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We develop a numerical technique to describe few-body systems. Correlated Gaussian basis functions are
used to expand the channel functions in the hyperspherical representation. The method is proven to be robust
and efficient compared to other numerical techniques. The method is applied to few-body systems with
short-range interactions, including several examples for three- and four-body systems. Specifically, for the
two-component, four-fermion system, we extract the coefficients that characterize its behavior at unitarity.
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I. INTRODUCTION

Ultracold gases in traps or optical lattices have opened
new possibilities in the study of strongly correlated quantum
systems. From the rich few-body physics of the Efimov ef-
fect �1–4� to the fascinating many-body physics of the BCS-
Bose Einstein condensate �BEC� crossover �5–14�, experi-
mentalists are now able to realize a wide variety of physical
systems of great interest for the atomic, nuclear, and
condensed-matter communities. In particular, the pureness
and controllability of cold atoms in optical lattices �15–17�
make them perfect candidates for the experimental imple-
mentation of condensed-matter models �see Ref. �18� and
references therein�. In all these systems, the rich physics that
governs a few interacting atoms is crucial for understanding
recent experiments.

For that reason, extensive efforts have concentrated on the
development of an accurate description of few-body systems.
Encouraging advances have been achieved in the last decade
in the understanding ultracold three-body problem
�1,3,19,20�. These studies have demonstrated the importance
of three-body recombination and relaxation processes and
have determined the effective interaction in atom-dimer col-
lisions. Some of these techniques were subsequently ex-
tended to four-body systems �21–25� in a few applications.
However, the physics of the four-body problem are far richer
and more complicated. Also, it is a very challenging numeri-
cal problem and for that reason, it has remained largely un-
solved except in very limited regimes. Here, we present a
numerical method to handle few-body systems that can be
used to efficiently describe four-body systems, through a
combination of different techniques.

Even though several techniques have been developed in
recent decades to provide solutions for few-body systems
�26–30�, not many of them have been applied to numerically
solve the Schrödinger equation for systems with more than
three particles. Among these methods, the correlated Gauss-
ian �CG� technique �31–37� in particular has proven to be
capable of describing a trapped few-body system with short-
range interactions. Because of the simplicity of the matrix-
element calculation, the CG method provides an accurate
description of the ground and excited states up to NP=6 par-
ticles �35,36,38�. However, the CG method as originally
implemented can only describe bound states. For this reason,
previous studies have focused on trapped systems where all

the eigenstates are discrete �23,38–40�. In fact, the CG
method requires a nontrivial extension in order to describe
the continuum and the rich behavior of atomic collisions,
such as dissociation, rearrangement, and recombination pro-
cesses. Some progress on this direction was achieved in a
series of studies �41–44�. Here, we propose an alternative
approach.

The hyperspherical representation, in fact, provides an ap-
propriate framework that can treat the continuum
�30,45–49�. In the adiabatic hyperspherical representation,
the Hamiltonian is diagonalized as a function of the hyper-
radius R, reducing the Schrödinger equation to a set of
coupled equations in a single variable, with a series of dif-
ferent effective potentials and couplings. The asymptotic be-
havior of the channel potentials describes different dissocia-
tion or fragmentation pathways and provides a suitable
framework for analyzing collision physics. These solutions
can be readily combined with scattering methods such as the
R-matrix approach �50–52� to provide an accurate descrip-
tion of the collisional dynamics. However, the standard hy-
perspherical methods expand the hyperangular channel func-
tions in a B spline or finite element basis set �53–56� and the
calculations become very computationally demanding for
NP�3 systems.

It is therefore natural to combine the scalability of the CG
method with the advantages of the hyperspherical represen-
tation. In this paper, we present a way to achieve this com-
bination in what we term the correlated Gaussian hyper-
spherical �CGHS� method. This method uses CG basis
functions to expand the channel functions in the hyperspheri-
cal representation. We show that also in this case, the matrix-
element evaluation is greatly simplified thanks to the simple
form of the CG basis functions. Furthermore, thanks to the
explicit correlation incorporated in these basis functions,
only a relatively small basis set is needed to achieve conver-
gence of the lowest channel functions even in the strongly
interacting regime.

To illustrate the power of the CGHS method, we carry out
calculations for NP=3,4-particle systems in the strongly in-
teracting regime. First, we analyze systems of three bosons
or three fermions at unitarity and show that the method re-
covers results that agree with semianalytical predictions.
Then, we consider the two-component four-fermion system,
in the large and positive scattering length regime, and repro-
duce the lowest potential curves from Ref. �24�. The CGHS
provides a larger number of channels which would allow the
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calculation of scattering events not considered in Ref. �24�.
Finally, we focus on the universal behavior of four fermions
at unitarity. In this regime, the energies of the trapped system
are trivially determined by the hyperspherical potential
curves �38,57�. Therefore, we can compare our calculations
to predictions for the trapped system �23,58–61�. Our results
improve and extend these previous predictions and charac-
terize the 20 lowest potential curves for even parity and van-
ishing orbital angular momentum.

This paper continues as follows. First, we review both the
CG and hyperspherical methods in Sec. II. In Sec. III, we
introduce the main idea of the CGHS method, leaving some
details of the implementation for the Appendix A. Section IV
presents our results for three-body systems and for the four-
fermion system. Finally, Sec. V presents our conclusions.

II. THEORETICAL BACKGROUND

This section discusses the general form of the Hamil-
tonian that we are trying to diagonalize and, in Sec. II A,
reviews the correlated Gaussian method. Section II B pre-
sents the general formalism of the hyperspherical represen-
tation and describes how to numerically solve the
Schrödinger equation in this representation using a correlated
Gaussian basis set expansion.

The methods described in this paper solve the time-
independent Schrödinger equation for a Hamiltonian of the
form

H = �
i
�− �2

2mi
�i

2 + Vext�ri�� + �
i,j

V0�rij� , �1�

where Vext is an external trapping potential and V0 is the
interaction potential. The form of the Hamiltonian can be
varied depending on the particular problem we are consider-
ing. In the CG method, one will usually consider a spheri-
cally symmetric harmonic trapping potential Vext�r�
= 1

2mi�
2ri

2 but in hyperspherical calculations we usually con-
sider a free system �Vext�r�=0�. We can always include the
harmonic trapping potential in the final step of the hyper-
spherical calculation, since it is a purely hyperradial poten-
tial. Depending on the symmetry properties of the particles
considered, the interaction term will change. For example, all
particles interact with each other in identical boson systems
but only opposite-spin fermions interact in two-component
Fermi systems �except in a few problems involving p-wave
Fano-Feshbach resonances�. Also, in many cases, the center-
of-mass motion decouples from the more interesting internal
degrees of freedom and it is preferable to use a set of Jacobi
coordinates rather than the usual single-particle coordinates.
All such options can be treated using the method presented
below.

A. Correlated Gaussian method

Different types of Gaussian basis functions have long
been used in many different areas of physics. In particular,
the usage of Gaussian basis functions is one of the key ele-
ments of the success of ab initio calculations in quantum
chemistry. The idea of using an explicitly correlated Gauss-

ian to solve quantum chemistry problems was introduced in
1960 by Boys �32� and Singer �31�. The combination of a
Gaussian basis and the stochastical variational method
�SVM� was first introduced by Kukulin and Krasnopol’sky
�33� in nuclear physics and was extensively used by Varga
and Suzuki �34–37�. These methods were also used to treat
ultracold many-body Bose systems by Sorensen et al. �62�. A
detailed discussion of both the SVM and CG methods can be
found in a thesis of Sorensen �63� and, in particular, in the
book by Suzuki and Varga �27�. In the following, we high-
light the main ideas of the CG method.

Consider a set of coordinate vectors that describe the sys-
tem �x1 , . . . ,xN	. In this method, the eigenstates are expanded
in a set of basis functions

��x1, . . . ,xN� = �
A

CA�A�x1, . . . ,xN� . �2�

Here, A specifies a matrix with a particular set of parameters
that characterize the basis function. It is convenient to intro-
duce the following ket notation, �A�x1 , . . . ,xN�
= 
x1 , . . . ,xN �A�. The solution of the time-independent
Schrödinger equation in this basis set reduces the problem to
one of diagonalizing the Hamiltonian matrix

HC� i = EiOC� i. �3�

Here, Ei are the energies of the eigenstates, C� i is a vector
formed with the coefficients CA and H, and O are matrices
whose elements are HBA= 
B�H�A� and OBA= 
B �A�. For a
three-dimensional �3D� system, the evaluation of these ma-
trix elements involves 3N-dimensional integrations which
are in general very expensive to compute. Therefore, the ef-
fectiveness of the basis set expansion method relies mainly
on the appropriate selection of the basis functions. As we
will see, the CG basis functions permit fast evaluation of
overlap and Hamiltonian matrix elements and they are flex-
ible enough to correctly describe physical states.

To reduce the dimensionality of the problem, we can take
advantage of its symmetry properties. Since the interactions
considered are spherically symmetric, the total angular mo-
mentum, L, is a good quantum number. For simplicity, we
will restrict ourselves to L=0 solutions. This restriction al-
lows us to reduce the Hilbert space by introducing restric-
tions on the basis functions. In particular, if the basis func-
tions only depend on the interparticle distances, then Eq. �2�
can only describe states with zero angular momentum and
positive parity �LP=0+�. Furthermore, we can recognize that
the center-of-mass motion decouples from the system. In
such cases, the CG basis functions take the form

�A�x1, . . . ,xN� = �0�RCM�S
exp�− �
j�i=1

N

�ijrij
2 /2�� ,

�4�

where S is a symmetrization operator and rij is the interpar-
ticle distance between particles i and j. Here, �0 is the
ground state of the center-of-mass motion. For trapped sys-

tems, �0 takes the form �0�RCM�=e−RCM
2 /2�aho

M �2
. Because of

its simple Gaussian form, �0 can be absorbed in the expo-
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nential factor. Thus, in a more general way, the basis func-
tion can be written in terms of a matrix A that characterizes
them

�A�x1,x2, . . . ,xN� = S
exp�−
1

2
xT · A · x��

= S
exp�−
1

2 �
j,i=1

N

Aijxi · x j�� , �5�

where x= �x1 ,x2 , . . . ,xN	 and A is a symmetric matrix. The
matrix elements Aij =Aji can be expressed in terms of the �ij.
Because of the simplicity of the basis functions, Eq. �4�, the
matrix elements of the Hamiltonian can be calculated ana-
lytically.

The analytical evaluation of the matrix elements is en-
abled by selecting the set of coordinates that simplifies the
evaluations. For basis functions of the form of Eq. �5�, the
matrix elements are characterized by a matrix M in the ex-
ponential. Then, the matrix-element integrand greatly simpli-
fies if we rewrite it in terms of the coordinate vectors that
diagonalize that matrix M. This change of coordinates per-
mits, in many cases, the analytical evaluation of the matrix
elements. The explicit evaluation of several matrix elements
can be found in Refs. �27,63�.

In general, we need to include the spin part of the wave
function for the description of the system. However, for the
bosonic and fermionic systems considered in this paper, the
spin part can be decoupled from the spatial part. In the case
of a two-component Fermi system, we adopt a standard ap-
proximation and we assume that we can treat different com-
ponents as consisting of distinguishable particles. Therefore,
all the statistical information of the system is conveyed in the
appropriate selection of the symmetrization operator S.

Two properties of the CG method deserve mentioning at
this point. First, the CG method does not rely on any ap-
proximation other than basis set truncation and the solutions
can be systematically improved. The accuracy of the results
is only limited by numerical issues related to linear depen-
dence of the basis set. Second, the basis functions �A are
square integrable only if the matrix A is positive definite.
This ensures that the wave function decays in all degrees of
freedom. We can further restrict the basis functions by intro-
ducing real widths dij such that �ij =1 /dij

2 . With this transfor-
mation, we ensure that A is positive definite. Furthermore,
each such width is proportional to the mean interparticle dis-
tances covered by that basis function. Thus, it is relatively
easy to select the widths after considering the physical length
scales relevant to the problem. Even though we have re-
stricted the Hilbert space with this transformation, we have
numerical evidence that the results converge to the exact
eigenvalues.

The linear dependence in the basis set causes problems in
the numerical diagonalization of the Hamiltonian matrix, Eq.
�3�. To minimize these linear dependence problems, we re-
strict the basis function so that the overlap between any two
normalized basis functions is below some cutoff value. The
other method we use to eliminate linear dependence applies a

linear transformation to produce a smaller orthonormal basis
set.

Finally, we stress the importance of making an appropri-
ate selection of the interaction potential. For the problems
considered in this paper, the interactions are expected to be
characterized only by the scattering length, i.e., to be inde-
pendent of the shape of the potential. For that reason, we can
select a model potential that permits rapid evaluation of the
matrix elements. We have found that a model potential with
a Gaussian form,

V0�r� = − V0 exp�−
r2

2r0
2� , �6�

is particularly suitable for this basis set expansion since it
can be absorbed in the exponential form of the wave func-
tions for matrix-element evaluation. If the range r0 is much
smaller than the scattering length, then the interactions are
effectively characterized only by the scattering length. The
scattering length is tuned by changing the strength of the
interaction potential, V0, while the range, r0, of the interac-
tion potential remains unchanged. This is particularly conve-
nient in this method since it implies that we only need to
evaluate the matrix elements once and we can use them to
solve the Schrödinger equation at any given potential
strength �or scattering length�. Of course, this procedure will
give accurate results only if the basis set is sufficiently flex-
ible and complete to describe the different configurations that
appear at different scattering lengths.

In general, this method includes five basic steps: genera-
tion of the basis set, evaluation of the matrix elements, elimi-
nation of linear dependence, evaluation of the eigenvalue
spectrum, followed by a study of stability and convergence.
The SVM of Refs. �27,63� combines the first three of these
steps in an optimization procedure where the basis functions
are selected randomly.

B. Hyperspherical representation

The main objective of the hyperspherical method is to
solve the time-independent Schrödinger equation in a conve-
nient and efficient way that also provides insight into the
relevant reaction pathways by which various collision pro-
cesses can occur. The first step involves calculation of eigen-
values and eigenfunctions of the fixed-hyperradius Hamil-
tonian, which defines the adiabatic hyperspherical
representation. These eigenvalues and eigenfunctions are
then used to construct a set of one-dimensional �1D� coupled
equations in the hyperradius R. The hyperradius is a collec-
tive coordinate related to the total moment of inertia of the
system �48,64�. In a system described by N coordinate vec-
tors r1 , . . . ,rN, the hyperradius R is defined by

�R2 = �
i=1

N

miri
2. �7�

Here, � is an arbitrary mass factor called the hyperradial
reduced mass �65� and mi are the Jacobi masses correspond-
ing to the Jacobi vector i. The remaining coordinates are
described by a set of hyperangles collectively denoted as 	.
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The total number of spatial dimensions of this N-vector
system is d=3N. The total wave function � is rescaled by R,
�=R�d−1�/2�, so that the hyperradial equation resembles a
coupled one-dimensional Schrödinger equation. In the adia-
batic representation, the wave function �E�R ,	� is ex-
panded in terms of a complete orthonormal set of angular
wave functions �
 and radial-wave functions F
E, such that

�E�R,	� = �



F
E�R��
�R;	� . �8�

The adiabatic eigenfunctions, or channel functions �
, de-
pend parametrically on R and are eigenfunctions of a 3N
−1 partial differential equation �which corresponds to 3NP
−4 dimensions since the center-of-mass motion is removed
explicitly�

� �2�2

2�R2 +
�d − 1��d − 3��2

8�R2 + V�R,	���
�R;	�

= U
�R��
�R;	� . �9�

Here, � is the grand angular-momentum operator, which is
related to the kinetic term by

− �
i

�2�i
2

2mi
= −

�2

2�

1

Rd−1

�

�R
Rd−1 �

�R
+

�2�2

2�R2 . �10�

The U
�R� obtained in Eq. �9� are effective hyperradial
potential curves that appear in a set of coupled one-
dimensional differential equations

�−
�2

2�

d2

dR2 + U
�R��F
E�R� −
�2

2�
�

�
�2P

��R�

d

dR

+ Q

��R��F
�E�R� = EF
E�R� . �11�

These differential equations �Eq. �11�� are coupled through
the P

��R� and Q

��R� couplings defined as

P

��R� = 
�
�R;	��
�

�R
��
��R;	���R, �12�

Q

��R� = 
�
�R;	��
�2

�R2 ��
��R;	���R. �13�

Since the basis set expansion of the wave function, Eq.
�8�, is complete in the 3N-dimensional space, Eqs. �9� and
�11� reproduce exactly the original d-dimensional
Schrödinger equation. As in most numerical methods, the
solutions are approximated by truncating the Hilbert space.
In this case, the Hilbert space is truncated by considering a
finite number of channels in Eq. �11�. This approximation is
easily tested by analyzing convergence with respect to the
number of channels included in the calculation.

The utility of the hyperspherical representation relies on
the assumption that the wave-function variation with the hy-
perradius R is smooth. In such cases, only a few channels are
relevant and the couplings are small and vary smoothly with

R. Furthermore, a fairly good approximation to the solutions
can be achieved by truncating the expansion in Eq. �8� to a
single term

�E�R,	� = F
E�R��
�R;	� . �14�

This adiabatic hyperspherical approximation leads to an ef-
fective one-dimensional Schrödinger equation

�−
�2

2�

d2

dR2 + W
�R��F
E�R� = EF
E�R� , �15�

where the effective potential is

W
�R� = U
�R� −
�2

2�
Q

�R� . �16�

Here, the first term is the hyperradial potential curve and the
second term is “adiabatic correction,” i.e., the repulsive ki-
netic contribution of the hyperradial dependence of the chan-
nel function. If the potential curves are well separated and
have no strong avoided crossings in the relevant range of
energy and radius, then the adiabatic approximation can be
quite accurate for the lower states in any given potential
curve. This approximation comes from a truncation of the
Hilbert space and, for that reason, obeys the variational prin-
ciple. Any discrete energy eigenvalue obtained with this
method is an upper bound of the exact energy level in the
sense of the Hylleraas-Undheim theorem. An approximate
description of the spectrum can be achieved by combining
the energies obtained from the adiabatic approximation ap-
plied to each channel separately. For example, bound states
of excited potential curves which are above the lowest frag-
mentation threshold would represent quasibound states. This
approach is equivalent to neglecting all off-diagonal cou-
plings in Eq. �11� and produces an approximate spectrum
which is not variational. Another useful approximation is ob-
tained by neglecting the second term in Eq. �16�, i.e., replac-
ing W0�R� by U0�R� in Eq. �15�. This is usually called the
hyperspherical Born-Oppenheimer approximation. As in the
standard Born-Oppenheimer approximation for a diatomic
molecule, the approximate energy obtained in this manner
represents a lower bound to the exact ground-state energy
�66�. Next, we show how Eq. �9� is solved and how the P

�
and Q

� are evaluated.

C. Expansion of the channel function in a basis set

In the hyperspherical method �see Sec. II B�, channel
functions are eigenfunctions of the adiabatic Hamiltonian
HA�R ;	�,

HA�R;	��
�R;	� = U
�R��
�R;	� . �17�

The eigenvalues of this equation are the hyperspherical po-
tential curves U
�R�, which serve as readily visualizable re-
action pathways. The adiabatic Hamiltonian has the form

HA�R;	� =
�2�2

2�R2 +
�d − 1��d − 3��2

8�R2 + V�R,	� . �18�

A standard way to solve Eq. �17� is to expand the channel
functions in a basis,
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����R;	�� = �
i

�Bi�R;	��ci��R� . �19�

Here, � labels the channel function. The �Bi�R ;	�� are the
basis functions. With this expansion, Eq. �17� reduces to the
eigenvalue equation

HA�R�c�� = U��R�O�R�c��. �20�

The �th column vector c��= �ci�	 , i=1, . . . ,D, where D is the
dimension of the basis set. HA and O are the Hamiltonian
and overlap matrices whose matrix elements are given by

HA�R�ij = 
Bi�HA�R;	��Bj��R, �21�

O�R�ij = 
Bi�Bj��R. �22�

Once the hyperradial potential curves are calculated, we
still need to evaluate the P and Q nonadiabatic couplings
between the channel functions �Eq. �12� in Sec. II B�. To
evaluate the Q coupling, we use the identity

Q
��R� = − Q̃
��R� +
�P
��R�

�R
, �23�

where

Q̃
� = � �

�R
�
�R��

�

�R
���R�� . �24�

Thus, we can obtain all the couplings from the evaluation of

P and Q̃. In the basis set expansion, P and Q̃ can be calcu-
lated using matrix multiplication. With the expansion in Eq.
�19�,

��̇��R�� = �
i

�Bi�ċi� + �Ḃi�ci�. �25�

Here and in the following, we have omitted the radial and
angular dependences of functions and we have introduced

the notation Ḟ for the derivative of F with respect to R. The
P coupling takes the form

P
� = �
ij

c
j
T 
Bj�Bi�ċi� + c
j

T 
Bj�Ḃi�ci� = c�

TOc�̇� + c�


TPc��,

�26�

where P�R� is defined later in Eq. �29�. The same procedure

can be done for the Q̃ matrix elements with

Q̃
� = �
ij

ċ
j
T 
Bj�Bi�ċi� + ċ
j

T 
Bj�Ḃi�ci� + c
j
T 
Ḃj�Bi�ċi�

+ c
j
T 
Ḃj�Ḃi�ci� �27�

and can also be written in terms of matrix multiplications

Q̃
� = c�̇

TO�R�c�̇� + c�̇


TP�R�c�� + c�

TPT�R�c�̇� + c�


TQ̃�R�c��.

�28�

In Eqs. �26� and �28�, we have used the overlap matrix O and

defined the matrices P and Q̃ whose matrix elements are

P�R�ij = 
Bi�R��Ḃj� and Q̃�R�ij = 
Ḃi�Ḃj� . �29�

The derivatives of the ċi��R� coefficients that form the c�̇� are
calculated numerically using the three-point rule.

III. CORRELATED GAUSSIAN HYPERSPHERICAL
METHOD

As we have seen in the previous section, the implementa-
tion of hyperspherical calculations requires the evaluation of
the Hamiltonian matrix elements at fixed R �Eqs. �21� and
�22��. This is one of most time-consuming part of the calcu-
lation which for an NP=4 system requires a five–dimensional
�5D� integration. Thus, we need to find an efficient way to
evaluate Hamiltonian matrix elements at fixed R. As a pre-
lude, we first review how multidimensional matrix-element
evaluations reduce to analytical forms in the standard CG
method. This will be the key to evaluating matrix elements in
the hyperspherical variant of this method.

In the CG method, we select, for each matrix-element
evaluation, a set of coordinate vectors that simplifies the in-
tegration, i.e., the set of coordinate vectors that diagonalize
the basis matrix M which characterizes the matrix element.
The flexibility to choose the best set of coordinate vectors for
each matrix-element evaluation is crucial for the economy of
the CG method.

This selection of the optimal set of coordinate vectors is
formally applied by an orthogonal transformation from an
initial set of vectors x= �x1 , . . . ,xN	 to a final set of vectors
y= �y1 , . . . ,yN	: Tx=y, where T is the orthogonal transforma-
tion matrix. The hyperspherical method is particularly suit-
able for such orthogonal transformations because the hyper-
radius R is an invariant under them. Consider the hyperradius
defined in terms of a set of mass-scaled Jacobi vectors
�45,46,56,67�, x= �x1 , . . . ,xN	,

�R2 = ��
i

xi
2. �30�

If we applied an orthogonal transformation to a new set of
vectors y, then

�R2 = ��
i

xi
2 = �yTTTy = ��

i

yi
2, �31�

where we have used the fact that TTT= I and I is the identity.
Therefore, in the hyperspherical framework, we can also se-
lect the most convenient set of coordinate vectors for each
matrix-element evaluation. This will be the key to reducing
the dimensionality of the matrix-element integration. This
transformation amounts to selecting, for each matrix-element
evaluation, the set of hyperangles �	� that simplify the
matrix-element evaluation.

As an example of how the dimensionality of matrix-
element integration is thereby reduced, consider an L=0
three-dimensional NP-particle system with the center of mass
removed. It can be shown that this technique reduces a
�3NP−7� numerical integration �68� to a sum over the sym-
metrization permutation of �NP−3� numerical integrations.
This result implies that for NP=3, the matrix-element evalu-
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ation can be done analytically �see the Appendix A, Sec. A 1�
and that for NP=4, it requires a sum of one-dimensional
numerical integrations �69�.

Once the basic idea of the appropriate change of variables
for each matrix-element calculation is understood, the actual
calculation of the matrix elements using correlated Gaussian
basis function is straightforward. Appendix A, Sec. A 1
shows, as an example, how the matrix elements can be cal-
culated analytically for a three-particle system �the calcula-
tion of the matrix elements for NP=4 are not presented here
but can be found in Ref. �69��. Finally, Appendix A, Sec. A
2 discusses in general how this method is implemented.

IV. RESULTS

In this section, we present CGHS results for NP=3,4.
First, we analyze two different NP=3 systems and compare
them to analytical predictions. Then, we present four-fermion
potential curves and compare them to recent predictions �24�.
Finally, we characterize the four-fermion L=0 potential
curves at unitarity and extract the s
 coefficient that charac-
terizes the universal regime.

To test the CGHS method, we calculate the hyperspherical
potential curves at unitarity for three interacting bosons. For
zero-range interactions, the potential curves at unitarity are
inversely proportional to the hyperradius. For example, the
lowest potential curve for three identical bosons is given by

U0�R� = −
s0

2 + 1/4
2�R2 . �32�

The coefficient s0�1.0062 can be obtained analytically in
the theory of Efimov states �1,2,70�. A simple and fast nu-
merical CGHS calculation with only 30 basis functions ex-
tended up to R=100r0 shows, at large R, the expected 1 /R2

behavior. Extrapolation of our potential curves to R→�
gives s0�1.0059.

Similarly, we analyze the system of two indistinguishable
fermions resonantly interacting with a third particle of equal
mass. For such system, the zero-range model predicts a low-
est potential of the form

U0�R� =
p0

2 − 1/4
2�R2 . �33�

The value of p0�2.166 222 can also be predicted analyti-
cally. Using a slightly larger basis set of 90 basis function,
we extend the CGHS calculations up to R=4000r0. Extrapo-
lating our potential curves to R→�, we obtain p0
�2.166 218.

These two examples show that the CGHS method is flex-
ible enough to describe a strongly interacting system with
relatively small basis sets and analytical matrix-element
evaluations. The main limitation of these calculations comes
from linear dependence issues. At the NP=3 level, this
method cannot probably compete with more sophisticated
calculations which permit calculations up to R=106r0 �3,56�.
However, it has been a challenge to extend hyperspherical
methods beyond NP=3. One successful method uses Monte
Carlo techniques to describe the lowest channel function and

extends it application to large �NP
10� systems �71�. How-
ever, this method can only calculate the lowest potential
curve and leads to an approximate solution. In contrast, the
CGHS method can be readily extended to NP=4 particles
�and possibly beyond� and allows to obtain a full solution
which represents the current state of the art of hyperspherical
methods.

The development of four-body hyperspherical methods al-
lows, for one thing, an analysis of the full energy dependence
of the dimer-dimer scattering length. Figure 1 presents the
four-fermion potential curves obtained with the CGHS
method. There are three relevant energy thresholds marked
with dashed lines in Fig. 1: dimer-dimer threshold at 2Eb,
dimer–two-atom threshold at Eb, and four-atom threshold at
0 energy. The lowest curve represents the dimer-dimer chan-
nel and potential curves going asymptotically to Eb and 0
represent dimer–two-atom and four-atom channels, respec-
tively. Standard multichannel scattering techniques, such as
the R-matrix method, can be applied to solve the hyper-
spherical coupled differential equations. This analysis was
performed in a recent study by D’Incao et al. �24�, which
obtained the energy dependence of the dimer-dimer scatter-
ing length for equal-mass systems. Black dashed curves in
Fig. 1 represent the potential curves of Ref. �24�. As we can
see, the CGHS method presented here predicts very similar
potential curves. The dimer-dimer potential curves obtained
with the different methods are almost indistinguishable. For
dimer–two-atom potential curves, the CGHS predicts lower
potential curves suggesting that the CGHS calculation is
slightly better. At large R, the asymptotic behaviors of both
methods agree. This is very encouraging since in the method
of D’Incao et al., the asymptotic behavior of the channel
functions is correct by construction, whereas in the CGHS it
constitutes an important, nontrivial test. Preliminary calcula-
tions with the CGHS potential curves predict a similar en-
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FIG. 1. �Color online� Adiabatic hyperspherical potential curves
U
�R� �solid lines� for two spin-up and two spin-down fermions
with an atom-atom scattering length as=100r0. The dashed line at
E=2Eb �blue� is the dimer-dimer threshold, the dashed line at E
=Eb �red� is the dimer–two-atom threshold, and the dashed line at
E=0 �green� is the four-atom threshold. Dashed curves are predic-
tions from Ref. �24�.
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ergy dependence of the dimer-dimer scattering length. There-
fore, the CGHS opens the possibility for accurately
analyzing four-body scattering events, as has been carried
out for four interacting bosons in Refs. �72,73�.

The calculations of the potential curves at unitarity allow
us to extract the four-fermion universal coefficients. As in the
NP=3 system, the potential curves can be written as �57,74�

U
�R� =
p


2 − 1/4
2�R2 . �34�

This functional form of the potential curves was verified in-
directly in Ref. �38� by analyzing the spectrum of the four-
fermion system under spherical harmonic confinement. It can
be shown that all the couplings vanish when the potential
curves are proportional to 1 /R2. Therefore, the system is
described by a set of uncoupled one-dimensional
Schrödinger equations that can be solved analytically once
the trapping potential is included. These procedures lead to
simple expressions for the trapped energies �57�

E
n = �p
 + 2n + 5/2��� , �35�

where � is the trapping frequency and we have included the
zero-point energy of the center-of-mass motion. In Ref. �38�,
the 2�� spacing was verified and the lowest p
 coefficients
were identified. Equations �34� and �35� are also valid in the
noninteracting limit. For L=0 and positive-parity solutions,
the p


NI values and their degeneracies �
 have relatively
simple closed forms: p


NI=11 /2+2
 and �
=
4 /96+7
3 /48
+17
2 /24+133
 /96+57 /64+ �−1�

 /32+7 /64�−1�
. Their
lowest values can be found in Table I.

The development of the CGHS method allows us to carry
out a hyperspherical calculation for the four-fermion prob-
lem and to directly verify the form of the hyperspherical
potentials. Also, it allows us to analyze deviations from the
zero-range solutions due to finite-range effects.

The 20 lowest four-body potential curves 2�R2U
�R� /�2

for the equal-mass system are presented in Fig. 2. We can
identify three regimes in these potential curves. The region
R
r0 is controlled by the kinetic energy. The kinetic-energy
effects are more important than the interaction energy and
the potential curves are well approximated by the noninter-
acting potential curves. In other words, 2�R2U
�R� /�2

��p

NI�2−1 /4 and the eigenchannels are well approximated

by the hyperspherical harmonics �see Sec. II B�. For that
reason, there is a large degeneracy in the R
r0 region which
corresponds to the degeneracy of the �2 operator. Further-

more, the potential curves are, to a good approximation, pro-
portional to 1 /R2. The second region is r0
R
20r0. In this
region, both the kinetic and the interaction terms are impor-
tant and finite-range effects are important. In the third region,
R�20r0, the potential curves recover their universal behav-
ior. The potential curves are, again, approximately propor-
tional to 1 /R2. As R /r0 increases, finite-range effects tend to
zero and we obtain the zero-range potential curves at unitar-
ity. Therefore, in this region, the eigenvalues of
2�R2U
�R� /�2 are approximately �p


2−1 /4�. Thus, we can
compare these results to the ones deduced from trapped cal-
culations for r0 /aho=0.01 presented in Ref. �38�. The solid
lines correspond to �p0

2−1 /4�, �p1
2−1 /4�, and �p2

2−1 /4�, re-
spectively �75�. There is good agreement between the predic-
tions from the trapped system obtained with CG and the
direct computation of the potential curves through CGHS.

To quantify this last statement, we analyze the value of p0.
Several groups �23,58–61� tried to benchmark the four-body
value of E00, which is simply related to p0. The calculations
from Ref. �60� use zero-range interactions explicitly and they
report a value of E00��5.045�0.003���. To extract the p0
value in the zero-range limit, we carry out two different cal-
culations. First, we study the E00 energy obtained with the
standard CG method as a function of the range of the two-
body interaction and then we extrapolate to zero-range limit.
This method was previously applied for the three-body sys-
tem and the numerical results agreed with the analytical pre-
dictions up to seven digits �40�. The same procedure applied
to the four-body system leads to p0�2.5096. The second
calculation analyzes the long-range behavior of the potential
curves. To eliminate finite-range effects, we extrapolate the
potential curve U0�R� to R /r0→�. In this limit, U0�R� is
characterized by a value p0�2.5092. These two different
methods provide a value of p0 which agrees in four digits.
These values are slightly lower than p0�2.545�0.003 pre-
dicted in Ref. �60�. This suggests that the uncertainty in Ref.
�60� was apparently underestimated.

TABLE I. Noninteracting coefficients p

NI of the four-fermion

potential curves and their degeneracies �
.


 p

NI �
 
 p


NI �


0 11/2 1 5 31/2 50

1 15/2 3 6 35/2 80

2 19/2 8 7 39/2 120

3 23/2 16 8 43/2 175

4 27/2 30 9 47/2 245
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FIG. 2. �Color online� Hyperspherical potential curves at unitar-
ity �a→�� for the four-fermion system multiplied by 2�R2 /�2.
Solid lines represent the predictions from analyzing the spectrum
obtained with the CG method. The symbols correspond to direct
evaluation of the potential curves with the CGHS method.
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The calculations of the lowest 20 universal coefficients p


are reported in Table II. It is interesting to note that some of
the p
 coefficients are very similar to the noninteracting co-
efficients. For example, the p
 coefficients for 
=12, 13, and
14 coincide with noninteracting p


NI coefficient. Two of these
potential curves are also described by p
=9.5 in the small R
region and deviate from these values in the region R�r0.
These channels have nodes in every spin-up–spin-down in-
terparticle distance, therefore at large distances, they recover
the noninteracting behavior. The third potential curve
smoothly decreases from p


NI=11.5 at small R to p
=9.5 at
large R.

Finally, note that the CGHS method has been successfully
applied to the four-boson system �72,73,76�. In that study,
the four-boson spectrum is calculated from the CGHS poten-
tial curves. Also, that study considered scattering events such
as four-body recombination, which was calculated and pre-
dicted to be important for the understanding of a recent ex-
periment on Efimov physics in an ultracold Bose gas �4�.

V. CONCLUSIONS

We have presented a numerical method suitable for the
analysis of four-body processes. We have shown several ex-
amples for three- and four-particle systems recovering
known results. Furthermore, we have obtained the lowest 20
p
 coefficients for the two-component four-fermion system
that characterize both free and trapped systems. These coef-
ficients also characterize the spectrum of four trapped fermi-
ons at unitarity. Our results considerably extend previous cal-
culations and provide more accurate energies.

The CGHS method has been used to analyze the four-
boson system in Refs. �72,73,76�, predicting unique phenom-
ena observed experimentally �77�. It has also built a theoret-
ical foundation for the analysis of four-body collisional
processes in other systems such as two-component Bose sys-
tems �78–81�, Bose-Fermi mixtures �82–84�, and three-
component Fermi gases �85–87�. Even though this method
was initially implemented to treat ultracold systems using
model potentials, it can be in principle extended to other
four-body problems.

ACKNOWLEDGMENTS

The authors would like to thank S. T. Rittenhouse, N. P.

Mehta, and J. P. D’Incao for useful discussions and for pro-
viding their four-fermion numerical data �dashed curves in-
cluded in Fig. 1�. This work was supported in part by NSF.

APPENDIX A: APPLICATION OF CORRELATED
GAUSSIANS TO THE HYPERSPHERICAL FRAMEWORK

This appendix illustrates how correlated Gaussian basis
functions can be used in the general hyperspherical frame-
work presented in Sec. II C. First, we consider the three-
particle case and calculate the matrix elements �Eqs. �21�,
�22�, and �29��. Then, we discuss how to generate and opti-
mize the basis set.

1. Unsymmetrized matrix-element evaluation
for three particles

In this section, we present as an example the evaluation of
the matrix elements �Eqs. �21�, �22�, and �29�� of three-
particle system. Consider a system in which the center-of-
mass motion decouples. Then, the LP=0+ solutions of the
body-fixed system can be expanded in terms of the interpar-
ticle distances. For the three-body system, the correlated ba-
sis functions take the form

�A�r12,r13,r23� = exp�− � r12
2

2d12
2 +

r13
2

2d13
2 +

r23
2

2d23
2 �� .

�A1�

For equal-mass systems, we can write Eq. �A1� in terms of
the following Jacobi coordinates:

x1 =
1
�2

�r1 − r2� , �A2�

x2 =�2

3
�r3 −

r1 + r2

2
� . �A3�

The basis functions �Eq. �A1�� can be written as

�A�r12,r13,r23� = 
x1,x2�A�

= exp�−
xT · A · x

2
�

= exp�−
x1 · x1a11 + 2x1 · x2a12 + x2 · x2a22

2
� ,

�A4�

where x��x1 ,x2	 and A is a 2 by 2 symmetric matrix whose
elements are a11=2 /d12

2 +1 /2�1 /d13
2 +1 /d23

2 �, a12=a21
=�3 /2�1 /d23

2 −1 /d13
2 �, and a22=3 /2�1 /d13

2 +1 /d23
2 �. In Eq.

�A4�, we can clearly see that the state 
x1 ,x2 �A� depends
only on the distances x1 and x2 plus the angle �12 between
them, cos �12=x1 ·x2 /x1x2.

We want to obtain the matrix elements corresponding to
these basis functions at fixed hyperradius R. We define the
hyperradius to be R2=x1

2+x2
2. The integrand of the overlap

matrix element between �A� and �B�, noted as BA, is

TABLE II. Coefficients p
 of the four-fermion potential
curves.


 p
 
 p
 
 p


0 2.509 7 7.959 14 9.502

1 4.944 8 8.341 15 9.648

2 5.529 9 8.848 16 9.938

3 5.846 10 9.292 17 10.205

4 7.363 11 9.366 18 10.339

5 7.402 12 9.5 19 10.482

6 7.621 13 9.501

JAVIER VON STECHER AND CHRIS H. GREENE PHYSICAL REVIEW A 80, 022504 �2009�

022504-8



BA = exp�−
xT · �A + B� · x

2
� . �A5�

We change to the Jacobi basis set that diagonalizes A+B and
we call �1 and �2 the eigenvalues and y��y1 ,y2	 the ortho-
normal eigenvectors. In this new coordinate basis, Eq. �A5�
has a simple form

BA = exp�−
�1y1

2 + �2y2
2

2
� . �A6�

We integrate over the angles of the vectors y1 and y2 and we
fix the hyperradius, so y1=R cos � and y2=R sin �. In this set
of coordinates, the matrix element at fixed R is


B�A��R = �4��2�
0

�/2

e−R2��1 cos2 �+�2 sin2 ��/2cos2 � sin2 �d� .

�A7�

This integration has a closed-form result


B�A��R = 2�3
exp�−

�1+�2

4 R2�
�

I1��� . �A8�

Here we have introduced the definition �=R2��1−�2� /4.
To simplify the interaction matrix-element evaluation, we

can adopt a Gaussian model potential as was utilized in the
CG method. In this case, the interaction term can be evalu-
ated in the same way we have calculated the overlap term
since the interaction is also a Gaussian. Each pairwise inter-

action can be easily written as Vij =V0 exp�−
rij

2

2r0
2 �=V0 exp

�−xT ·M�ij� ·x / �2r0
2��. Therefore, to calculate the interaction

matrix element, we need to evaluate


B�Vij�A� = V0� d	 exp�−
xT · �A + B + M�ij�/r0

2� · x

2
� .

�A9�

This integration can be done following the same steps of the
overlap matrix element. Equation �A8� can be used directly
if we multiply it by V0, and �1 and �2 are replaced by the
eigenvalues of A+B+M�ij� /r0

2. Note that for each pairwise
interaction �and for each pair of basis functions in the matrix
element�, the matrix M�ij� changes and requires a new evalu-
ation of the eigenvalues.

The third term we need to evaluate is the hyperangular
kinetic term at fixed R. This kinetic term is proportional to
the grand angular-momentum operator � defined for the
NP=3 case as

�2�2

2�R2 = − �
i

�2�i
2

2�
+

�2

2�

1

R5

�

�R
R5 �

�R
. �A10�

The expression can be formally written as

T	 = TT − TR, �A11�

where

T	 =
�2�2

2�R2 , TT = − �
i

�2�i
2

2�
�A12�

and

TR = −
�2

2�

1

R5

�

�R
R5 �

�R
. �A13�

In typical calculations, T	 is evaluated by directly apply-
ing the corresponding derivatives in the hyperangles 	.
However, in this case, it is convenient to evaluate TT and TR
separately and make use of Eq. �A11�.

The integrand of the total kinetic term TT takes the form

B�TT�A = exp�−
xT · B · x

2
��− �

i

2
�2

2�
�i

2�exp�−
xT · A · x

2
� .

�A14�

First, we diagonalize A and use the eigenvectors and ei-
genvalues of A, obtaining

B�TT�A = −
�2

2�
�− Tr�A� + xT · A2 · x�exp�−

xT · �A + B� · x

2
� .

�A15�

Here Tr is the trace function. We can use Tr�A�= ��1+�2�,
where �1 and �2 are the eigenvalues of A. Now we diago-
nalize A+B. We call T the matrix with the orthonormal
eigenstates in columns, and �1 and �2 are the eigenvalues of
A+B. We make a change of coordinates to the basis set that
diagonalizes A+B. We obtain

B�TT�A = −
�2

2�
�− 3��1 + �2� + y · G · y�exp�−

�1y1
2 + �2y2

2

2
� ,

�A16�

where G=TTA2T, and y1 and y2 are the vectors in the new
eigenbasis. The integration over the angles of these vectors is
trivial. After this integration, we fix the hyperradius and in-
tegrate over the hyperangle � defined by y1=R cos � and
y2=R sin �,


B�TT�A��R = −
�4��2�2

2�
�

0

�/2

�− 3��1 + �2� + g11R
2

�cos2 � + g22R
2 sin2 ��

�exp�−
�1R2 cos2 � + �2R2 sin2 �

2
�

�cos2 � sin2 �d� . �A17�

This integration can be done analytically and the results ex-
pressed in terms of the Bessel functions I1 and I0,


B�TT�A��R = −
�2e−��1+�2�R2/2�3R2

16��

− 8�g11 − g22�I0���

+
2

�
�8�g11 − g22� + ��1 − �2��− 6��1 + �2�

+ �g11 + g22�R2�	I1���� . �A18�
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Now we will evaluate TR, the hyperradial kinetic term. It is
written as

TR = −
�2

2�
� 1

R5/2
�2

�R2R5/2 −
15

4R2� . �A19�

Therefore, the integrand takes the form

B�TR�A = −
�2

2�
exp�−

xT · B · x

2
�� 1

R5/2
�2

�R2R5/2 −
15

4R2�
�exp�−

xT · A · x

2
� . �A20�

We use the property xT ·A ·x=R2FA�	� to evaluate the de-
rivatives with respect to R. This allows a simple calculation
of the derivatives in Eq. �A20�, yielding

B�TR�A =
�2

2�R2 �6xT · A · x − �xT · A · x�2�e−xT·�A+B�·x/2.

�A21�

Next we diagonalize A+B and set D=TTAT giving

B�TR�A =
�2

2�R2 �6y · D · y − �y · D · y�2�exp�−
�1y1

2 + �2y2
2

2
� .

�A22�

The terms y ·D ·y and �y ·D ·y�2 depend on the polar angles
of the vectors. The integration over the polar angles �	1
= ��1 ,�1	 and 	2= ��2 ,�2	� of these terms is

� �6y · D · y − �y · D · y�2�d	1d	2

= �4��2�6d11y1
2 + 6d22y2

2

− �d11
2 y1

4 + �2d11d22 + 4d12
2 /3�y1

2y2
2 + d22

2 y2
4�	 . �A23�

Now we carry out the integration over the hyperangle �,
using y1=R cos � and y2=R sin �, which gives


B�TR�A��R =
�4��2�2

2�R2 �
0

�/2

�6d11R
2 cos2 � + 6d22R

2 sin2 �

− d11
2 R4 cos4 � − �2d11d22

+ 4d12
2 /3�R4 cos2 � sin2 � − d22

2 R4

�sin4 �	exp�−
�1R2 cos2 � + �2R2 sin2 �

2
�

�cos2 � sin2 �d� . �A24�

This integration has the analytical form


B�TR�A��R = −
�2

�

e−��1+�2�R2/4�3R2

64�2 
− 8�− 8d12
2 + �d11 − d22�

��6�− �1 + �2 + d11 − d22�

+ 4��d11 + d22��	I0���

+
2

�
�− 64d12

2 + 48�d11 − d22��− �1 + �2 + d11

− d22� + 8��− 3�1 + 3�2 + 4d11 − 4d22�

��d11 + d22� + 16�2�d11
2 + d22

2 ��I1���� . �A25�

Combining Eqs. �A18� and �A25�, we obtain T	. The ex-
pression for T	 can be simplified using the relation G=D2 to
write G matrix elements of Eq. �A18� in terms of the ones of
D. This same procedure can be applied to extract the P and

Q̃ matrix elements

��B�
�A

�R
��

R

and �� �B

�R
�
�A

�R
��

R

. �A26�

A useful test to verify the functional form of the matrix
elements is to integrate them with respect to R, with the
corresponding volume element, and compare that result to
the standard CG matrix elements. Another important test is
to verify that T	 is symmetric under the exchange of the
basis functions A and B. This is not a trivial test since neither
TT nor TR is symmetric.

A major advantage of these matrix-element evaluations is
that they can be easily extended to four particles. In general,
these matrix-element evaluations would require a 5D nu-
merical integration but for these basis functions, with the
above analytical development, they only require a 1D nu-
merical integration.

2. General considerations

Many of the procedures of the standard CG method can
be easily extended to the CGHS. The selection, symmetriza-
tion, and optimization of a basis follow the same ideas of the
standard CG method. However, the evaluation of the unsym-
metrized matrix elements at fixed R is clearly different. Fur-
thermore, the hyperangular Hamiltonian �Eq. �17�� needs to
be solved at different hyperradius R.

There are several properties that make this method par-
ticularly efficient. For the model potential used, the scatter-
ing length is tuned by varying the potential depths of the
two-body interaction. Therefore, as in the CG case, the ma-
trix elements need only be calculated once; then they can be
used for a wide range of scattering lengths. Of course, the
basis set should be complete enough to describe the relevant
potential curves at all the desired scattering length values.

The selection of the basis function generally depends on
R. To avoid numerical problems, the mean hyperradius of
each basis function 
R�B should be comparable to the hyper-
radius R in which the matrix elements are evaluated. We can
ensure that 
R�B�R by selecting some �or all� of the weights
dij to be of the order of R.

We consider two different optimization procedures. The
first possible optimization procedure is the following. First,
we select a few basis functions and optimize them to de-
scribe the lowest hyperspherical harmonics. The Gaussian
widths of these basis functions are rescaled by R at each
hyperradius so that they represent the hyperspherical har-
monics equally well. These basis functions are used at all R,
while the remaining are optimized at each R. Starting from
small R �of the order of the range of the potential�, we opti-
mize a set of basis functions. As R is increased, the basis set
is increased and reoptimized. At every R step, only a fraction
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of the basis set is optimized and those basis functions are
selected randomly. After several R steps, the basis set is
increased.

Instead of optimizing the basis set at each R, one can
alternatively try to create a complete basis set at large Rmax.
In this case, the basis functions should be complete enough
to describe the lowest channel functions with interparticle
distances varying from interaction range r0 up to the hyper-
radius Rmax. Such a basis set can be rescaled to any R
�Rmax and should efficiently describe the channel functions
at that R. The rescaling procedure is simply dij /R
=dij

max /Rmax. This procedure avoids the optimization at each
R. Furthermore, the kinetic, overlap, and coupling matrix
elements at R are straightforwardly related with the ones at
Rmax. So, the interaction potential is the only matrix element
that needs to be recalculated at each R. This property can be
understood using dimensional analysis. The kinetic, overlap,
and coupling matrix elements only depend on R, so a rescal-
ing of the widths is simply related to a rescaling of the ma-
trix elements. In contrast, the interaction potential introduces
a new length scale, so the matrix elements depend on both R
and r0, and the rescaling does not work.

These two methods, the “complete basis set” and the
“small optimized basis set” methods, can be appropriate in

different circumstances. If a large number of channels is
needed, probably the complete basis method is the better
choice. But, if only a couple of particular channel potential
curves and couplings are needed, then the small optimized
basis set method might be more efficient.

The most convenient strategy we have found for optimiz-
ing the basis function in the four-boson and four-fermion
problems is the following. First we select an hyperradius Rm
that is Rm�300r0 where the basis function will be initially
optimized. The basis set is increased and optimized until the
relevant potential curves are converged and, in that sense, the
basis is complete. This basis is then rescaled, as proposed in
the second optimization method, to all R�Rm. For R�Rm, it
is too expensive to have a “complete” basis set. For that
reason, we use the small optimized basis set method which
allows a reliable description of the lowest potential curves.

Note that for standard correlated Gaussian calculations,
the matrices A and B need to be positive definite. This con-
dition restricts the Hilbert space to exponentially decaying
functions. In the hyperspherical treatment, this is not neces-
sary since the matrix elements can always be calculated at
fixed R as the integrals converge even for exponentially
growing functions. This gives more flexibility in choosing
the optimal basis functions.
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