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A controlled full addition or subtraction can be realized by a unitary transformation on a register of four
qubits. The fourth qubit is then used as a control qubit to enforce the addition or the subtraction of two binary
digits and a carry or a borrow. The transformation can be decomposed into six elementary gates. The network
differs from the adder network of four elementary gates by including two new controlled-NOT gates. The
scheme is general and its implementation using vibrational computing has the advantage that the single global
transformation that connects the inputs to the outputs can be driven in one step by a single laser shot. This
decreases the time of operation and allows for a better use of the optical resources and for an improvement of
the fidelity. The laser pulses are optimized by optimal control theory.
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I. INTRODUCTION

The implementation of logical gates on a single molecule
for classical Boolean logic or quantum computing is re-
ceiving growing interest. Classical gates have been realized
using optical, electro-optical, redox, and chemical addressing
�1–13�. Classical logic functions have also been imple-
mented on the electronic quantum states of a single molecule
�14,15� or of a single dopant atom in a fin-type field-effect
transistor �FinFET� �16� by electrical addressing. The real-
ization of a quantum computer exploiting entangled states is
also a well-recognized topic with numerous theoretical stud-
ies �17–21� and potential experimental applications. Various
devices have already been proposed based on nuclear mag-
netic resonance �22,23�, optical network �24�, electrodynam-
ics cavity �25�, ion-traps �26�, atoms in cavity �27�, atoms
in atom chip �28�, and molecular eigenstates in different
electronic �29–36�, rotation vibration �37,38�, or vibrational
states belonging to a single potential-energy surface
�35,39–54�.

We focus here on elementary quantum arithmetic with
optical addressing. Recently a classical full adder or subtrac-
tor exploiting the molecular response to a given stimulated
Raman adiabatic passage �STIRAP� pulse sequence accord-
ing to its intuitive or counterintuitive order has been pro-
posed �3� and a possible experimental implementation of the
adder has been discussed �55�. Arithmetic operations can
also be executed by quantum gates, i.e., by unitary transfor-
mations among atomic or molecular states steered by de-
signed laser fields. It is worthy to note that arithmetic opera-
tions are less demanding than quantum algorithms because
the gates involve population inversions only and the reading
out never requires the knowledge of the quantum phases. The
arithmetic operations can therefore be studied and experi-
mentally implemented at two levels: classical or quantum. At
the more demanding quantum level, the quantum phase con-
straint must be taken into account in the optimization of the
pulse so that a phase control is enforced to each transition

required by the gate. This ensures that the pulse can imple-
ment the gate transformation on any superposition of the
computational basis states �42,51�. Phase control could open
the way toward the parallelization of additions or subtrac-
tions. In numerical computations, the constraint on the phase
is the most difficult to realize. If the phase constraint is not
satisfied then only population inversion is realized. When
this is the case, a classical and not a quantum gate is imple-
mented by the laser field. However, as an arithmetic network
�56� only involves population inversions and never uses su-
perposed states, in this sense the computation is quasi clas-
sical �57� and is weakly affected by dephasing. Implement-
ing operations classically has therefore the potential to be
more robust and on a short term, has to be potential to be
more easily experimentally demonstrated on a molecular sys-
tem.

In this work we show how to modify the quantum adder
�56� that we have recently designed using vibrational com-
puting �54� in order to get a controlled adder-subtractor. Ac-
cording to the value of a control qubit, the same gate field is
used to perform either the full addition of two binary digits,
A and B, and of a carry in, Cin, or the full subtraction A-B
with a borrow in Bin. The logical scheme is general. The
realization proposed here implements the gates by encoding
qubits in the states of the SCCl2 polyatomic molecule which
has been already used to simulate quantum computing with
excited vibrational states �36�. As in Ref. �36� the gate fields
steer population transfer among vibrational states of the
ground electronic state via transitions toward an intermediary
state of an electronic excited state. The spectrum thus lies in
the visible uv range.

The paper is organized as follows. In Sec. II, we give the
truth tables of the classical full adder and subtractor, and we
present the unitary transformation for a reversible controlled
adder-subtractor. We show how it could be factorized into a
network of elementary gates. The computational method �op-
timal control� and the model are summarized in Sec. III. The
results of simulations are given in Sec. IV. Concluding re-
marks and a discussion about the scalability and potential
implementation are given in Sec. V.*mdesoute@lcp.u-psud.fr
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II. CONTROLLED ADDER-SUBTRACTOR

The truth tables of the classical full adder or subtractor are
given in Table I. There are three inputs: the carry Cin or the
borrow Bin and the two binary digits A and B. For the sub-
traction A is the minuend and B is the subtrahend. The two
outputs are the sum S=A � B � Cin and the carry out Cout
=AB � Cin�A � B� or the difference D=A � B � Bin and the

borrow out Bout= ĀB � Cin�Ā � B� where Ā=1 � A. The clas-
sical logic operation is irreversible since some of the outputs
are identical for different inputs.

Therefore, four qubits �the three inputs Q1, Q2, Q3, and an
auxiliary qubit Q4� are necessary to build a reversible truth
table for the full adder �54� and the auxiliary qubit Q4 is then
initialized in the logical state 0. We propose to use this fourth
qubit as a control qubit. If it is initialized in logical state 0
the transformation will perform an addition while when it is
initialized to 1, a subtraction is carried out. Table II gives the
unitary transformation of a one-step-controlled adder-
subtractor. In input, the carry or the borrow are encoded in
the first qubit Q1=Cin or Q1=Bin. The two digits A and B are
encoded in Q2 and Q3. The auxiliary qubit is initialized by
Q4=0 or Q4=1. According to the value of this control qubit
the two output qubits are the sum out, Q3=S and the carry
out, Q4=Cout for the adder or the difference, Q3=D and the
borrow out, Q4=Bout for the subtractor. The two other qubits
ensure that all the output lines are different as it should be in
a reversible process. They contain Q1=Cin and Q2=A for the

adder and Q1= B̄in=1 � Bin and Q2=A for the subtractor.
Vibrational computing offers the possibility to realize this

transformation in one step by a single laser pulse without
breaking the logic operation into elementary gates �36,54�.
The two main advantages are �i� the processing time is no-
tably reduced so the effect of decoherence is decreased. �ii�
Fidelity increases since the final fidelity is approximately the
product of the fidelities of the elementary gates.

However, it is interesting to divide this unitary transfor-
mation into elementary gates, CNOT �controlled-NOT� and
TOFFOLI �controlled-controlled-NOT� gates in order to under-
stand its link with the adder network previously proposed
�56�. The gates necessary to carry out the addition with a
sequence of elementary gates are shown in Fig. 1. The qubits
are initialized by Q1=Cin, Q2=A, Q3=B, and Q4=0. The
final state of the four qubits is Q1=Cin, Q2=A, Q3=S, and
Q4=Cout. As already suggested in Ref. �56�, the subtraction

A-B with a borrow Bin could be realized by adequately en-
coding the inputs A and B and applying the four elementary
gates of the adder in the reversed order. Here we demonstrate
that it is possible to encode the two digits in the same qubits
for both cases and use the same sequence of pulses without
reversing the order. The fact that an addition or a subtraction
is performed is dictated by the value of the fourth qubit. We
propose to modify the adder network so that it can be in-

TABLE I. Truth table of the classical full adder or subtractor.

Cin or Bin A B S Cout D Bout

0 0 0 0 0 0 0

1 0 0 1 0 1 1

0 0 1 1 0 1 1

1 0 1 0 1 0 1

0 1 0 1 0 1 0

1 1 0 0 1 0 0

0 1 1 0 1 0 0

1 1 1 1 1 1 1

TABLE II. Truth table of the controlled full adder-subtractor.
The upper and lower lines refer to the adder or the subtractor, re-
spectively. The bold lines are the cases simulated in Sec. IV.

Q1 Q2 Q3 Q4

Cin A B 0
Bin A B 1

Q1 Q2 Q3 Q4

Cin A S Cout

B̄in A D Bout

1 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0

2 1 0 0 0 1 0 1 0

1 0 0 1 0 0 1 1

3 0 0 1 0 0 0 1 0

0 0 1 1 1 0 1 1

4 1 0 1 0 1 0 0 1

1 0 1 1 0 0 0 1

5 0 1 0 0 0 1 1 0

0 1 0 1 1 1 1 0

6 1 1 0 0 1 1 0 1

1 1 0 1 0 1 0 0

7 0 1 1 0 0 1 0 1

0 1 1 1 1 1 0 0

8 1 1 1 0 1 1 1 1

1 1 1 1 0 1 1 1
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FIG. 1. �Color online� Network for a factorized controlled
adder-subtractor. The state of the modified qubit after each gate is
written above the line for the adder and below the line for the
subtractor. The control qubit Q4 initially contains 0 for the adder
and 1 for the subtractor. The upper arrow indicates the original
adder sequence �in blue�, the two added CNOT gates are CNOTa and
CNOTb, the first two CNOT on the left �in red�.
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structed to perform either an addition or a subtraction de-
pending on the value of the fourth qubit. This is made pos-
sible by adding two new CNOT gates �noted in Fig. 1 CNOTa

and CNOTb� which have no effect when the fourth qubit Q4 is
in state 0 so that the network performs an addition. On the
other hand, when the fourth qubit is in state 1, the network
takes the relevant complements so that a subtraction is car-
ried out. When Q4=1, after the two additional CNOTa and
CNOTb gates, the original adder sequence �see Fig. 1� acts on

the four qubits containing: Q1= B̄in, Q2=A, Q3= B̄, Q4=1.
Figure 1 details the action of this extended network accord-
ing to the value of the control qubit. The results written
above or below the line refer to Q4=0 �addition� or Q4=1
�subtraction�, respectively. The qubit states after each el-
ementary gate of Fig. 1 are gathered in Table III. The one-
step transformation of Table II links the input column and the
last one.

III. MODEL AND COMPUTATIONAL DETAILS

According to the optimal control theory �OCT� �58–61�
and its generalization for the multitarget case �42�, the field
optimizes the constrained functional

J = �
n=1

Z ����i
n�tf�	� f

n
�2 − 2 Re��
0

tf

�� f
n�t�	�t +

i

�
Ĥ	�i

n�t�
dt�
− ��

0

tf

E2�t�dt , �1�

where � is a positive penalty factor chosen to weight the

importance of the laser fluence. The �i
n�t� are propagated

forward in time with initial conditions �i
n�t=0�=�i

n, n
=1, . . . ,Z. The Lagrange multipliers � f

n�t� are propagated
backward in time with final conditions � f

n�t= tf�=� f
n, n

=1, . . . ,Z. Without phase constraint Z=2N for a N-qubit gate.
The �i

n and � f
n are then the 2N initial and final states of the

gate transformation. When the phase constraint is taken into
account Z=2N+1. The supplementary transition is

	�i
Z=2N+1
 =

1
�2N�

k=1

2N

	�i
k
 → 	� f

Z=2N+1
 =
1

�2N��
j=1

2N

	� f
k
�ei�,

�2�

where the �i
n and � f

n correspond to the 2N gate transitions
and the single phase � can take any value between 0 and 2�
�42�. The gate field is a sum of Z contributions

Ej�t� = − �s�t�/���Im��
n=1

Z

�� f
n�t�	� j	�i

n�t�
 , �3�

where j denotes the polarization direction of the electric
field. A switching function s�t�=sin2��t / tf� is introduced to
provide a smooth on and off of the field �41�. At each itera-
tion, the field is given by Ej

�k�=Ej
�k−1�+�Ej

�k�, where �Ej
�k� is

calculated by Eq. �3�. The fidelity of the gate F is given by
the average performance index of each transformation

TABLE III. States of the four qubits after the gates of the controlled adder-subtractor �see Fig. 1�. The
second column gives the assignment of the qubit states in vibrational states of SCCl2 �see Sec. IV�. The state
numbers are those given in Table 1 of Ref. �36�. The bold lines are the cases simulated in Sec. IV.

SCCl2 state numbers CNOTa CNOTb TOF1 CNOT1 TOF2 CNOT2

Cin A B 0 Cin A S Cout

1 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0

3 12 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

4 4 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 0 1

5 2 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0

6 3 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 1

7 5 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1

8 8 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1

Bin A B 1 B̄in A D Bout

9 9 0 0 0 1 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0 1 0 0 0

10 13 1 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

11 15 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1

12 19 1 0 1 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

13 14 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0 1 1 1 0

14 18 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0

15 20 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 0

16 23 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1
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1
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n�tf�	� f

n
�2. �4�

After optimization, we apply a spectral filtering after Fourier
transforming the field. The filter is composed of a bandpass
including the spectral domain of the model with a smooth
cutoff fixed by a sine-squared function. The pulse is opti-
mized again after filtering and the process is iterated until
high fidelity is reached and the spectrum becomes satisfac-
tory. This scheme gives a good convergence even if it does
not preserve the monotonic convergence. Monotonic behav-
ior could be achieved by a new filtering algorithm recently
suggested �62�.

As a proof of principle of the controlled adder-subtractor,
we choose a model proposed by Weidinger and Gruebele
�36� to simulate quantum computing. The computational ba-
sis set is an ensemble of vibrational states of the ground
electronic state of the molecule SCCl2. The idea is to use a
gateway state well separated from other vibrational levels

�	100 cm−1� in the excited B̃ state. This state is populated
by a high-resolution laser �35125 cm−1� and then shaped
pulses �for example � pulses� can initialize the vibrational
states of the ground electronic state for computing. The field
forces the vibrational population inversion through transi-
tions via the excited state so the spectrum is in the visible uv
range. We use the states and transition moments given in
Table 1 of Ref. �36� and computed from Ref. �63�. The as-
signments of the 24 qubit states are given in Table III. The
qubit states have been assigned by choosing small transition
dipole moments for the states 	0000
 and 	0010
 which do
not change during the process �see Table III�. All the 29
states given in Ref. �36� are included in the simulation. The
computational basis set is small but allows a first check of
feasibility with realistic molecular data. In addition, this
model presents the following advantages. It is built from
eigenstates of the tetra-atomic molecule computed in full di-
mensionality. This avoids decoherence effects due to linkage
with inactive vibrational modes when the computational ba-
sis set involves some normal modes only. The radiative life-
times, 
, from the excited gateway state to the vibrational
states of the ground electronic state are longer than 10−7 s so
much longer than the duration of the pulse. The radiative
lifetimes have been estimated by the inverse of the Einstein
Aij coefficient,

Aij = �Ej − Ei

�c
�3 	��i	�	� j
	2

3��0�
,

where Ei and Ej are the energies of the molecular system.

IV. SIMULATION OF COMPUTATION

We first show the results for a one-step implementation of
the addition-subtraction in Fig. 2. The transformation con-
nects the two columns of Table II and all the transitions are
steered by a single laser pulse sometimes called the universal
gate pulse. Table IV gives the objective yields 	��i

n�tf� 	� f
n
	2

obtained by the single pulse for each pair of input and out-
put.

Figure 2�a� displays the example �Cin=0 ,A=1,B=1,Q4
=0�→ �Cin=0 ,A=1,S=0,Cout=1� �see upper bold line
in Table II� and Fig. 2�b� shows the corresponding

subtraction �Bin=0 ,A=1,B=1,Q4=0�→ �B̄in=1 ,A=1,D
=0,Bout=1� �see lower bold line in Table II�. The gate field
simultaneously optimizes the 2N+1 �N=4� transformations
of Table II with a phase constraint �Eq. �2��. The transforma-
tion is implemented in 24 ps, which is about three times
faster than the approach shown in Fig. 5 below where the
transformation is implemented by a sequence of pulses, each
pulse corresponding to an elementary gate. The average fi-
delity is 99.6% �see Table IV� and is also significantly better
than for an implementation by a sequence of pulses.
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FIG. 2. �Color online� Direct controlled adder-subtractor imple-
mented in the SCCl2 molecule by OCT with phase constraint. The
control qubit is the fourth one. �a� An example of addition �Cin

=0 ,A=1,B=1,0�→ �Cin=0 ,A=1, the sum is 0 ,Cout=1� �upper
bold line in Table II�. �b� Corresponding subtraction �Bin=0 ,A

=1,B=1,1�→ �B̄in=1 ,A=1, the difference is 0 ,Bout=1� �lower
bold line in Table II�.

TABLE IV. Objective yields for each pair of input and output of
the global adder-subtractor implemented in the SCCl2 molecule by
OCT with phase constraint. In bold: the example given in Fig. 2.

Input for addition Input for subtraction

0000 99.1 0001 99.8

1000 99.8 1001 99.8

0010 99.2 0011 99.8

1010 99.8 1011 99.8

0100 99.7 0101 99.8

1100 99.9 1101 99.8

0110 99.6 0111 99.9

1110 99.9 1111 99.8

Superposition for phase constraint 97.4
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The trial field for the optimal control contains fourteen
frequencies corresponding to transitions involved in the pro-
cess. The optimization required about 700 iterations. The
spectrum of the first optimal field is shown in Fig. 3�a�. It
contains three bands. The left and right ones are obviously
irrelevant. The central band still contains frequencies which
do not belong to the spectral range of the model so we apply
the filter shown in Fig. 3�a�. The fidelity decreases from
99.8% to 69% but the next optimization converges easily in
60 iterations. The spectrum obtained after five cycles of fil-
tering and optimization is shown in Fig. 3�b�. This method
does not preserve the monotonic convergence but however a
good convergence is achieved. The corresponding field is
given in Fig. 4. It leads to a very good fidelity of 99.6%. The
final field intensity has a maximum of about 5.6
�1010 W cm−2 which remains well below the ionization
limit estimated to 1014 W cm−2. It is worth noting that the
filtering enables to reduce the field intensity by two orders of
magnitude in this example.

Figure 5 illustrates the controlled addition-subtraction car-
ried out by a sequence of elementary pulses for the same
example as in Fig. 2. The six fields have been optimized
without phase constraint and without filtering to reduce the

computational time. The previous example has shown that
these two improvements could be brought in if necessary. We
want to check the feasibility of the concatenation without
phase constraint when the fidelity is very high �99%� for
each step of an arithmetic network. The trial field contains
eight frequencies for each CNOT gate and four frequencies for
the TOFFOLI gates. Figure 5�a� shows the population evolu-
tion for the addition �Cin=0 ,A=1,B=1,Q4=0�→ �Cin=0 ,A
=1,S=0,Cout=1� �bold line 7 in Table III� and Fig. 5�b�
displays the corresponding subtraction �Bin=0 ,A=1,B
=1,Q4=0�→ �B̄in=1 ,A=1,D=0,Bout=1� �bold line 15 of
Table III�. The first gate operates on a given state of the
computational basis set. After its operation, if the fidelity is
not rigorously 100%, the final state is in principle a superpo-
sition of the basis set states; but when the fidelity is very
high �99%�, this final state is almost a single basis set state
again with an arbitrary phase. One observes that this phase
has very little effect on the fidelity of next gate which is
again a population inversion. Therefore, when several gates
are concatenated the effect of the phase control is expected
be negligible for arithmetic operations if the fidelity is high
enough for each step. It is the case for the example of Fig. 5.
Obviously this approximation should not be relevant for
PHASE or Hadamard gates or for new arithmetic algorithms
involving an initial superposition.

The fidelities of each elementary step are gathered in
Table V. The average fidelity of the factorized adder-
subtractor is now lower �98,8%� and the total time longer �72
ps� than for the one step implementation discussed above. If
in addition the simulations are carried out in conditions simi-
lar to the one step implementation in order to ensure the
phase constraint and a lower field intensity, the elementary
pulses will have an even longer duration.
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FIG. 3. �Color online� �a� Primary ordinate axis: spectrum �in
arbitrary units� of the unfiltered optimal field driving the direct con-
trolled adder-subtractor implemented in the SCCl2 by OCT with
phase constraint. Inset with secondary axis: the filtering function in
yellow dashed line. �b� Spectrum of the optimal field after filtering.
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FIG. 4. �Color online� Optimal field of the direct controlled
adder-subtractor implemented in the SCCl2 molecule by OCT with
phase constraint.
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FIG. 5. �Color online� Controlled factorized adder-subtractor
implemented in the SCCl2 molecule by OCT without phase
constraint. �a� Addition �Cin=0 ,A=1,B=1,0�→ �Cin=0 ,A=1,S
=0,Cout=1� �line 7 of Table III�; �b� subtraction �Bin=0 ,A=1,B

=1,1�→ �B̄in=0 ,A=1,D=0,Bout=0� �line 15 of Table III�.
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V. CONCLUSION

We propose a general logic scheme for an implementation
of a controlled full quantum adder or subtractor with a reg-
ister of four qubits. The value of the control qubit dictates
whether an addition A � B or the subtraction A-B of two
binary digits with a carry in or a borrow in is to be per-
formed. We show that this unitary transformation can be split
in a network of elementary gates. The controlled adder-
subtractor is implemented using vibrational qubits which of-
fers the possibility to execute the transformation in one step
by a single laser shot. This improves the computational time,
reduces the optical resources and increases the fidelity. The
feasibility of the process is demonstrated by optimizing the
fields by optimal control theory on a realistic molecular sys-
tem. Exact vibrational states in full dimensionality are used
to reduce decoherence due to coupling with inactive modes.
The adder-subtractor can be implemented at a classical level
which requires populations reading out only. Then the phase
constraint in the pulse optimization is not necessary even for
the concatenation of the elementary CNOT and TOFFOLI gates
when the fidelity is well above 99% for each gate. The phase
constraint will however be required for further quantum new
algorithms involving superposed states. The phase constraint
has therefore been added in some simulations. We note that
the pulse filtering allows reducing the intensity of the field
needed to realize the addition-subtraction in one step. The
optimal fields could further be improved by better filtering
�62� or by fitting on sequences of experimentally realizable
pulses by adiabatic passage method �37�, by genetic algo-
rithm in frequency domain �36,64,65� or ant-colony-
optimization algorithm �66�.

After illustrating the feasibility of the controlled adder-
subtractor on four qubits encoded in a single molecule, the
main point will be the concatenation of such processes. With-
out intermediary reading out, the qubit in which is encoded
the carry out or the borrow out must belong to two succes-
sive groups of qubits or it must be copied in a qubit of the
next group. This obviously raises the problem of scalability
and of a relevant physical realization. It is not realistic to
increase the number of qubits individually addressable on a
single molecule, at least by using the vibrational modes of a
single potential energy well, because the number of states, N,
needed to build a complex gate increases exponentially as
2N. The most promising architecture to permit scalable quan-

tum computation is arrays of entities �atoms, ions, or mol-
ecules� which can be individually addressed and controlled
independently from the states of the other entities but how-
ever allow coupling among qubits encoded in neighboring
sites. Thus, we have to deal with a subtle intermolecular
coupling not to strong to consider individual states as slightly
perturbed but sufficiently large to allow an intermolecular
gate or to transfer information between entities in a reason-
able amount of time. The best situation probably occurs
when the intermolecular coupling can be switched on and off
�67,68�. In the overall process, this intermolecular step is
certainly the bottleneck because it involves a weak-coupling
or long-lived rovibrational states. Therefore, it seems crucial
to split the overall process in several intramolecular and in-
termolecular gates. The intramolecular molecular ones will
perform as many operations as possible �with a large number
of qubits�, while the intermolecular gates will be associated
with one or two qubits. Trapped ultracold diatomic mol-
ecules ���K� present very appealing properties for quantum
information processing �69�. They have long-lived rovibra-
tional states and different strategies have already been
proposed for intramolecular gates �37,38,64� and for
intermolecular gates by using dipole-dipole interactions
�67,68,70–72�. Polyatomic molecules have a richer internal
structure allowing global gates acting on several qubits as
illustrated in this work and one can expect the formation of
trapped ultracold molecule ���K� in a near future. Trapped
ultracold triatomic ions have already been produced �73�. For
neutral molecule, the state of the art is cooling by different
experimental techniques ��mK� but not yet trapping �74�.
For instance ND3 has been cold by a Stark decelerator �75�.
On the other hand, one may expect that it will be possible to
deposit arrays of molecules on surfaces since assembling
molecules to get functionalized surfaces is a subject of grow-
ing attention. The intermolecular distance should be shorter
than for diatomic molecules trapped in an electromagnetic
cavity and allow intermolecular transformations by optimal
control �70�. The communication between neighboring
trapped sites in cavities is expected to be the longer step
which could reach the �s. Another possibility could be the
cycling of the process on a single entity deposited on a sur-
face if one could find a reading out process operating in a
shorter time scale. However, the concatenation without inter-
mediary reading remains more attractive.
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TABLE V. Fidelities of the elementary gates of the controlled
adder-subtractor �Eq. �4��.

CNOTa 99.8

CNOTb 99.7

TOFFOLI1 99.8

CNOT1 99.8

TOFFOLI2 99.9

CNOT2 99.8
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