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We present an empirical strategy to determine the Hamiltonian dynamics of a two-qubit system using only
initialization and measurement in a single fixed basis. Signal parameters are estimated from measurement data
using Bayesian methods from which the underlying Hamiltonian is reconstructed, up to three unobservable
phase factors. We extend the method to achieve full control Hamiltonian tomography for controllable systems
via a multistep approach. The technique is demonstrated and evaluated by analyzing data from simulated
experiments including projection noise.
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I. INTRODUCTION

Using quantum phenomena to perform new modes of
computation is a daunting challenge �1�. Significant achieve-
ments in the theory of quantum computation include the de-
velopment of error correction, fault tolerance �2�, and scal-
ability of quantum circuits �3�. However, in order to build
large-scale quantum processors, many individual quantum
systems must be manipulated with extraordinary precision
and accuracy. A prerequisite for this level of quantum control
is the precise characterization of the underlying dynamics
and its response to control fields and what is sometimes re-
ferred to as Hamiltonian engineering �see �4,5� and refer-
ences therein�. This is especially crucial for manufactured
devices such as solid-state quantum bits �qubits�, e.g., quan-
tum dots �Fig. 1� or superconducting quantum interference
devices. Any manufacturing process will introduce varia-
tions, so it is important to empirically identify the control
relationship for each component. In a large-scale quantum
computer, it is desirable to be able to achieve this using in
situ resources, i.e., initialization, control actuators, and mea-
surement capabilities already present for performing compu-
tation.

The canonical method for assessing quantum dynamics is
quantum process tomography �QPT� �7–9�. This involves ini-
tialization of a quantum system in a �complete� set of states,
allowing it to evolve under the dynamics under consider-
ation, and then performing an informationally complete mea-
surement on the output state for each input. From this set of
input-output data, the superoperator, or the completely posi-
tive map, governing the quantum evolution of the system can
be reconstructed. This may then be repeated for different
evolution times to obtain an estimate of the Lindblad opera-
tors �generators of the dynamics� �10�. For control purposes,
QPT would be performed for a variety of actuator settings to
build up a map of the control space.

A potential disadvantage of QPT is the need for ab initio
initialization and measurement outside of the computational

basis, a capability which may not exist in the absence of
characterization in the first place. It is usually argued that
initialization and measurement in an arbitrary basis can be
achieved by unitary rotation of a fixed basis; however, this
presupposes that the system response to control fields has
already been characterized, a vicious circle. Previous work
has addressed this issue for the case of a single qubit sub-
jected to multiple control Hamiltonians, decoherence, and
imperfect subspace confinement �11–16�. Following similar
ideas of using limited tools and accessibility to extract as
much information as possible about a quantum system, the
response of a single qubit to external driving forces has been
used to extract information about the qubit’s environment
and the qubit-environment coupling mechanism �17�. Here,
we extend the basic idea of Hamiltonian characterization to
two coupled qubits with an unknown generic internal Hamil-
tonian and control Hamiltonian response.
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FIG. 1. Manufactured qubit system. A pair of horizontally
aligned double quantum dots �center� can act as two qubits. A qubit
can be defined in each double quantum dot by two different charg-
ing states, e.g., a single excess electron located on the left or the
right dot of each pair. Electrodes �top and bottom� control the po-
tentials and electron tunneling rates. Single-electron transistors �left
and right� measure the locations of the excess electrons which de-
fines the measurement basis or logical states of the qubit. Due to
finite manufacturing precision, the placement of the control and the
measurement structures may not be exactly as calculated; hence, the
Hamiltonian dependence upon control signals will have to be deter-
mined empirically �6�.

PHYSICAL REVIEW A 80, 022333 �2009�

1050-2947/2009/80�2�/022333�15� ©2009 The American Physical Society022333-1

http://dx.doi.org/10.1103/PhysRevA.80.022333


This paper is organized as follows. In Sec. II we discuss
the basic principles of Hamiltonian tomography for a two-
qubit system with a fixed but unknown Hamiltonian, assum-
ing only the ability to measure the system at specific times in
a fixed measurement basis, but no control or a priori knowl-
edge of the system. We also deliberately exclude the ability
to perform local operators on either qubit or the ability to
initialize the system in states other than the measurement
basis states. Our approach differs in this regard from related
works on two-qubit Hamiltonian identification using concur-
rence spectroscopy �18,19� or optimal experiment design
�20�. These approaches may be preferable for certain types of
systems but have some limitations as they presume that the
single-qubit dynamics can be fully characterized indepen-
dently of the interqubit coupling, which is required to pre-
pare the two-qubit system in superposition states by applying
local rotations. Using concurrence also limits us to recon-
structing the nonlocal part of the two-qubit Hamiltonian.
Thus, this approach may be well suited for some systems
e.g., with weak-coupling and nonlocal interaction Hamilto-
nians, but may be problematic for other systems. The ap-
proach in this paper should be seen as complementary to
these works.

In Sec. III we discuss how to extract the relevant system
parameters from the noisy measurement data accurately and
robustly. The difficulty of this task is greatly magnified com-
pared to the single-qubit case due to the number of param-
eters to be determined, as well as the increased signal com-
plexity. A naive approach using straightforward least-squares
error minimization failed completely when applied to noisy
data from simulated experiments. The power spectrum of the
signal �which was sufficient for the single-qubit case� is still
useful, but no longer an optimal frequency estimator in the
presence of multiple frequencies, and obtaining accurate es-
timates of the amplitudes of different frequency components
is very difficult. For these reasons Bayesian analysis is em-
ployed to determine the signal parameters, which is shown to
result in significant improvements in the accuracy and the
robustness of the procedure.

In Sec. IV we show how to reconstruct the total Hamil-
tonian or, more precisely, its matrix representation with re-
spect to the fixed measurement basis, from the estimated
parameters. Unlike the single-qubit case, calculating the 16
matrix elements of the two-qubit Hamiltonian from the 214
parameters estimated from the 16 measured signals is non-
trivial and requires several optimization steps, from identify-
ing the most likely level structure from the set of transition
frequencies to determining the magnitudes and phases of the
Hamiltonian matrix elements that provide the best fit with
the estimated parameters. The analysis also shows that the
fixed Hamiltonian can be determined only up to a global
phase and sign, as well as three phases, which define U�1�
transformations of the measurement basis states. If there are
no other measurements or control available then these U�1�
transformations of the basis states have no observable effect.
Modulo these unobservable parameters, we demonstrate that
we can reconstruct the overall Hamiltonian with a very good
accuracy from noisy data.

In Sec. V we consider the more general case of control
Hamiltonian tomography. In particular, we are interested in

characterizing Hamiltonians H=H�f� that depend on a num-
ber of external parameters f= �f1 , . . . , fM� that can be varied
experimentally, such as voltages applied to certain gate elec-
trodes that allow us to vary confinement potentials, tunneling
rates, etc. By varying these parameters over time, we can
engineer complicated effective Hamiltonians and efficiently
achieve a wide range of control tasks from quantum state
preparation to gate implementation �21� using powerful op-
timal control techniques �22,23�. However, effective control
requires knowledge of the dependence of the Hamiltonian on
these parameters H�f�. When applying different Hamilto-
nians, the previously unobservable phase factors now have
practical effects and are critical for full control Hamiltonian
tomography. We show how to determine these phases, rela-
tive to a reference Hamiltonian, using a simple two-step ex-
periment, and how to use this information to achieve full
control Hamiltonian tomography. Finally, in Sec. VI we dis-
cuss applications of the results, as well as future improve-
ments and generalizations to our method.

II. FIXED HAMILTONIAN TOMOGRAPHY

Throughout this paper we assume that we are given a
two-qubit system with an unknown Hamiltonian and a mea-
surement apparatus that enables us to perform a fixed projec-
tive measurement on each qubit, including the ability to per-
form effectively simultaneous measurements on both qubits
�24�. We denote the measurement basis states of the resulting
four-outcome measurement by �1�= �00�, �2�= �01�, �3�= �10�,
and �4�= �11�. We then perform the following simple experi-
ment:

�1� Initialize the system in one of the four measurement
basis states �k� by performing simultaneous measurements on
both qubits.

�2� Let the system evolve for some time t.
�3� Perform simultaneous measurements on both qubits,

projecting the system back into one of the four measurement
basis states.

By repeating this experiment many times for a fixed evo-
lution time t, we can estimate the probabilities pk��t�
= ��� ��k�t���2, where ��k�t�� is the time-evolved state and
��k�0��= �k�. By further repeating the experiment for differ-
ent times tn for n=0, . . . ,N−1, we can stroboscopically cap-
ture the evolution of the probabilities pk��t� for k ,�
=1,2 ,3 ,4, yielding 16 noisy signals as shown in Fig. 2 �25�.
What information about the Hamiltonian can we extract from
this data, and what is the most effective way to extract this
information?

Assume that the evolution of the system is governed by a
fixed Hamiltonian according to the Schrödinger equation

i�
d

dt
���t�� = H���t�� . �1�

Expanding the Hamiltonian H with respect to its orthonormal
eigenbasis ����� :�=1, . . . ,4	,
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H = 

�=1

4

���������� , �2�

where �� are the �real� eigenvalues, and setting �k ����
=rk�ei�k�, we obtain

���H�k� = 

�=1

4

������������k� = 

�=1

4

��r��rk�ei��k�−����. �3�

Further defining sk�;�=rk�r��, �k�;�=�k�−���, and �k�;	�

=−�k�;	+�k�;� we obtain

���H�k� = 

�=1

4

��sk�;�ei�k�;� = ei�k�;1

�=1

4

��sk�;�ei�k�;1�, �4�

where the phase terms satisfy ��k;1=−�k�;1 and

�23;1 = �13;1 − �12;1, �5a�

�24;1 = �14;1 − �12;1, �5b�

�34;1 = �14;1 − �13;1. �5c�

If the system is initialized in one of the measurement basis
states ��k�0��= �k�, its time-evolved state ��k�t�� under the
action of H is given by

��k�t�� = 

�=1

4

e−i��t��������k� �6�

and since ��� ��	�=��	, its projection onto the measurement
basis state ��� at time t is

����k�t�� = 

�=1

4

e−i��t����������k� = 

�=1

4

sk�;�e−i���t−�k�;��.

�7�

Hence, the probability pk��t�= ��� ��k�t���2 of the outcome ���
for a projective measurement of ��k�t�� is

�

�=1

4

sk�;�e−i���t−�k�;����

	=1

4

sk�;	ei��	t−�k�;	��
= 


	=1

4

sk�;	
2 + 2 


�
	

sk�;	sk�;� cos��	�t − �k�;	�� ,

where �	�=��−�	, and using cos�a−b�=cos�a�cos�b�
+sin�a�sin�b�,

pk��t� = ck� + 2 

�
	

ak�;	� cos��	�t� + bk�;	� sin��	�t� ,

�8�

where the coefficients are

ak�;	� = sk�;�sk�;	 cos��k�;	�� , �9a�

bk�;	� = sk�;�sk�;� sin��k�;	�� , �9b�

ck� = 

�

sk�;�
2 . �9c�

Equations �9� show that the observed dynamics are com-
pletely determined by the transition frequencies �	�; the
phase differences �k�;	�; and the �real� coefficients ak�;	�,
bk�;	�, and ck�, from which we can reconstruct the Hamil-

tonian H̃ defined by
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FIG. 2. �Color online� Simulated measurements of system 1 with 210+1 data points per trace sampled at �t=0.1, signal length T
=102.4 �arbitrary units�, number of experiment repetitions per data point Ne=250. Each graph is the probability pk��t� at time t of detecting
the system in state ��� ��=1,2 ,3 ,4 left to right� if initialized in state �k� �k=1,2 ,3 ,4 top to bottom�.
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���H̃�k� = 

�=1

4

�̃�sk�;�ei�k�;1�, �10�

where �̃�=�1�− 1
4 ��12+�13+�14�, which is related to the ac-

tual Hamiltonian H by

H = D†H̃D + const I , �11�

where D=diag�1,ei�12 ,ei�13 ,ei�14�. The last term is simply a
global energy shift, which has no observable consequences
in general. The diagonal operator D represents the U�1� de-
gree of freedom for redefining each measurement basis state.
With only a single constant Hamiltonian, and preparation and
measurement in a single fixed basis only, we cannot com-
pletely determine the Hamiltonian.

III. PARAMETER ESTIMATION

The first task is to analyze the measurement traces �8� to
extract the t signal parameters �9�, and the frequencies �	,�.
For convenience we label the transition frequencies of the
system �m for m=1, . . . ,6, assuming �m+1
�m
0, and de-
fine the vectors �= ��1 , . . . ,�6�, ak�= �ak�;m�, and bk�

= �bk�;m� for k ,�=0,1 ,2 ,3. The first step toward identifying

the Hamiltonian H̃ is to extract the six transition frequencies
� and 13 linear coefficients ak�, bk�;m, and ck� for each of the
16 signals. Although there are 6+13�16=214 parameters,
the problem would be relatively simple if pk��t� was known
with infinite precision for a set of sample times tn. In prac-
tice, the accuracy with which the pk��tn� can be determined is
limited by noise. In our case the acuracy is fundamentally
limited by projection noise due to the finite number of mea-
surement repetitions Ne. This renders the problem one of
parameter estimation for a harmonic signal with multiple fre-
quencies and phases from noisy data. Problems of this type
are common in engineering from acoustics to image process-
ing, and many techniques have been developed, but our pa-
rameter estimation problem is nontrivial due to the large
number of parameters involved.

According to Eq. �9� the traces pk��t� should be linear
combinations of the 13 basis functions g2m−1�t�=cos��mt�,
g2m�t�=sin��mt� for m=1, . . . ,6, and g13�t�=1, i.e.,

pk��tn� = 

m=1

6

ak�,mg2m−1�t� + bk�,mg2m�t� + ck� �12�

and our objective is to find parameters �m, ak�;m, bk�;m, and
ck� that maximize the likelihood of the measured data. Set-
ting dk�= �dk�;1 , . . . ,dk�;N�, where dk�;n denotes the approxi-
mate value of pk��tn� derived from the measurement data;
one way to proceed is to try to fit the parameters to minimize
the squared L2 norm of the error



k,�


ek�
2
2 = 


k,�

pk� − dk�
2

2, �13�

where pk�= �pk�;1 , . . . , pk�,N� with pk�;n= pk��tn� and 
e
2
2

=
n=1
N en

2 as usual. However, for problems with a large num-
ber of noisy data points and a large number of parameters, as
in our case, finding a solution close to the �unknown� global

minimum of the error using brute-force optimization over all
system parameters at once is difficult at best. We tested this
strategy and in most cases achieved only poor results.

Instead of minimizing the global error, we can alterna-
tively try to maximize the related likelihood function

L�ak�,bk�,ck�,�,
� = �
k,�=1

4


k�
−N exp�−


pk� − dk�
2
2

2
k�
2 � .

�14�

Note that we have implicitly assumed here that the signals
pk��t� are independent and subjected to Gaussian white noise
with variance 
k�

2 , assumptions that are not strictly valid in
our case. Hermitian symmetry of the Hamiltonian requires
ak�=a�k and bk�=−b�k but we will enforce this symmetry
later by averaging the estimated coefficients

ak� � 1
2 �ak� + a�k� , �15a�

bk� � 1
2 �bk� − b�k� . �15b�

The Gaussian noise model is not strictly valid; if the mea-
surements are projection-noise limited, then a Poissonian er-
ror model would be more accurate, but we shall see that this
is nonetheless a good approximation.

The main advantage of the latter formulation is that we
can eliminate the explicit dependence on the linear coeffi-
cients ak�, bk�, ck� and the noise variances 
k� by integration
over suitable priors to obtain an explicit expression for the
probability of a particular model given the observed data dk�

that depend only on the six transition frequencies �, rather
than the 
200 parameters in the full model. Following the
standard Bayesian analysis, �26� we obtain

P���d� � �
k,�=1

4 �1 −
13�hk�

2 �
N�dk�

2 � ��13−N�/2

, �16�

where the averages are defined by

�dk�
2 � =

1

N


n=1

N

dk�;n
2 , �17a�

�hk�
2 � =

1

13 

m=1

13

hk�;m
2 . �17b�

The components hk�;m are essentially the orthogonal projec-
tions of the data onto a set of orthonormal basis vectors
Hm�tn�

hk�;m = 

n=1

N

Hm�tn�dk�;n. �18�

The orthonormal basis vectors are derived from the �nonor-
thogonal� basis functions gm�t� defined above, evaluated at
the respective sample times tn, via
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Hm�tn� =
1

��m



m�=1

13

em�mgm��tn� , �19�

where em�m is a 13�13 matrix whose columns em are the
normalized eigenvectors Gem=�mem of the 13�13 matrix
G= �Gm1m2

� with

Gm1m2
= 


n=1

N

gm1
�tn�gm2

�tn� . �20�

The objective is to find � that maximizes P�� �dk�� or,
equivalently, the logarithmic-likelihood function

log10 P���dk�� =
13 − N

2 

k,�=1

4

log10�1 −
13�hk�

2 �
N�dk�

2 � � . �21�

Note that N and �dk�� are constants, while hk� indirectly
depends on � via the basis functions gm�t�. It can be shown
that the corresponding optimal coefficients are

ak� = ��xk�;1�,�xk�;3�, . . . ,�xk�;11�� , �22a�

bk� = ��xk�;2�,�xk�;4�, . . . ,�xk�;12�� , �22b�

ck� = �xk�;13� , �22c�

where �xk�;m� is the shorthand notation for the expectation
values E�xk�;m �� ,dk�� of the linear coefficients of the basis
functions, given the optimal frequencies � and the data dk�.
Furthermore �26�,

�xk�;m� = 

m�=1

13 emm�hk�;m�

��m�

. �23�

We can similarly derive expressions for second moments

�xk�;m1
xk�;m2

� − �xk�;m1
��xk�;m2

� = 
k�
2 


m�=1

13 em1m�em2m�

�m�
,

�24�

where 
k�
2 is the noise variance of the �k ,��th signal, which

can be approximated by its estimated expectation

�
k�
2 � =

1

N − 15
�N�dk�� − 13�hk��� . �25�

Note that for m1=m2, Eq. �24� is simply the variance of the
parameter xk�;m, which gives an estimate of the uncertainty
�xk�;m of the coefficient xk�;m,

�xk�;m
2 � var�xk�;m� = �
k�

2 � 

m�=1

13 emm�
2

�m�
. �26�

Figure 3 shows that for a sufficiently large number of data
points N and experiment repetitions per data point, Ne, these
uncertainties can be made very small indeed. For N and/or
Ne small, the uncertainties are much larger, but simulations
for our specific problem suggest that the estimated values are
generally still very close to the actual values even for small

N and/or Ne, much closer than the uncertainty estimates
would suggest.

Although the logarithmic-likelihood function �21� de-
pends explicitly only on the six frequencies ��R6 rather
than the full 214 model parameters, finding its �global� maxi-
mum is not trivial as the logarithmic likelihood is sharply
peaked with many local extrema, and thus computationally
efficient gradient-based optimization algorithms are likely to
get trapped in local extrema if the starting point �0 is chosen
randomly. An alternative is to use global search algorithms
such as pattern search or genetic algorithms, but these are
computationally expensive and the results for our problem
proved inaccurate. To circumvent this problem, we adopt a
combination strategy.

We can first estimate the resonant frequencies by looking
for peaks in the power spectra

Ck���� = � 1

N


n=1

N

dk�;nei�tn�2

. �27�

Using spectral filtering combined with a basic peak finding
routine, we locate �up to� six peaks �m in the combined
power spectrum

C��� = 

k,�=1

4

Ck���� �28�

as illustrated in Fig. 4, which are then used as input ��0�

= ��1 , . . . ,�6� to an optimization routine based on the
Broyden-Fletcher-Goldfarb-Shanno �BFGS� quasi-Newton
method with cubic line search �27–30� to find the maximum
of the logarithmic likelihood �21�. Although the discrete Fou-
rier transform is not an optimal frequency estimator for a
signal with multiple frequencies, it proved generally effec-
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0 10 20 30 40 50 60 70 80 90

−0.2

−0.1

0

0.1

0.2

Index

a k
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FIG. 3. �Color online� Estimated and actual values of the coef-
ficients ak�;m with estimated error bars of system 1. When both N
and Ne are large �top� the error bars are nearly invisible, and the
estimated and the actual values are almost indistinguishable. When
N and Ne are both small �bottom�, the error bars are significantly
larger, mainly due to increased noise variances 
k�

2 ; yet the actual
and the estimated values for the coefficients are still almost indis-
tinguishable. This suggests that the estimated coefficients are in fact
much more accurate than the uncertainty estimates suggest.
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tive in providing good starting values for the logarithmic-
likelihood optimization routine, provided that the total sam-
pling time �signal length� T was sufficiently long to resolve
the resonant peaks.

Since the frequency resolution of the power spectrum is
limited by the signal length T, ��= �

T , if there are two or
more closely spaced transition frequencies then it may not be
possible to resolve six peaks in the power spectrum without
increasing the signal lengths significantly. But this is gener-
ally not necessary as we can improve the frequency reso-

lution as follows. Suppose there are five identifiable peaks,
�1–�5, in the power spectrum, as shown in the example in
Fig. 5. Then we proceed as before, using the five-peak fre-
quencies in the power spectrum as input ��0� for the optimi-
zation routine to find the most likely five-frequency model
����. To ascertain whether there is a more probable six-
frequency model, we choose an interval Im about each �m

���,
m=1, . . . ,5, and investigate the logarithmic-likelihood func-
tion �21� on the two-dimensional �2D� parameter space
Im� Im, keeping the other four frequencies fixed in each
case. For example, for m=1 in the example above we find
the maximum of log10 P�� �dk�� for �= ��1 ,�2 ,�2

��� ,�3
��� ,

�4
��� ,�5

���� with ��1 ,�2�� I1
2 and I1= ��1

�1�− 10
T ,�1

�1�+ 10
T �2 by

calculating log10 P on a coarse 2D grid, finding the maxi-
mum on the grid, and using the resulting � as a starting point
for the BFGS optimization routine as before. A contour plot
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FIG. 4. �Color online� Power spectrum C��� of system 1. Al-
though the power spectrum is noisy, the logarithmic plot of C��� of
the measured signals shown in Fig. 2 shows six well-defined peaks
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0 in addition to the peak at �=0. The inset shows the
filtered power spectrum C���
C0, from which the six peaks �m

can easily be identified using standard peak detection.
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FIG. 5. �Color online� The power spectrum of system 12. The
power spectrum C��� has only five peaks �m
0 in addition to the
peak at �=0. This could mean that the system has only five distinct
transition frequencies, or that the measured signals are not sufficient
to resolve two �closely spaced� transition frequencies.
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FIG. 7. �Color online� The transition frequency diagram for each
of the 100 test systems shows that the transition frequencies range
from 0.3 to 7, and there are six systems �12, 22, 34, 38, 73, and 78�
with two transition frequencies that differ by less than 0.01
�circled�, which are difficult to resolve, including one system �78�
with two such cases.
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showing the maxima in the logarithmic likelihood on I1
� I1 is shown in Fig. 6.

We repeat this procedure for each m in turn. The results,
summarized in Table I, show that the six-frequency model
��1� is most likely, more than the five-frequency model, and
the other five six-frequency models. Indeed, the frequencies
of the most likely six-frequency model are very close to the
actual transition frequencies of the system simulated. How-
ever, the relative flatness of the peak corresponding to the
global maximum of the logarithmic-likelihood function and
the relatively small differences between the likelihoods of
the most likely model and the less likely models suggest that
more data would be desirable to improve the resolution of
the parameter estimates, and our confidence that the model is
indeed the correct choice. If there are fewer than five peaks
in the power spectrum, the procedure described can be iter-
ated to sequentially resolve peaks in the power spectrum un-
til the most probable model has been found.

To test the effectiveness and the accuracy of this param-
eter estimation technique, we test the method for 100 ran-
domly generated Hamiltonians, sampled at �t=0.1 �arbitrary
units� for different signal lengths T= �N−1��t=0.1�2d� for
d=10,11,12,13,14 and different levels of projection noise,
with the number of measurements per data point, Ne
� �125,250,500,1000	. The test Hamiltonians have transi-
tion frequencies in the range of �0.3,7� and include cases
with very closely spaced transition frequencies, as shown in
Fig. 7. To assess the quality of the models found, we calcu-
late the transition frequencies �m and the corresponding pa-
rameters ak�, bk�, and ck� for each Hamiltonian and consider
the relative errors of the parameters identified from the noisy
data with the parameter estimation technique described.

Tables II and III show the means and the medians, respec-
tively, over 100 systems, of the maximum relative error �in
percent�

�max���0�� = 100 max
m�1,. . .,6

�1 −
�m

�0�

�m
� �29�

of the estimated transition frequencies for each system,
where �m are the exact transition frequencies. Comparison of
the errors for the initial frequency estimates obtained from
the power spectrum, labeled ��0�, and the optimal values
�opt obtained by maximizing the logarithmic likelihood
shows that the optimized frequencies are generally about two
orders of magnitude more accurate than the estimates ob-
tained from the power spectrum.

The linear coefficients ak�;m, bk�;m, and ck� are then esti-
mated from the maximization of Eq. �21� and from Eq. �22�.
Taking the median of the relative errors �again, in percent�

�med�ak�;m� = 100 median
k,�,m

�1 −
ak�;m

est

ak�;m
� , �30�

where k , � range from 1 to 4 and m=1, . . . ,6, as a general
measure of the quality of the fit, Table IV shows that the
average errors in the coefficients ak�;m, bk�;m, and to a lesser
extent ck�, are generally at least one order of magnitude
larger than the error in the frequency estimates. Overall, the
quality is still good, however, with the �average� errors rang-
ing from a fraction of a percent to less than 2.5% for ak�, and
much less for ck�, depending on the number of data points N
and the accuracy of the data points determined by the num-
ber of experiment repetitions per data point, Ne. Figure 8
shows the distribution of the errors for both the least and the

TABLE I. Logarithmic likelihood for different five- and six-frequency models and actual transition
frequencies for system 12 with five-peak power spectrum shown in Fig. 5.

�1 �2 �3 �4 �5 �6 log10 P

��0� 0.4293 0.8586 4.9983 5.4276 5.8569 924.4486

���� 0.4291 0.8558 5.0046 5.4282 5.8604 938.2960

��1� 0.4235 0.4323 0.8558 5.0046 5.4282 5.8604 943.3509

��2� 0.4291 0.7631 0.8558 5.0046 5.4282 5.8604 938.3099

��3� 0.4291 0.8558 5.0046 5.1023 5.4282 5.8604 938.2977

��4� 0.4291 0.8558 5.0046 5.4282 5.5063 5.8604 938.2993

��5� 0.4291 0.8558 5.0046 5.4282 5.8604 5.9287 938.2975

�act 0.4236 0.4322 0.8558 5.0046 5.4282 5.8604

TABLE II. The percentage relative errors ��max���0��� �left� and ��max��opt�� �right� show that the
logarithmic-likelihood optimization improves the accuracy of the frequency estimates by at least two orders
of magnitude compared to the estimates obtained from the power spectrum.

N \Ne 125 250 500 1000 125 250 500 1000

16385 0.093 0.094 0.094 0.094 0.0002 0.0002 0.0001 0.0001

8193 0.231 0.226 0.231 0.231 0.0006 0.0006 0.0004 0.0003

4097 0.432 0.432 0.432 0.432 0.0018 0.0019 0.0009 0.0009

2049 0.696 0.685 0.680 0.685 0.0065 0.0040 0.0030 0.0024

1025 1.646 1.650 1.646 1.650 0.0272 0.0184 0.0085 0.0108
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greatest numbers of experiments. Apart from a few outliers,
the distribution follows a roughly exponential form with
most estimates being within a fraction of a percent of the true
values, even for the least number of experimental samples.

Table II shows that increasing Ne and thus the accuracy of
the data points does not improve the accuracy of the initial
frequency estimates obtained from the power spectrum at all,
while doubling N tends to reduce the error by more than half.
This is what we expect as once Ne is large enough to permit
discrimination of the resonant peaks from the noise floor,
little is gained by increasing Ne. Doubling Ne does reduce the
error for the optimized frequencies obtained from our Baye-
sian analysis, although if the accuracy of frequency estimates

alone is considered, doubling the number of data points is
preferable to doubling Ne. Increasing the accuracy �by dou-
bling Ne� is more effective in reducing the errors in the co-
efficients a, b, c, but the contour plots in Fig. 9 show that the
errors decrease faster with N, i.e., increasing the number of
data points is generally still preferable.

IV. HAMILTONIAN RECONSTRUCTION

Once the frequencies � and amplitudes ak�, bk�, and ck�

have been extracted from the measured data using parameter
estimation, reconstructing the Hamiltonian �up to equiva-
lence� requires at least two further steps: identification of the

TABLE III. The medians of percentage relative errors �max��0� �left� and �max��opt� �right� show the
same accuracy improvements of the logarithmic-likelihood estimates. Median errors lower than the averages
indicate that the error distribution is peaked toward the origin.

N \Ne 125 250 500 1000 125 250 500 1000

16385 0.068 0.068 0.068 0.068 0.0001 0.0001 0.0001 0.0001

8193 0.167 0.164 0.167 0.167 0.0005 0.0003 0.0002 0.0002

4097 0.327 0.327 0.327 0.327 0.0011 0.0012 0.0006 0.0005

2049 0.5100 0.493 0.493 0.493 0.0035 0.0023 0.0019 0.0011

1025 1.164 1.142 1.164 1.142 0.0126 0.0089 0.0052 0.0036

TABLE IV. Relative errors �med�ak�;m�, �med�bk�;m�, and �med�ck�� �in %� and estimated error variances
�
2�, averaged over 100 test systems for different signal lengths T=0.1�N−1� and numbers of experiment
repetitions Ne per data point.

N \Ne 125 250 500 1000

��med�ak�;m�� 16385 0.3825 0.2671 0.1912 0.1454

8193 0.5538 0.3598 0.2857 0.1923

4097 0.7711 0.5516 0.4075 0.2786

2049 1.0630 0.7940 0.5755 0.3762

1025 1.5817 1.1210 0.7880 0.5573

��med�bk�;m�� 16385 0.2417 0.1739 0.1174 0.0846

8193 0.3333 0.2519 0.1755 0.1144

4097 0.4860 0.3470 0.2394 0.1733

2049 0.6715 0.5098 0.3436 0.2485

1025 1.0194 0.7197 0.4691 0.3523

��med�ck��� 16385 0.0734 0.0525 0.0378 0.0279

8193 0.1002 0.0751 0.0538 0.0372

4097 0.1463 0.1037 0.0770 0.0518

2049 0.2007 0.1483 0.1148 0.0751

1025 0.2817 0.2258 0.1555 0.1047

�
2� 16385 0.0012 0.0006 0.0003 0.0001

8193 0.0971 0.0959 0.0953 0.0950

4097 0.2896 0.2873 0.2861 0.2855

2049 0.6763 0.6717 0.6692 0.6681

1025 1.4580 1.4487 1.4437 1.4414
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resonant frequencies with transitions �	 ,�� between eigen-
states ��	� and ���� of the system and computation of the
parameters sk�;� and �k�;	� in Eq. �10� from the coefficients
ak�, bk�, and ck�. For a four-level system we have three pri-
mary transitions ��12,�23,�34	 between adjacent energy lev-
els and three other transitions ��13,�24,�14	, which must
satisfy

�13 = �12 + �23, �31a�

�24 = �23 + �34, �31b�

�14 = �12 + �23 + �34. �31c�

We identify the possible level structure �up to inversion�
by examining the relationships between the frequencies. In
the generic case, i.e., when there are six distinct transition
frequencies, 0��1��2� ¯ ��6, it follows immediately
from Eqs. �31� that �6=�14, and the primary transitions are

��1 ,�2 ,�6−�1−�2	. Closer inspection shows that there are
ten possible arrangements of the six transition frequencies as
shown in Fig. 10, and the exact transition frequencies �
must satisfy As�=0 for one of the following matrices:

A1 = �1 1 1 0 0 − 1

1 1 0 − 1 0 0

0 1 1 0 − 1 0
�, A2

= �1 1 1 0 0 − 1

1 0 1 − 1 0 0

0 1 1 0 − 1 0
� ,

A3 = �1 1 1 0 0 − 1

1 1 0 − 1 0 0

1 0 1 0 − 1 0
�, A4

= �1 1 0 1 0 − 1

1 1 − 1 0 0 0

1 0 0 1 − 1 0
� ,
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FIG. 8. �Color online� Histogram of the relative % error for the
test 100 systems for sampling numbers of �a� N=1025, Ne=125 and
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the origin showing the general distribution of errors, which is
roughly exponential. The numbers 66, 12, 78, 73, and 77 in �a� refer
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A5 = �1 1 0 1 0 − 1

1 1 − 1 0 0 0

0 1 0 1 − 1 0
� . �32�

Given the estimated frequencies �opt the most likely case is
that for which 
As�

opt
2
2 assumes its minimum, which should

be close to zero, and significantly smaller than the errors for
the other cases. A larger minimum error indicates and none
of the possibilities is likely, suggesting that the system may
not be a Hamiltonian four-level system. Similarly, if we have
two cases for which the error is close to the minimum, this
would be an indication that further data are required to re-
solve the ambiguity.

Once the observed frequencies �m have been matched
with actual transitions �	 ,��, we can associate the corre-
sponding coefficients ak�,m, bk�,m for m=1, . . . ,6 with their
respective transitions, i.e., we have ak�;�� and bk�;��, and de-
termine the phase differences

�k�;	� = arctan�bk�;	�,ak�;	�� , �33�

where arctan�b ,a� is the four-quadrant arctangent of b /a. If
the estimated parameters are good, then the resulting �k�;	�

should satisfy �kk;	��0 �mod 2��, �k�;	��−�k�;	�

�mod 2��, and

�k�;12 + �k�;13 − �k�;23 = 0 �mod 2�� , �34a�

�k�;13 + �k�;14 − �k�;34 = 0 �mod 2�� , �34b�

�k�;12 + �k�;14 − �k�;24 = 0 �mod 2�� . �34c�

Due to the enforced symmetrization �15� of the coefficients
ak� and bk�, the phase terms should satisfy �k�;	�=−��k;	�.
Minor violations of Eqs. �34� are to be expected, and can be
mitigated, and the accuracy of the final reconstructed Hamil-
tonian improved by minimizing the constraint violations

ek�
2

2=
s=1
3 ek�;s

2 , where

ek�;s = min��xk�;s�, �xk�;s − 2��, �xk�;s + 2��	 , �35�

with xk�=A�k� and

A = �1 1 0 − 1 0 0

1 0 0 0 1 − 1

0 0 1 1 0 − 1
� �36�

for k ,�=1, . . . ,4 in a further refinement step, starting with
the values for �k�;	� obtained from Eq. �33�. This refinement
tries to minimize the discrepancy between the estimated sig-
nal parameters and those expected from an underlying
Hamiltonian model. It must be stressed, however, that larger
violations of the constraints are indicative of significant er-
rors, which may even be exacerbated by such a refinement.
In fact, Fig. 11 shows that there is a strong correlation be-
tween the maximum constraint violations prior to refinement

E��k�;	�� = max
k,�


ek�
2
2 �37�

and the relative error of the final estimated Hamiltonian.
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FIG. 10. �Color online� Possible arrangements for a generic four-level system with six distinct transition frequencies. Not shown are the
other five configurations that correspond to a reflection of the energies, which merely flips the above level structures.
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Once the optimal values for �k�;	� have been found, we
calculate the products

sk�;	sk�;� = ak�;	� cos��k�;	�� + bk�;	� sin��k�;	�� . �38�

Labeling the right-hand side of the previous equation Mk�;	�

and defining the column vector sk� and the 4�4 matrix Mk�

sk� =�
sk�;1

sk�;2

sk�;3

sk�;4

�, Mk� = �Mk�;11 . . . Mk�;14

] � ]

Mk�;41 . . . Mk�;44
� ,

we can express Eqs. �9c� and �38� as follows:

sk�sk�
T = Mk�, sk�

T s� = ck� �39�

for k ,�=1, . . . ,4. To reconstruct the Hamiltonian �10�, we
must determine the coefficients sk�;� by solving Eqs. �39�.

Each Mk� is a real symmetric matrix whose off-diagonal
elements Mk�;	� �	��� are determined by Eq. �38�. The
diagonal elements Mk�;		 are unknown. However, we know
that Mk� should be a projector onto the one-dimensional
space spanned by sk�, and the second equation in Eqs. �39�
determines the norm of sk� as well as the vector of diagonal
elements �Mk�;		�	=0

	=3. Thus, to determine the diagonal ele-
ments of Mk� and the corresponding eigenvector sk�, we note
that a rank-1 projector � with matrix entries �gmn� must sat-
isfy the condition

dgmn � gmmgnn − gmn
2 = 0, ∀ m,n . �40�

Thus, given the off-diagonal elements of Mk�, we choose the
diagonal elements of Mk� such as to minimize the norm of
the error e=
m,ndgmn

2 and take sk� to be the eigenvector cor-
responding to the eigenvalue of Mk� closest to 1, normalized
to ensure 
sk�
2

2=ck�. It is important to carefully choose the
parameters for the optimization here to ensure that we find
the diagonal elements corresponding to the global minimum.
Ideally, the residual error e should be 10−10 or less.

We implemented and tested the algorithm for our 100
Hamiltonians. We were able to correctly identify the level
structures for all but one case: system 73, which has two
nearly identical transition frequencies with �2=1.8012 and
�3=1.8026, for N=1025 data points sampled at Ne=125,
250, and 500 experiment repetitions per data point. Even for
this system, we were able to correctly identify the level
structure by doubling the number of data points N, with the

exception of Ne=250 where at least N=4097 data points
were needed. Of course, in practice more data points would
be required for such a system to be confident that the iden-
tification is correct, as explained earlier.

To gauge the overall accuracy of the estimated Hamilto-
nians, we would like to compute the norm of the error

�H
= 
Hest−Hact
, or the relative error 
�H
 / 
Hact
, where
we choose the operator norm here. However, calculating the
norm of the error is complicated by the fact that we can only
reconstruct the Hamiltonian up to the diagonal matrix D and
the energy inversion symmetry. Thus, we must compensate
for the phases that are “unobservable” in our model by set-
ting


�H
 = 
D†HestD − Hact
 �41�

with D=diag�1,�12,�13,�14�, where

�1� = phase�H1�
act� − phase�H1�

est�, � = 2,3,4, �42�

and phase�H1l
act� is the complex phase of the �1, l� matrix

element of Hact, etc. Table V shows the results of the per-
centage relative errors 
�H
 / 
Hact
 for our 100 test systems,
for different values of N and Ne. Medians of the relative
errors range from 0.13% for N=16 385 and Ne=1000 to
1.81% for N=1025 and Ne=125.

V. CONTROL HAMILTONIAN TOMOGRAPHY

We have seen that our procedure can characterize a single
Hamiltonian up to a �physically irrelevant� global energy
shift and three relative phases �1n for n=2,3 ,4, due to the
freedom to redefine each of the measurement basis vectors
by a U�1� phase minus an overall phase. If we can only
measure the system in a fixed basis and prepare it in the
measurement basis states, and the evolution is determined by
a single fixed Hamiltonian, then we have determined all ob-
servable parameters. However, for the system to be control-
lable, we require at least two �noncommuting� Hamiltonians,
or more generally we must have the ability to modify the
Hamiltonian by changing control parameters f, e.g., by ap-
plying external fields or varying applied gate voltages, etc. In
this case we can still choose the phases �1n

�0� for one “refer-
ence” Hamiltonian H0=H�f0� as we wish, e.g., �1n

�0�=0 but the
phases �1n

�f� for all other Hamiltonians H�f� are now observ-
able and thus relevant, and the complete control Hamiltonian
reconstruction therefore requires that we identify them.

TABLE V. Relative error E�H�=100
Hest−H
 / 
H
 of reconstructed Hamiltonian �with phase corrections� in %. Each table entry consists
of three numbers: the median error �in %� and the number of systems �of 100� with relative error exceeding 1% and 5%, respectively.

N \Ne

125 250 500 1000

E�H� 1% 5% E�H� 1% 5% E�H� 1% 5% E�H� 1% 5%

16385 0.40 11 1 0.27 5 0 0.18 2 0 0.13 4 0

8193 0.57 22 0 0.41 8 0 0.31 8 1 0.19 4 0

4097 0.87 41 5 0.66 25 2 0.41 15 1 0.28 7 1

2049 1.12 60 7 0.91 45 6 0.58 19 4 0.44 12 2

1025 1.81 81 13 1.32 64 8 0.84 34 5 0.63 31 4
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To achieve this, note that if can initialize the system in the
superposition state ���=
 j=1

4 � j�j� and measure the time-
evolved state

���t�� = Uf�t���� = Df
†Ũf�t�Df��� �43�

with Uf�t�=exp�−itH�f��, Ũf�t�=exp�−itH̃�f��, then

p��t� = ����Df
†Ũf�t�Df����2 = ����Ũf�t�Df����2 �44�

shows that the phases �1n
f that determine Df

=diag�1,ei�12
f

,ei�13
f

,ei�14
f

� are now observable as Df no longer

commutes with the initial state ���. As Ũf�t� is fully deter-
mined by previous steps, if the initial state ��� is known,
then the only unknown parameters in Eq. �44� are �1n

B for n
=2,3 ,4. Given a set of measured values d�k for p��tk�, we
can determine the unknown parameters �1n

B by minimizing
the least-squares error

e = 

�=1

4


p� − d�
2
2, �45�

where p�= (p��t0� , . . . , p��tK�) and d�= �d�0 , . . . ,d�K� for �
=1,2 ,3 ,4. An explicit expression for p��t� derived in the
Appendix shows that we can in principle determine all the
phases if the initial state satisfies � j�0 for all j �31�. More-
over, it is advantageous to choose a balanced initial state,
�� j�2� 1

4 for all j, if possible, to maximize signal to noise
ratios.

To prepare such an initial state, we can use the reference
Hamiltonian H0. Unless the reference Hamiltonian is such
that one or more of the measurement basis states are com-
pletely decoupled from state �1�, it is almost certain that the
time-evolved state ��1�t��=U0�t��1�=
 j=1

4 � j�t��j� with U0�t�
=exp�−itH0� will satisfy � j�t��0 for all j for at least some
t
0. Thus, having characterized the Hamiltonians H=H�f�
for different control settings f up to the phases �1n

f , all we

need to do is to select a suitable reference Hamiltonian H0
=H�f0� and find a time t� such that the time-evolved state
��1�t��� satisfies �� j�t���� 1

2 . This is generally not difficult.
For instance, we randomly choose the Hamiltonian for test
system 5 as our reference Hamiltonian. Figure 12 shows that
there are several times t� �0,10� at which the populations
�� j�t��2 of all levels �in the measurement basis� are approxi-
mately equal. We pick one of these times t�=5.34, set ���
=U0�t0��1�, and obtain the measurement traces p��tk� as fol-
lows:

�1� Initialize system in measurement basis state �1�.
�2� Let it evolve under Hamiltonian H0 for time t�.
�3� Change control settings to f and let system evolve for

t time units under Hamiltonian Hf.
�4� Perform measurement⇒outcome �=1,2 ,3 ,4.
As before we repeat this experiment Ne times for a fixed t

to estimate p��tk� �number of times the outcome was � di-
vided by Ne�, and then repeat for different times tk to obtain
estimates for p��tk�.

We tested the phase estimation procedure for the esti-
mated Hamiltonians obtained in the previous step. For each
of the 100 systems we first generated �simulated� measure-
ment signals for p��tk� of varying length T= �N−1��t and
levels of projection noise Ne. The number of points ranged
from N−1=25 to 1000 data points, sampled at �t=0.1 fixed
as before; the measurement repetitions Ne are from 1000 to
5000. In the reconstruction of the phases, we only assume
that we know the estimated H0, hence the estimated ���0��,
and the estimated Hf, determined in Sec. IV. While the most
accurate estimates for the frequency and the linear coefficient
estimation step �step 1� were obtained for the longest signals
�N=16385�, we find that the accuracy of the phase estima-
tion step peaks at around N�50, and that longer signals are
in fact highly detrimental �Fig. 13�. This may seem very
surprising at first but can be at least partly explained by the
fact that even small inaccuracies in the initial estimates, es-
pecially for the frequencies, will accumulate over time and
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FIG. 12. �Color online� Evolution of populations �� j�t�� under
reference Hamiltonian �system 5� and error 
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is the global minimum for 0� t�10� at t=5.34 as initial evolution
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the most accurate estimates for H̃ from the previous step, i.e., N
=16 385 and Ne=1000, were used.
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increase the discrepancy between the projected evolutions of
the system based on our Hamiltonian estimates and the true
evolution.

Based on these results we settled for signals of length N
−1=50 with Ne=5000 measurement repetitions per data
point for the final phase estimation step. For each of the 2000

estimated Hamiltonians H̃ obtained in the first step—
corresponding to the 100 different test systems, as well
as four levels of projection noise Ne� �125,250,500,1000	
and five signal length T= �N−1��t for N−1
� �210,211,212,213,214	 with �t=0.1 fixed each—we esti-
mated the phases �1n and used the results to reconstruct the

total Hamiltonian H=D†H̃D. Table VI shows the results in
terms of the median of relative errors. For comparison, we
include in Table VI the results for the phase estimation using
N=200 signals. Comparison of the numbers clearly shows
that longer signals are detrimental for the phase estimation
step. In addition to a substantially decreased accuracy, longer
signals also slowed down the numerical optimization, mak-
ing it more difficult for the routine to find the global mini-
mum. In view of the complicated dependence of p��tk� �see
the Appendix� on the parameters �1n �n=2,3 ,4�, we initially
explored population-based �global� optimization strategies,
especially evolutionary algorithms, but found that it was sub-
stantially slower and far less effective in finding the global
minimum of error �45� than a gradient-based �BFGS-type�
local optimization algorithm. In fact, for short signals the
local optimization routine generally succeeded in finding the
global minimum in a single run, starting with a random guess
for �= ��12,�13,�14�, although the optimization was repeated
with several different initial guesses to increase the probabil-
ity that we had indeed found the �globally� best value for �.

VI. CONCLUDING DISCUSSION

We have presented a method for characterizing the Hamil-
tonian and its dependence on external control parameters,

which is a prerequisite for Hamiltonian engineering and co-
herent control of the system’s evolution, for a generic two-
qubit system, assuming only the ability of preparation and
measurement in a fixed basis. Analysis of simulated mea-
surement data shows that the task of estimating the param-
eters from the complex noisy measurement signals with mul-
tiple frequencies, and reconstructing the Hamiltonian is very
challenging, and requires a carefully designed multistep ap-
proach, combining spectral analysis, Bayesian analysis, and
several carefully designed optimization steps to reconstruct
the energy-level structure and matrix representation of the
Hamiltonian. In the absence of any control, the Hamiltonian
can only be reconstructed up to three phases due to the free-
dom to redefine the measurement basis by U�1� phase rota-
tions. This symmetry can be broken if the system can be
prepared initially in a suitable superposition state, and we
exploit this fact to achieve full control Hamiltonian tomog-
raphy in a simple two-step procedure.

The Bayesian analysis assumes a Gaussian noise profile
which, although not strictly accurate, works well especially
in the large Ne limit. Any significant deviations from Gauss-
ian noise �e.g., Poissonian statistics for small Ne for p
�0,1� will tend to make the logarithmic-likelihood esti-
mates worse, and thus our estimates of the confidence that
the model fits the data are conservative �26�. More accurate
error estimates could be obtained using Bayesian analysis
with a Poissonian noise model, although our results show
that even a Gaussian noise model results in a huge improve-
ment of two orders of magnitude or more in the accuracy of
the frequency estimates compared to estimates obtained from
simple spectral analysis. This turned out to be crucial for a
successful Hamiltonian reconstruction. The frequency esti-
mates obtained from the power spectrum combined with a
simple least-squares error minimization to find the optimal
spectral amplitudes proved to be too inaccurate for Hamil-
tonian reconstruction, leading to inconsistent equation sys-
tems and significant errors, and any attempt to obtain esti-
mates of the parameters by direct minimization of the least-

TABLE VI. Relative error E�H�=100
Hest−H
 / 
H
 of reconstructed Hamiltonian with estimated phases �1n in % �no phase corrections�.
As before, each table entry consists of three numbers: the median error �in %� and the number of systems �of 100� with relative error
exceeding 1% and 5%, respectively. The first row in each box are the estimates obtained for signals p��tk� of length N=50, while the second
row are the estimates obtained for signals of length N=200, in both cases sampled at Ne=5000.

N \Ne

125 250 500 1000

E�H� 1% 5% E�H� 1% 5% E�H� 1% 5% E�H� 1% 5%

16385 0.89 40 2 0.70 27 1 0.56 14 1 0.45 6 1

2.12 78 12 1.54 75 9 1.00 50 6 0.76 35 1

8193 1.09 54 5 0.84 35 0 0.69 28 1 0.53 17 1

2.60 89 24 2.21 86 14 1.66 77 10 1.08 52 5

4097 1.48 68 7 1.12 58 5 0.91 43 5 0.61 26 2

3.47 96 41 3.13 94 27 2.20 87 13 1.45 65 7

2049 2.24 88 15 1.45 74 7 1.12 55 7 0.78 37 4

6.06 98 67 3.91 93 37 2.85 89 25 2.25 78 16

1025 3.14 95 29 2.44 90 18 1.60 80 8 1.22 59 6

8.36 98 76 5.92 96 59 4.50 95 48 3.00 88 32
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squares error of the measurement signals and the expected
signals resulted in reconstructed Hamiltonians that were little
better than random for our test systems.

Although we have implicitly assumed a Hamiltonian
model, i.e., that incoherent effects will be negligible on the
time scales of interest, any significant deviation from the
assumed model, e.g., significant decoherence or coupling to
additional states outside the two-qubit subspace would result
in low likelihoods of the chosen �four-level� Hamiltonian
model. Such effects can easily be incorporated into the
analysis by changing the basis functions, e.g., using damped
exponentials instead of sinusoids or including additional
states, which we will consider in further work. Furthermore,
any prior information about the structure of the Hamiltonian
can be incorporated to make the Bayesian analysis more ef-
ficient. Thus, the method lends itself to adaptive protocols, as
we can adaptively sample the system until certain targets for
the likelihood or error estimates are met, ensuring that we
perform enough measurements to get accurate estimates but
no more than necessary �32�. This is especially important as
the number of measurements required will vary depending
on the system. For instance, for a system with well-spaced
transition frequencies, a sharply peaked likelihood function
with a clearly identifiable global maximum can be obtained
with much less data than for a system with two almost de-
generate transition frequencies.

For control Hamiltonian tomography, the small but non-
zero inaccuracies in the initial estimation step lead to an
optimum sampling time for the second step due to diver-
gence of the model from the true system behavior at longer
times. In principle, it should be possible to use this diver-
gence to improve the initial estimates of the Hamiltonians,
and exploring such refinements could be an interesting av-
enue for future research. Errors in the second step decreased
with an increased signal to noise ratio �increasing Ne�, as the
estimate of the phase parameters does not depend on the
signal length, unlike the frequency resolution. It would also
be interesting to investigate the accumulation of errors in this
multistep estimation, especially how uncertainties in prior
steps affect the accuracy of the Bayesian estimation in sub-
sequent stages. Finally, in this paper we have dealt with the
generic case. When the Hamiltonian has exact degeneracies,
then the measurement signals will contain fewer than six
frequencies. In this case, the level structure reconstruction
becomes harder as the number of special subcases increases
and we may not be able to uniquely identify the Hamiltonian.
Although the set of Hamiltonians with exact degeneracies is

of measure zero, further study of these special cases may be
of interest as one may want to specifically engineer Hamil-
tonians with such level structures.
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APPENDIX: MEASURED PROBABILITIES

If the system is initialized in the generic superposition
state ���=
 j=1

4 � j�j� and measured after evolving for t time

units under the Hamiltonian HB=D†H̃BD, then the general
expression for the probability p��t� of measurement outcome
� is

p��t� = ����

	=1

4

e−i�	t��	���	�D����2

= 

	,�=1

4
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������� = 

	,�=1

4



m,n=1

4

��m�

���n�s�m;	sn�;�e−i��	�t−��1m
B −�1n

B �−��m−�n�−��m;	−�n�;��

= 

	=1

4 �

m=1

4

��m�2s�m;	
2 + 


m
n

2��m�

���n�s�m;	sn�;	 cos���1m
B − �1n

B � + ��m − �n� + ���m;	

+ �n�;	��� + 

	
�

�

m=1

4

2��m�2s�m;	sm�;� cos��	�t
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