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We present a quantum algorithm based on classical fully polynomial randomized approximation schemes
�FPRASs� for estimating partition functions that combine simulated annealing with the Monte Carlo Markov
chain method and use nonadaptive cooling schedules. We achieve a twofold polynomial improvement in time
complexity: a quadratic reduction with respect to the spectral gap of the underlying Markov chains and a
quadratic reduction with respect to the parameter characterizing the desired accuracy of the estimate output by
the FPRAS. Both reductions are intimately related and cannot be achieved separately. First, we use Grover’s
fixed-point search, quantum walks, and phase estimation to efficiently prepare approximate coherent encodings
of stationary distributions of the Markov chains. The speed up we obtain in this way is due to the quadratic
relation between the spectral and phase gaps of classical and quantum walks. The second speed up with respect
to accuracy comes from generalized quantum counting used instead of classical sampling to estimate expected
values of quantum observables.
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I. INTRODUCTION

Quantization of classical Markov chains has been crucial
in the design of efficient quantum algorithms for a wide
range of search problems that outperform their classical
counterparts. We refer the reader to the survey article �1� for
a detailed account of the rapidly growing collection of
quantum-walk-based search algorithms. In this context, we
also point to the work �2�, where the authors apply quantized
Markov chains to speed up search algorithms based on simu-
lated annealing for finding low-energy states of �classical�
Hamiltonians.

In this paper, we extend the scope of the use of quantized
Markov chains beyond search problems. We show how to
employ them to speed up fully polynomial-time randomized
approximation schemes for partition functions based on
simulated annealing and the Monte Carlo Markov chain
method. To achieve this improvement, we rely on Szegedy’s
general method to quantize classical Markov chains �3,4�,
which we review in the Appendix. This method gives us a
unitary quantum-walk operator W�P� corresponding to one
update step of the classical Markov chain P. The complexity
of the classical algorithms we are speeding up is measured in
the number of Markov chain invocations. Similarly, we ex-
press the complexity of our quantum algorithm as the num-
ber of times we have to apply a quantum-walk operator. As
shown in �5�, in the circuit model of quantum computation,
this operator can be implemented precisely and efficiently.

Sampling from stationary distributions of Markov chains
combined with simulated annealing is at the heart of many
clever classical approximation algorithms. Notable examples
include the algorithm for approximating the volume of con-
vex bodies �6�, the permanent of a non-negative matrix �7�,
and the partition function of statistical physics models such
as the Ising model �8� and the Potts model �9�. Each of these
algorithms is a fully polynomial randomized approximation

scheme �FPRAS�, outputting a random number Ẑ within a
factor of �1��� of the real value Z, with probability greater
than 3

4 , i.e.,

P��1 − ��Z � Ẑ � �1 + ��Z� �
3

4
, �1�

in a number of steps polynomial in 1 /� and the problem size.
We show how to use a quantum computer to speed up a

class of FPRAS for estimating partition functions that rely on
simulated annealing and the Monte Carlo Markov chain
method �e.g., �8,9��. Let us start with an outline of these
classical algorithms. Consider a physical system with state
space � and an energy function E :�→R, assigning each
state ��� an energy E���. The task is to estimate the Gibbs
partition function

Z�T� = �
���

e−E���/kT �2�

at a desired �usually very low� temperature TF. We would
like to know the value of Z at zero temperature because it is
equal to the number of the system configurations with zero
energy �17�, and this could be a hard counting problem.

The partition function Z�T� encodes the thermodynamical
properties of the system in equilibrium at temperature T,
where the probability of finding the system in state � is given
by the Boltzmann distribution,

�i��� =
1

Z�T�
e−E���/kT. �3�

It is hard to estimate Z�T� directly. The schemes we want to
speed up use the following trick. Consider a sequence of
decreasing temperatures T0�T1� ¯ �T�, where T0 is a
very high starting temperature and T�=TF is the desired final
temperature. Then, Z�TF� can be expressed as a telescoping
product
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Z�TF� = Z0
Z1

Z0
¯ Z�−1

Z�−2

Z�

Z�−1
= Z0��0�1 ¯ ��−2��−1�

�

,

�4�

where Zi=Z�Ti� stands for the Gibbs partition function at
temperature Ti and �i=Zi+1 /Zi. It is easy to calculate the
partition function Z0=Z�T0� at high temperature. Next, for
each i, we can estimate the ratio �i by sampling from a
distribution that is sufficiently close to the Boltzmann distri-
bution �i �3� at temperature Ti �see Sec. II for more detail�.
This is possible by using a rapidly mixing Markov chain Pi
whose stationary distribution is equal to the Boltzmann dis-
tribution �i.

To be efficient, these classical schemes require that �1� we
use a cooling schedule such that the resulting ratios
�i=Z�Ti+1� /Z�Ti� are lower bounded by a constant c−1 �to
simplify the presentation, we use c=2 from now on�, and �2�
the spectral gaps of the Markov chains Pi are bounded from
below by 	.

The time complexity of such FPRAS, i.e., the number of
times we have to invoke an update step for a Markov chain
from �P1 , . . . , P�−1�, is

Õ� �2

�2	
	 , �5�

where Õ means up to logarithmic factors.
Our main result is a general method for “quantizing” such

algorithms. Note that the method we present in this paper
does not yet allow us to speed up the more complicated
classical algorithm for the permanent �which requires to
sample from the stationary distributions of the previously
used Markov chains to decide which Markov chain to use
next�. Together with the algorithms using adaptive cooling
schedules, it is a direction for further research.

Theorem 1. Consider a classical FPRAS for approximat-
ing the Gibbs partition function of a physical system at tem-
perature TF, satisfying the above conditions. Then, there ex-
ists a fully polynomial quantum approximation scheme that
uses

Õ� �2

�
	
	 �6�

applications of a controlled version of a quantum-walk op-
erator from �W�P1� , . . . ,W�P�−1��.

The reduction in complexity for our quantum algorithm
�in comparison to the classical FPRAS� is twofold. First, we
reduce the factor 1 /	 to 1 /
	 by using quantum walks in-
stead of classical Markov chains and utilizing the quadratic
relation between spectral and phase gaps. As observed in �4�,
this relation is at the heart of many quantum search algo-
rithms based on quantum walks �see, e.g., �1� for an over-
view of such quantum algorithms�. Second, we speed up the
way to determine the ratios �i by using the quantum phase-
estimation algorithm. This results in the reduction of the fac-
tor 1 /�2 to 1 /�.

The quantum algorithm we present builds upon our pre-
vious work �10�, where two of us have shown how to use
quantum walks to approximately prepare coherent encodings

��i� = �
���


�i������ �7�

of stationary distributions �i of Markov chains Pi, provided
that the Markov chains are slowly varying. Recall that a
sequence of Markov chains is called slowly varying if the
stationary distributions of two adjacent chains are suffi-
ciently close to each other. As we will see later, this condi-
tion is automatically satisfied for Markov chains that are
used in FPRAS for approximating partition functions.

Note that our objective of approximately preparing coher-
ent encodings of stationary distributions is different from the
objective in �14�, where the author seeks to speed up the
process of approximately preparing density operators encod-
ing stationary distributions. For our purposes, we have to
work with coherent encodings because otherwise we could
not achieve the second reduction from 1 /�2 to 1 /�.

The paper is organized as follows. In Sec. II we review
the classical FPRAS in more detail. We present our quantum
algorithm in two steps. First, in Sec. III B we explain how
our quantum algorithm works, assuming that we can per-
fectly and efficiently prepare coherent encodings of the dis-
tributions �Eq. �3��. Then, in Sec. III C we describe the full
quantum algorithm, dropping the assumption of Sec. III B
and using approximate procedures for quantum sample
preparation and readout, which are based on the quantum
walks. We perform a detailed analysis of accumulation of
error due to the approximation procedures and show that the
success probability remains high, establishing theorem 1. Fi-
nally, in Sec. IV we conclude with a discussion of open
questions, the connection of our algorithm to simulated an-
nealing, and the directions for future research.

II. STRUCTURE OF THE CLASSICAL ALGORITHM

Here we describe the classical approximation schemes in
more detail, following closely the presentation in �9�
�Sec. 2.1�. Choosing a sequence of temperatures
T0�T1� ¯ �T� starting with T0=
 and ending with the
desired final �low� temperature T�=TF, we can express the
Gibbs partition function �2� as a telescoping product �4�. At
T0=
, the partition function Z0 is equal to

Z0 = ��� , �8�

the size of the state space. On the other hand, for each
i=0, . . . ,�−1, we can estimate the ratio

�i =
Zi+1

Zi
�9�

in Eq. �4� as follows. Let Xi
�i denote a random state cho-
sen according to the Boltzmann distribution �i, i.e.,

P�Xi = �� = �i��� . �10�

Define a new random variable Yi by

Yi = e−��i+1−�i�E�Xi�, �11�

where �i= �kTi�−1 is the inverse temperature �k is the Boltz-
mann constant�. This Yi is an unbiased estimator for �i since
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E�Yi� = �
���

�i���e−��i+1−�i�E���, �12�

= �
���

e−�iE���

Zi
e−��i+1−�i�E���, �13�

= �
���

e−�i+1E���

Zi
=

Zi+1

Zi
= �i. �14�

Assume now that we have an algorithm for generating states
Xi according to �i. We draw

m ª 64�/�2 �15�

samples of Xi and take the mean Ȳi of their corresponding

estimators Yi. Then, the mean Ȳi satisfies

Var�Ȳi�

�E�Ȳi��2
=

�2

64�

Var�Yi�
�E�Yi��2 �

�2

16�
. �16�

�We have used the assumption 1
2 ��i�1.� We can now com-

pose such estimates of �i. Define a new random variable Ȳ
by

Ȳ = Ȳ�−1Ȳ�−2 ¯ Ȳ0. �17�

Since all Ȳi are independent, we have

E�Ȳ� = E�Y�−1�E�Y�−2� ¯ E�Y0� = ��−1��−2 ¯ �0 = � .

�18�

Moreover, Ȳ has the property

Var�Ȳ�

�E�Ȳ��2
=

E�Ȳ�−1
2 � ¯ E�Ȳ0

2� − E�Ȳ�−1�2
¯ E�Ȳ0�2

E�Ȳ�−1�2
¯ E�Ȳ0�2

= �1 +
Var�Ȳ�−1�

�E�Ȳ�−1��2
	¯ �1 +

Var�Ȳ0�

�E�Ȳ0��2
	 − 1

� �e�2/16��� − 1 � �2/8, �19�

where we used 1+x�ex �true for all x� and ex−1�2x �true
for all x� �0,1�� in the last two steps, respectively. Cheby-

shev’s inequality now implies that the value of Ȳ is in the
interval ��1−��� , �1+���� with probability at least 7

8 .
Of course, we are not able to obtain perfect samples Xi

from �i. Assume now that we have Xi� that are from a distri-
bution with a variation distance from �i smaller than

d ª �2/�512�2� . �20�

Let Ȳ� be defined as Ȳ as above, but instead of Xi we use Xi�.

Then, with probability at least 7
8 , we have Ȳ = Ȳ�. To derive

this, observe that the algorithm can be thought to first take a
sample from a product probability distribution � on the
�m��-fold direct product of �. We denote the probability
distribution in the case of imperfect samples by ��. The total
variation distance between � and �� is then bounded from
above by

dm� =
�2

512�2

64�

�2 � =
1

8
. �21�

Therefore, Ȳ� is in the interval ��1−��E�Y� , �1+��E�Y�� with
probability at least 3

4 .
We obtain the samples Xi� by applying Markov chains Pi

whose limiting distributions are equal to �i. Constructing
such rapidly mixing Markov chains is a hard task, but it has
been done for the Ising model �8� and the Potts model �9�.

III. QUANTUM ALGORITHM

A. Overview

The classical FPRAS we described in Sec. II consists of
�1� preparing many samples from a distribution close to �i
by letting a suitable Markov chain mix, �2� using these
samples to approximate the ratios �i in Eq. �4�, and �3� com-
posing these estimates of �i into an estimate of the partition
function.

We build our quantum algorithm on this scheme, adding
two quantum ingredients. First, instead of letting a Markov
chain Pi mix toward its stationary distribution �i, we choose
to approximately prepare the state ��i�=��


�i������, a co-
herent encoding of the Boltzmann distribution. We use a
preparation method �10� based on Grover’s �

3 -fixed-point
search �13�, efficiently driving the state ��0� toward the de-
sired state ��i� through a sequence of intermediate states.

Second, instead of using classical samples from the dis-
tribution �i, we approximate �i by phase estimation of a
certain unitary on the state ��i�. This is a new concept, going
beyond our previous work �10�. This phase-estimation sub-
routine can be efficiently �albeit only approximately� applied
by utilizing quantum walks.

The structure of our algorithm is depicted in Fig. 1. It
consists of successive approximate preparations of ��i� fol-
lowed by a quantum circuit outputting a good approximation
to �i �with high probability�. Our main result is the construc-
tion of a fast quantum version of a class of classical algo-
rithms summed in theorem 1.

We arrive at our quantum algorithm in two steps. First, in
Sec. III B, we explain how to quantize the classical algo-
rithm in the perfect case, assuming that we can take perfect
samples Xi from �i. Then, in Sec. III C we release this as-
sumption and describe the full quantum algorithm.

B. Perfect case

To estimate the ratios �i in Eq. �4�, the classical algorithm
generates random states Xi from �i and computes the mean

Ȳi of the random variables Yi. The process of generating a

FIG. 1. Structure of the quantum algorithm.
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random state Xi from �i is equivalent to preparing the mixed
state

�i = �
���

�i��������� . �22�

Instead of this, we choose to prepare the pure states

��i� = �
���


�i������ . �23�

We call these states quantum samples since they coherently
encode the probability distributions �i. In this section, we
assume that we can prepare these exactly and efficiently.

The random variable Yi can be interpreted as the outcome
of the measurement of the observable

Ai = �
���

yi��������� �24�

in the state �i, where

yi��� = e−��i+1−�i�E���. �25�

With this interpretation in mind, we see that to estimate �i
classically, we need to estimate the expected value Tr�Ai�i�
by repeating the above measurement several times and out-
putting the mean of the outcomes.

We now explain how to quantize this process. We add an
ancilla qubit to our quantum system in which the quantum
samples ��i� live. For each i=0, . . . ,�−1, we define the uni-
tary

Vi = �
���

������ � � 
yi��� 
1 − yi���

− 
1 − yi��� 
yi���
	 . �26�

This Vi can be efficiently implemented, it is a rotation on the
extra qubit controlled by the state of the first tensor compo-
nent. Let us label

�
i� = Vi���i� � �0�� . �27�

Consider now the expected value of the projector

T = I � �0��0� �28�

in the state �
i�. We find

�
i�T�
i� = ��i�Ai��i� = �i. �29�

We now show how to speed up the process of estimating �i
with a method that generalizes quantum counting �11�. As
noted in the beginning of this section, we assume efficient
preparation of ��i�, which in turn implies that we can effi-
ciently implement the reflections

Ri = 2��i���i� − I . �30�

The result of this section, the existence of a quantum FPRAS
for estimating the partition function assuming efficient and
perfect preparation of ��i�, is summed in theorem 2.

Theorem 2. There is a fully polynomial quantum approxi-
mation scheme A for the partition function Z. Its output Q
satisfies

P��1 − ��Z � Q � �1 + ��Z� �
3

4
. �31�

For each i=0, . . . ,�−1, the scheme A uses

O�log2 �� �32�

perfectly prepared quantum samples ��i� and applies the
controlled-Ri operator

O��

�
log2 �	 �33�

times, where Ri is as in Eq. �30�.
To prove theorem 2, we need the following three technical

results.
Lemma 1. (Quantum ratio estimation). Let �pe� �0,1�.

For each i=0, . . . ,�−1, there exists a quantum approxima-
tion scheme Ai� for �i. Its output Qi� satisfies

P��1 − �pe��i � Qi� � �1 + �pe��i� �
7

8
. �34�

The scheme Ai� requires one copy of the quantum sample
��i� and invokes the controlled-Ri operator O��pe

−1� times,
where Ri is as in Eq. �30�.

Proof. Let

G = �2�
i��
i� − I��2T − I� . �35�

Define the basis states

��1� =
�I − T��
i�

1 − �i

, ��2� =
T�
i�

�i

. �36�

Restricted to the plane spanned by ��1� and ��2�, G acts as a
rotation

G����1�,��2�� = � cos � sin �

− sin � cos �
	 , �37�

where �� �0, �
2 � satisfies

cos � = 2�i − 1. �38�

The eigenvectors and eigenvalues of G are

�G�� =
1

2
� 1

�i
�, �� = e�i�. �39�

We do not have direct access to one of these eigenvectors, as
the state �
i� is in a superposition of �G+� and �G−�. Thus,
when we apply the phase-estimation circuit for the unitary G
to the state �
i�, we will sometimes obtain an estimate of �,
and sometimes an estimate of 2�−�. However, this is not a
problem since both � and 2�−� plugged into Eq. �38� yield
the same result for �i.

We require that the estimate �� satisfies

��� − �� � 2�pe�i � �pe, �40�

with probability at least 7
8 . Using the phase-estimation circuit

in �12�, this means that ��
2� has to be an na=log2

2�
�pe

bit ap-
proximation of the phase and the failure probability pf has to
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be less than 1
8 . To achieve this, it suffices to use a phase-

estimation circuit �see Fig. 2� with

t = log2
2�

�pe
+ log2�2 +

1

2pf
	 = O�log2 �pe

−1�

ancilla qubits. This circuit invokes the controlled-G opera-
tion O�2t�=O��pe

−1� times.
Let �i� denote the value we compute from the estimate ��.

We have

��i − �i�� =
1

2
�cos � − cos ��� �

1

2
�� − ��� � �pe�i, �41�

showing that the estimate �i� is within ��pe�i of the exact
value �i with probability at least 7

8 . This completes the proof
that the random variable Qi� corresponding to the output sat-
isfies the desired properties on estimation accuracy and suc-
cess probability. �

We can boost the success probability of the above quan-
tum approximation scheme for the ratio �i by applying the
powering lemma from �15�, which we state here for com-
pleteness.

Lemma 2. (Powering lemma for approximation schemes).
Let B� be a �classical or quantum� approximation scheme
whose estimate W� is within ��peq to some value q with
probability 1

2 +��1�. Then, there is an approximation scheme
B whose estimate W satisfies

P��1 − �pe�q � W � �1 + �pe�q� � 1 − 	boost. �42�

It invokes the scheme B� as a subroutine O�log2 	boost
−1 �

times.
With the help of lemma 2, we now have the constituents

required to compose the individual estimates of �i into an
approximation for the partition function �4�.

Lemma 3. Let ��0. Assume we have approximation
schemes A0 ,A1 , . . . ,A�−1 such that their estimates
Q0 ,Q1 , . . . ,Q�−1 satisfy

P��1 −
�

2�
	�i � Qi � �1 +

�

2�
	�i� � 1 −

1

4�
. �43�

Then, there is a simple approximation scheme A for the
product �=�0�1¯��−1. The result Q=Q0Q1¯Q�−1 satis-
fies

P��1 − ��� � Q � �1 + ���� �
3

4
. �44�

Proof. For each i=0, . . . ,�−1, the failure probability for
estimating �i is smaller than 1 / �4��. The union bound im-
plies that the overall failure probability is smaller than 1/4,

proving the lower bound 3
4 on the success probability in Eq.

�44�.
To obtain the upper bound on the deviation, we now as-

sume that each Qi takes the upper bound value. We have

Q − �

�
� �

i=0

�−1 �1 +
�

2�
	 − 1 = �1 +

�

2�
	�

− 1 � e�/2 − 1 � � ,

where we have used 1+x�ex�1+2x, which is true for all
x� �0,1�. Thus, in the case of success, we have
Q� �1+���.

To obtain the lower bound on the deviation, we assume
that each Qi takes its lower bound value. We have

� − Q

�
� 1 − �

i=0

�−1 �1 −
�

2�
	 � �

i=0

�−1
�

2�
� � , �45�

where we have used ��ixi−�iyi���i�xi−yi�, true for arbitrary
xi ,yi� �0,1�. Thus, in the case of success, we have
�1−����Q. �

We are now ready to prove theorem 2.
Proof of Theorem 2. For each i=0, . . . ,�−1, we can apply

lemma 1 with the state �
i� �27� and the projector T �28�.
This gives us a quantum approximation scheme for �i. Note
that to prepare �
i�, it suffices to prepare ��i� once. Also, to
realize a controlled reflection around �
i�, it suffices to in-
voke the controlled reflection around ��i� once.

We now use the reflection 2�
i��
i�− I and set
�pe=� / �2�� in lemma 1. With these settings, we can apply
lemma 2 to the resulting approximation scheme for �i with
	boost=1 / �4��. This gives us approximation schemes Ai
outputting Qi with high precision and probability of success
that can be used in lemma 3. The composite result
Q=Q0¯Q�−1 is thus an approximation for �=�0¯��−1
with the property

P��1 − ��� � Q � �1 + ���� �
3

4
. �46�

Finally, we obtain the estimate for Z by multiplying Q with
Z0. Let us summarize the costs from lemmas 1–3. For each
i=0, . . . ,�−1, this scheme uses log2 	boost

−1 =O�log2 �� copies
of the state ��i�, and invokes �log2 	boost

−1 ��pe
−1=O� �

� log2 �� re-
flections around ��i�. �

C. Quantum FPRAS

In the previous section, we have assumed that we can
prepare the quantum samples ��i� and implement the con-
trolled reflections Ri=2��i���i�− I about these states perfectly
and efficiently. We now release these assumptions and show
how to approximately accomplish both tasks with the help of
quantum-walk operators. We then show that the errors aris-
ing from these approximate procedures do not significantly
decrease the success probability of the algorithm. This will
wrap up the proof of our main result, theorem 1.

In �10�, two of us showed how to approximately prepare
quantum samples ��i� of stationary distributions of slowly
varying Markov chains. Using the fact that the consecutive
states ��i� and ��i+1� are close, we utilize Grover’s �

3 fixed-

|0〉 H •

DFT
†

.

.

.
· · ·

|0〉 H •

|0〉 H •

|ψ〉 G2
0

G2
1

G2
t−1

FIG. 2. A basic phase-estimation circuit with t ancilla qubits.
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point search �13� to drive the starting state ��0� toward the
desired state ��i� through multiple intermediate steps. More-
over, to be able to perform this kind of Grover search, we
have to be able to apply selective phase shifts of the form
Si=���i���i�+ �I− ��i���i�� for �=ei�/3 and �=e−i�/3. This is
another assumption of Sec. III B that we have to drop here.
Nevertheless, an efficient way to apply these phase shifts
approximately based on quantum walks and phase estimation
exists �10�.

Our task is to show that the approximation scheme from
lemma 1 works even with approximate input states and using
only approximate reflections about the states ��i�. Let us start
with addressing the approximate state preparation. To be able
to use the results of �10�, we first have to establish an impor-
tant condition. For their method to be efficient, the overlap of
two consecutive quantum samples ��i� and ��i+1� has to be
large. This is satisfied when �i=Zi+1 /Zi is bounded from be-
low by 1

2 since

���i��i+1��2 = � �
���


e−�iE���e−�i+1E���


ZiZi+1
�2

�� �
���

e−�i+1E���


2Zi+1

Zi+1

�2

=
1

2
.

The following lemma then directly follows from the argu-
ments used in �10� �theorem 2�.

Lemma 4. For �S�0 arbitrary and each i=1, . . . ,�−1,
there is a quantum method preparing a state ��̃i� with

���̃i� − ��i��0��a� � �S, �47�

where a=O� �

�S

	

� is the number of ancilla qubits. The method
invokes a controlled version of a walk operator from the set
�W�P1� , . . . ,W�P�−1��

O� �


	
log2

2 �

�S
	 �48�

times.
We choose the preparation method from lemma 4 with

�S= 1
32. The cost for this precision �S is

O� �


	
log2

2 �	 �49�

applications of the quantum-walk operator. Recall that when
we used lemma 1 in Sec. III B with the state �
i� �coming
from the perfect quantum sample ��i�� as input, the success
probability of the resulting scheme was greater than 7

8 . We
now use the method given in lemma 1 on the approximate

input �
̃i�=Vi���̃i� � �0��. With our chosen precision for pre-
paring ��̃i�, the success probability of the approximation
scheme of lemma 1 cannot decrease by more than 2· 1

32 .
The second assumption of lemma 1 we need to drop

is the ability to perfectly implement the reflections
Ri=2��i���i�− I. We now show how to approximately imple-

ment these reflections. The following lemma follows directly
from the arguments in �10�.

Lemma 5. For �R�0 arbitrary and each i=1, . . . ,�−1,

there is an approximate reflection R̃i such that

R̃i���� � �0��b� = �Ri���� � �0��b + ��� �50�

where ��� is an arbitrary state, b=O�log2 �R
−1 log2

1

	

� is the
number of ancilla qubits, and ��� is some error vector with
�������R. It invokes the controlled version of a walk opera-
tor from �W�P1� , . . . ,W�P�−1��

O� 1

	

log2
1

�R
	 �51�

times.
Recall that in lemma 1, the controlled reflection Ri is in-

voked O�1 /�pe� times. We now run this approximation

scheme with R̃i instead of Ri. The norm of the accumulated
error vector is

O� 1

�pe
	�R. �52�

We choose

�R = ���pe� �53�

to bound the norm of the accumulated error from above by
1

32. The success probability can then decrease by at most
2 · 1

32 .
Combining these arguments establishes a variant of

lemma 1 without the unnecessary assumptions of Sec. III B:
Lemma 6. Let �pe� �0,1�. For each i=0, . . . ,�−1, there

exists a quantum approximation scheme Ai� for �i. Its esti-
mate Qi� satisfies

P��1 − �pe��i � Qi� � �1 + �pe��i� �
3

4
. �54�

This scheme invokes the controlled version of a walk opera-
tor from �W�P1� , . . . ,W�P�−1��

O� �


	
log2

2 � +
1

�pe

	

log2 �pe
−1	 . �55�

Proof. The success probability of the scheme in lemma 1
was greater than 7

8 . Both the approximate state preparation
and using approximate reflections reduce the overall prob-
ability of success by at most 1

16 . Thus, the probability of
success of the method given in lemma 1 after dropping the
unnecessary assumptions is at least 3

4 . �
We can finally complete the proof of theorem 1 by fol-

lowing the procedure that led to the proof of Theorem 2 in
Sec. III B.

Proof of Theorem 2. For each i=0, . . . ,�−1, we proceed
as follows. We use the approximation scheme Ai� from
lemma 6 with precision �pe=� / �2��. We then boost the suc-
cess probability of each Ai� to 1− 1

4� by applying the power-
ing lemma �lemma 2� with 	boost=1 / �4��. This step increases
the cost in Eq. �55� by the factor O�log2 ��. This resulting
scheme Ai now satisfies the properties required for lemma 3.
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We can thus use it to obtain a composite approximation
scheme whose output satisfies

P��1 − ��Z � Q � �1 + ��Z� �
3

4
. �56�

The resulting cost of this scheme �the number of times we
have to invoke the controlled quantum-walk operators� is

O� �2


	
log2

3 � +
�2

�
	
�log2 ���log2 � + log2 �−1�� = Õ� �2

�
	
	 .

�57�

�

IV. CONCLUSIONS

We have shown that in the quantum circuit model, we can
speed up a class of classical FPRAS for approximating par-
tition functions, as measured in the number of times we have
to invoke �18� a step of a quantum walk �instead of classical
Markov chains�. We obtained two reductions in complexity:
1 /	→1 /
	 and 1 /�2→1 /�. These two reductions are inti-
mately related; they cannot occur separately. If we used
quantum samples merely to obtain classical samples �i.e., if
we tried to estimate the ratios without phase estimation� then
this would lead to O��3� dependence �for ���−1�. This is
because we would have to take O� �

�2 � classical samples for
each i and producing a quantum sample costs at least O���.
The advantage of our approximation procedure based on
quantum phase estimation is that it requires only one quan-
tum sample �or more precisely, log2 �, after using the pow-
ering lemma to boost the success probability�. We cannot
obtain the second speed up without using quantum samples
�as mentioned in the introduction, this prevents us from us-
ing a procedure such as �14� that prepares density operators
encoding stationary distributions�. Also, the arguments em-
ployed in the error analysis in the quantum case are quite
different from those in the classical error analysis.

Each classical FPRAS, we speed up uses the telescoping
trick �4�, a particular cooling schedule �decreasing sequence
of temperatures�, and slowly varying Markov chains which
mix rapidly, with stationary distributions equal to the
Boltzmann distributions at the intermediate temperatures.
The classical FPRAS is useful only when we have the
Markov chains with the required properties. Moreover, the
cooling schedules need to be such that the ratios �i
�Eq. �9�� are lower bounded by some c−1. In �16�, the authors
show that it is possible to use a cooling schedule
T0=
�T1�� . . . �T��−1

� =TF for estimating the partition
function Z�TF� as long as for each i,

E�Yi
2�

�E�Yi��2 � b , �58�

where b is some constant. Such a cooling schedule is called
a Chebyshev cooling schedule. Note that the above condition
is automatically satisfied in the situation we consider in this
paper, but not vice versa �recall that we assume that we have
a cooling schedule such that E�Yi� is bounded from below by

a constant for each i; we set it to 1
2 for simplicity of presen-

tation�. The advantage of Chebyshev cooling schedules is
that they are provably shorter. The authors present an adap-
tive algorithm for constructing Chebyshev cooling schedule.
We plan to explore if it is possible to speed up this process.
But even if this is possible, a potential obstacle remains. It is
not clear whether we can still obtain the reduction from 1

�2 to
1
� when we only know that the condition �58� is satisfied. It
seems that the condition E�Yi��c−1 with c some constant is
absolutely necessary for phase estimation to yield the qua-
dratic speed up with respect to the accuracy parameter �.

The combination of simulated annealing and the Monte
Carlo Markov chain method used in approximating partition
functions is the central piece of the best currently known
algorithm for estimating permanents with non-negative en-
tries �9�. We therefore plan to explore where our techniques
can be used to speed up this breakthrough classical algo-
rithm.
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APPENDIX: QUANTUM WALKS FROM CLASSICAL
MARKOV CHAINS

The class of classical approximation schemes that we
speed up uses reversible ergodic Markov chains Pi with sta-
tionary distributions �i. Here, we briefly review the quantum
analog of a Markov chain, describing the quantum-walk op-
erator W corresponding to the classical Markov Chain P.

In each step of a Markov chain P with state space �, the
probability of a state x to transition to another state y is given
by the element pxy of the D�D transition matrix, where
D= ���. Following Szegedy �3�, for each such Markov chain,
we can define its quantum analog. The Hilbert space on
which this quantum operation acts is CD � CD, with two CD

registers. We start by defining the states

�px� = �
y��


pxy�y� . �A1�

These states can be generated by a quantum update—any
unitary U that satisfies

U�x��0� = �x��px� �A2�

for some fixed state 0�� and all x��. The quantum ana-
log of a Markov chain is then defined as follows.

Definition 1. (Quantum Walk). A quantum walk W�P�
based on a classical reversible Markov chain P is a unitary
operation acting on the space CD � CD as

W�P� = RBRA, �A3�

where RB and RA are reflections about the spaces
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A = span��x��0�:x � �� , �A4�

B = U†SUA , �A5�

and S is a swap of the two registers.
This particular definition of the quantum walk is suitable

for making some of the proofs in �10� easier. It is equivalent
to the standard definition of Szegedy �3� up to conjugation
by U. Therefore, the spectral properties of our W and
Szegedy’s quantum walk are the same.

Let 	 be the spectral gap of the classical Markov chain P.
Let us write its eigenvalues as �0=1 and � j =cos�� j�, for

j=1, . . . ,D−1 and � j � �0, �
2 �. According to Szegedy �3�, on

the space A+B, the eigenvalues of the quantum walk W�P�
with nonzero imaginary part are e�2i�j. The phase gap of the
quantum walk W�P� is then defined as �=2�1 �with �1 the
smallest of � j�. When the Markov chain is ergodic and re-
versible, Szegedy proved that

� � 2
	 , �A6�

a quadratic relation between the phase gap � of the quantum
walk W�P� and the spectral gap 	 of the classical Markov
chain P. This quadratic relation is behind the speed up of
many of today’s quantum-walk algorithms.
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