now commute the momentum operators in the remainder terms to the right
side of the position operators,
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The last two terms can be identified as the negative of the quadrupole contribution to the higher-order seagull term as given
in Eq. �39� summed over the two-photon momenta k1 and k2. Finally, this leads to the equality
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which verifies the gauge-invariance relation given in Eq. �40�.

APPENDIX C: COMPARISON OF ANALYTIC AND
NUMERICAL RESULTS

We would like to compare our results for the analytic
coefficients listed in Tables I and II to numerical data ob-
tained for 2S-1S �see Ref. �7�� and 3S-1S �see Ref. �20��. The
authors of Ref. �7� obtained a fit to a convenient functional
form in Z�, leading to an approximate formula valid across
the whole range of nuclear charge numbers Z �see Ref. �7�
and also Eq. �4.16� of Ref. �33��,

� � �0
1 + 3.944 8�Z��2 − 2.040�Z��4

1 + 4.601 9�Z��2 . �C1�

Upon re-expansion in Z�, one may thus hope to obtain an
estimate for the correction of relative order �Z��2. Indeed,
the estimate thus obtained �2�−0.657 1 is in fair agreement
with the precise result �59�, which reads as �2=−0.663 6.

For the 3S-1S decay, we compare to a fully relativistic
calculation carried out in Ref. �20�, where the relativistic
effects have been calculated for different values of Z. When
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using our results for �2, one can determine the corrected
decay rate for different values of Z. For Z=40, our analytic
results augmented by the relativistic correction of relative
order �Z��2 lead to a result of ��1.61�Z=40�6 rad /s to be
compared with the result �=1.60�Z=40�6 rad /s from Ref.
�20� for the E1E1 two-photon decay rate.

In general, there is quite a subtle interplay of the fully
relativistic calculations with the Dirac-Coulomb propagator,

which have meanwhile been done for a number of QED and
other problems and the Z�-expansion approach. Numeri-
cally, more accurate results can be obtained with the former,
and these are relevant especially for highly charged ions, but
the physical origin of the relativistic corrections is much
more transparent within the Z� expansion. Furthermore, the
analytic calculations allow for a systematic expansion in
powers of � and Z�, as demonstrated in Eq. �2�.
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