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We present a general criterion which allows one to judge if an arbitrary multiparticle entanglement channel
can be used to teleport faithfully an unknown quantum state of a given dimension. We also present a general
multiparticle teleportation protocol which is applicable for all channel states satisfying this criterion.

DOI: 10.1103/PhysRevA.80.022327 PACS number�s�: 03.67.Ac, 03.67.Hk, 03.67.Mn

I. INTRODUCTION

Quantum teleportation is arguably the most novel appli-
cation of quantum mechanics in quantum information sci-
ence. This protocol provides a means of recreating an arbi-
trary unknown quantum state at a remote site without the
need of transferring any particles or a large amount of clas-
sical information. The magic of teleportation is made pos-
sible by prior quantum entanglement between the sender �Al-
ice� and the receiver �Bob�. It is well known that, in the
original protocol proposed by Bennett et al. �1�, if Alice and
Bob share a two-qubit entangled state �Bell or Einstein-
Podolsky-Rosen state�, then Alice can teleport any one-qubit
state to Bob. This protocol is linear; that means if Alice and
Bob share N Bell states, then Alice will be able to teleport an
arbitrary N-qubit state to Bob. In recent years, quantum tele-
portation has been experimentally realized in several differ-
ent quantum systems �2–6�.

To facilitate the ensuing discussions, we first demonstrate
the teleportation of an arbitrary N-qubit state below. The four
Bell states are given by

��1�ab =
1
�2

��01�ab − �10�ab� , �1�

��2�ab =
1
�2

��01�ab + �10�ab� , �2�

��3�ab =
1
�2

��00�ab − �11�ab� , �3�

��4�ab =
1
�2

��00�ab + �11�� . �4�

Suppose Alice shares a Bell state ��1�ab with Bob �Alice
holds qubit a and Bob holds qubit b�, and in addition she
owns an arbitrary N-qubit pure state ���12. . .N to be teleported
to Bob. Note that actually ���12. . .N is not restricted to pure
states. However, if it is a mixed state, then one can always

purify it by introducing ancilla qubits �7�. Since the ancillas
do not participate in the teleportation process, we will ignore
their possible existence in the following discussions.

The product of ���12. . .N and ��1�ab can be rewritten as

���12. . .N��1�ab = −
1

2
�	

i=1

4

��i�1aUb
i
���b2. . .N, �5�

where �Ui�= �I ,�z ,−�x , i�y�, and I is the 2�2unit matrix.
Therefore if Alice makes a Bell state measurement on the
qubit pair �1,a� and sends a two-bit classical message to
inform Bob of the outcome �i�, then Bob can reconstruct the
original N-qubit state by applying a local unitary operation
Ub

i on his qubit. The only difference is that Alice’s qubit 1
has been renamed b and is now in Bob’s possession. It is
easy to see that, with more Bell states, this process can be
repeated on the other qubits in ���12. . .N. Therefore if Alice
shares N pairs of Bell states with Bob, then she will be able
to teleport perfectly the entire state ���12. . .N to Bob.

However in practice the channel state shared by Alice and
Bob may not always be a tensor product of N Bell states.
Then one must consider each case individually to decide if it
is useful for teleportation and if so how to proceed; there
exists no general rule. Some special cases have been studied
in the literature �8–14� and most of them are concerned with
four-qubit channels. For example, Yeo and Chua �8� intro-
duced a so-called “genuinely four-qubit entangled state”
which is not reducible to a pair of Bell states and showed
that it could be used to teleport an arbitrary two-qubit state.
Chen et al. �9� generalized the results of �8� to N-qubit tele-
portation. Rigolin �11� constructed 16 four-qubit entangled
states which are useful for two-qubit teleportation. Agrawal
and Pati considered teleportation using asymmetric W states.
Muralidharan and Panigrahi �13� employed a “genuinely en-
tangled” channel of five qubits to teleport two qubits. A cri-
terion has been proposed by Zha and Song �14� in terms of
the unitarity property of a “transformation matrix,” which
tells if a four-qubit entanglement channel supports two-qubit
teleportation. However no general results exist in the litera-
ture when the quantum channel in question is an arbitrary
multiparticle entangled state. In this paper we consider the
most general situation where the channel state shared by Al-
ice and Bob is arbitrary. In the following, we derive a crite-
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rion which allows one to judge if a given channel state is
useful for teleportation, and if so, to find the maximum num-
ber of qubits it can faithfully teleport.

II. CRITERION

Let Alice and Bob share an arbitrary bipartite state
�X�A1. . .AmB1. . .Bn

of �m+n� qubits, of which m qubits belong to
Alice and n to Bob. We shall first assume m�n; the m�n
case can later be included in a straightforward manner. As
mentioned before, entanglement is the key ingredient which
makes quantum teleportation possible. For an arbitrary bipar-
tite state �X�A1. . .AmB1. . .Bn

�or �X�AB for short�, the degree of
entanglement between Alice’s and Bob’s subsystems can be
quantified by the von Neumann entropy of either of two
subsystems �15,16�, which is given by

EAB = − Tr��A log2 �A� = − Tr��B log2 �B� , �6�

where �A and �B are the reduced density matrices of the
subsystems,

�A = TrB��X�ABX�AB� , �7�

�B = TrA��X�ABX�AB� . �8�

Since we assume m�n, therefore,

EAB � n . �9�

Consider first the case

EAB = n �10�

so that the entanglement between the two subsystems is
maximal. Then we must have

�B = IB/2n, �11�

where IB is the 2n�2n identity matrix in Bob’s Hilbert space
HB. Now consider another situation in which Alice and Bob
share n pairs of Bell states, and in addition Alice owns an
arbitrary pure state �O� of �m−n� qubits. The combined �m
+n�-qubit state is

�	�AB = ��
i=1

n

��1�AiBi
�O�An+1. . .Am
, �12�

where ��1�AiBi
is the singlet Bell state defined in Eq. �1�.

Although the properties of �O�An+1. . .Am
are irrelevant, for

definiteness and without loss of generality, we may take

�O�An+1. . .Am
= �

j=n+1

m

�0�Aj
. �13�

The reduced density matrix on Bob’s side is given by

�̄B = TrA��	�AB	�AB� = IB/2n, �14�

which is the same as �B given in Eq. �11�. Hence, by a
theorem of Hughston et al. �17�, these two pure states are
related by a unitary transformation on Alice’s side. In other
words, Alice can transform �X�AB into �	�AB by applying a
local unitary operation UA on her qubits:

�	�AB = UA�X�AB, �15�

where UA is explicitly constructed in the Appendix. It is im-
portant to note that Alice can carry out this transformation by
herself and there is no need for Bob to do anything. How-
ever, if m�n, then maximal entanglement means EAB=m
and Bob must carry out the corresponding n-qubit transfor-
mation UB. And if m=n, either party can do it.

Equation �15� essentially establishes that, for any arbitrary
bipartite state �X�A1. . .AmB1. . .Bn

, if the von Neumann entropy of
either of the subsystems is n��m�, then it can be used to
teleport faithfully an arbitrary n-qubit state. Conversely, by
applying arbitrary unitary operators UA to the state �	�AB
given in Eq. �12�, one can generate any number of states
which can support n-qubit teleportation. Indeed, all of the
special channels proposed in the literature can be obtained
this way �8–14�.

Next we consider the nonmaximally entangled case

EAB � n . �16�

In this case, perfect teleportation of an arbitrary n-qubit state
is obviously impossible. Nevertheless it may still be used to
teleport a state of d��n� qubits. Let

�X��AB = UB�X�AB, �17�

where is UB is a unitary operator in HB which maximizes the
value of d��EAB� in the following expression:

�B� = TrA�X��ABX��AB = 
B�
1

2d�
i=1

d

IBi
, �18�

where IBi
is the 2�2 identity operator for qubit Bi and 
B� is

the density matrix of the qubits in B�= �Bd+1 , . . . ,Bn�. It is
easy to see that d is the number of qubits in HB which are
maximally entangled with those in HA; it may be called the
“maximally entangled number.” Explicit construction of UB
is given in the Appendix.

Let

���AB = ��
i=1

d

��1�AiBi
���A�B�, �19�

where ��1� is the singlet Bell state, A�= �Ad+1 , . . . ,Am�, and
���A�B� is any bipartite state satisfying

TrA����A�B���A�B� = 
B�. �20�

It follows that

TrA�X��ABX��AB = TrA���AB��AB �21�

by construction. Then, as before, Alice can transform �X��AB
into ���AB �17�,

���AB = UA�X��AB, �22�

where the operator UA is explicitly constructed in the Appen-
dix. Therefore finally we have

���AB = UAUB�X�AB, �23�

and Alice can employ the d shared Bell states in ���AB to
teleport an arbitrary d-qubit state to Bob. Note that as long as
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EAB�n, we may have d=0; if so, then not even a singlet
qubit can be teleported perfectly.

In the maximally entangled case �EAB=n�, we have UB
= I, and d=n in Eq. �18�. So the general condition for faithful
teleportation can be stated as follows. If there exists a unitary
operator UB such that d�0 in Eq. �18�, then �X�AB can be
used to teleport faithfully an arbitrary state containing d qu-
bits. This condition is clearly also necessary. The following
general protocol works for any arbitrary channel state �X�AB
satisfying Eq. �18�: �1� Bob calculates UB which determines
the maximum number �d� of qubits that can be teleported
and Alice calculates UA. �2� Alice and Bob apply UA and UB,
respectively, to the qubits in their control. �3� Then Alice can
use the resulting d shared Bell states to teleport an arbitrary
d-qubit state to Bob as usual �1�.

Note that, if EAB=n, then Alice is required to perform one
m-qubit operation and n Bell state measurements and Bob is
required to make n single qubit operations at most. On the
other hand, if EAB�n, then Bob may be required to perform
a n-qubit operation UB as well. The generalization to m�n
should be straightforward by now. In other protocols pro-
posed for multiqubit teleportation, more complex operations
are involved. For example, in �8,9,11–13�, Alice is required
to perform a joint operation involving �m+n� qubits.

Using similar arguments, one can show that teleportation
could also be performed without making Bell state measure-
ments. For simplicity, we will show how it works for tele-
porting a one-qubit state ���1. The original procedure corre-
sponds to Eq. �5� with N=1. Let us replace the four Bell
states ���1� , ��2� , ��3� , ��4�� by the four orthogonal product
states ��i��= ��11� , �10� , �01� , �00��, respectively. The result is

���1ab = −
1

2
�	

i=1

4

�i�1aUb
i
���b. �24�

The reduced density matrix on Bob’s side is

Tr1a����1ab��1ab� = Ib/2, �25�

which is the same as that of the joint initial state ���1��1�ab.
Therefore, again by the theorem of Hughston et al. �17�,
���1ab is related to ���1��1�ab by a unitary transformation U1a
on Alice’s side,

���1ab = U1a����1��1�ab� . �26�

It can be shown that �apart from an unimportant phase�

U1a = HaC1
a, �27�

where Ha is the Hadamard operator and C1
a is the controlled-

not operator with qubit 1 as the target. Hence the Bell mea-
surement in the original protocol �1� can be replaced by the
unitary operation U1a plus two single-qubit measurements. It
turns out that this is equivalent to the mysterious looking
quantum computing circuit devised by Brassard et al. �18�.

Finally, as a simple demonstration, let us take the channel
state to be the N-qubit Greenberger-Horne-Zeilinger �GHZ�
state

�GHZ�1. . .N =
1
�2

��0 . . . 0�1. . .N + �1 . . . 1�1. . .N� . �28�

No matter how the qubits are partitioned between Alice and
Bob �provided that each party gets at least one qubit�, the
entropy of entanglement EAB=1, so it can be used to teleport
a one-qubit state at most. If Alice holds qubits �1, . . . ,N
−1� and Bob holds the last qubit N, then the entanglement
between the two subsystems is maximal. It follows from Eq.
�15� that there exists a unitary operator UA such that

UA�GHZ�1. . .N = ��4�1N�
i=2

N−1

�0�i. �29�

It is easy to show that UA is just a series of controlled-not
operators Ci

1:

UA = �
i=2

N−1

Ci
1. �30�

In this special case, Alice alone can transform �GHZ�1. . .N
into the desired form given in Eq. �12�. In general, if Alice
holds qubits �1, . . . ,m� and Bob holds qubits �m+1, . . . ,N�,
the two subsystems are not maximally entangled. Then ac-
cording to Eq. �23�, both UA and UB are required, i.e.,

UAUB�GHZ�1. . .N = ��4�1N�
i=2

N−1

�0�i, �31�

where

UA = �
i=2

m

Ci
1, �32�

UB = �
i=m+1

N−1

Ci
N. �33�

In both cases, Alice and Bob share one Bell state, so the
given channel can be used to teleport a single-qubit state
only.

III. SUMMARY

In summary, we have considered issues related to faithful
teleportation when the available channel is an arbitrary
N-qubit state �X�AB partitioned between Alice and Bob in any
given manner. A general criterion, Eq. �18�, is presented
which allows one to decide the maximum number of qubits it
can faithfully teleport. The general multiparticle teleportation
protocol proposed here is applicable for any channel states,
whereas the other protocols proposed in the literature are
applicable only for quantum channels of certain specific
forms.
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APPENDIX

In this appendix, we show how to find the unitary opera-
tors UA and UB which are required to transform �X�AB into
���AB in Eq. �23�. Recall that �X�AB is any bipartite state of
m+n qubits, of which m qubits belong to Alice and n to Bob.
We assume m�n and generalization to m�n is obvious.
Using singular value decomposition, we can always express
�X�AB in the Schmidt form,

�X�AB = 	
k=1

2n

�pk�ek�A�fk�B, �A1�

where 	pk=1, and ��ek�A� and ��fk�B� are orthonormal bases
in HA and HB, respectively. If the entanglement between Al-
ice and Bob’s qubits is not maximal �see Eq. �16��, then we
need to find the maximally entangled number d as defined in
Eq. �18�. To find out if any qubit Bi in HB is maximally
entangled with those in HA, we can proceed as follows. Let
UB

0 be a unitary operator in HB such that

�X̃�AB = UB
0 �X�AB, �A2�

=	
k=1

2n

�pk�ek�A� f̃ k�B, �A3�

where the new basis states

� f̃ k�B = UB
0 �fk�B �A4�

are all product states. For example, for n=2, �� f̃ k��
= ��00� , �01� , �10� , �11��. Explicitly,

UB
0 = 	

k=1

2n

� f̃ k�Bfk�B. �A5�

It follows that the new reduced density matrix,

�̃B = TrA��X̃�ABX̃�AB� , �A6�

can be written as

�̃B =
1

2
��0�Bi

0�Bi

B−i + �1�Bi

1�Bi
�B−i� , �A7�

where the subscript “B− i” denotes all particles in HB except
Bi, and 
B−i and �B−i are diagonal matrices in HB−i. If 
B−i
and �B−i have identical matrix elements �when arranged in
descending order�, then they are related by a change in bases.
Namely,


B−i = uB−i�B−iuB−i
† , �A8�

where uB−i is a unitary operator which can be easily con-
structed as in Eq. �A5�. Define

UB
i = �0�Bi

0�Bi
IB−i + �1�Bi

1�Bi
uB−i, �A9�

where I is the identity operator, and let

�X̃��AB = UB
i �X̃�AB, �A10�

then the new reduced density matrix in HB is given by

�̃B� = TrA��X̃��ABX̃��AB� , �A11�

=
1

2
IBi


B−i. �A12�

Similarly one can check if any other qubit Bj��Bi� is maxi-
mally entangled with those in HA. If so, then as before we
can construct an operator

UB
j = IBi

��0�Bj
0�Bj

IB−i−j + �1�Bj
1�Bj

uB−i−j� , �A13�

such that if

�X̃��AB = UB
j UB

i �X̃�AB, �A14�

then the new reduced density matrix

�̃B� = TrA��X̃��ABX̃��AB� , �A15�

=
1

22 IBi
IBj


B−i−j , �A16�

where 
B−i−j is the diagonal density matrix of all the qubits
in HB except Bi and Bj. Suppose in the end we find d such
qubits, each corresponds to a UB

i , then the transformation UB
defined in Eq. �17� is given by

UB = �
i=1

d

UB
i , �A17�

where some relabeling of the qubits may be required.
To find UA, we can proceed as follows. First of all,

�X��AB = UB�X�AB, �A18�

=	
k=1

2n

�pk�ek�A�f�k�B, �A19�

where

�f�k�B = UB�fk�B. �A20�

By construction, we have

�B� = TrA��X��ABX��AB� = 	
k=1

2n

pk�f�k�Bf�k�B, �A21�

=
B�
1

2d�
i=1

d

IBi
, �A22�

where the density matrix 
B� so obtained is automatically
diagonal. Let
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B� = 	
k=1

2n−d

qk��k�B��
k�B�, �A23�

where 	qk=1, and ���k�B�� are orthonormal states in HB�.
Furthermore, let

���A�B� = 	
k=1

2n−d

�qk��k�A���
k�B� �A24�

be a purification of 
B� to HA� � HB�, where ���k�A�� is any
set of orthonormal states in HA�. For simplicity, we can take
the ��k�A�’s to be product states. Then the pure state ���AB as
defined in Eq. �19�,

���AB = ��
i=1

d

��k�AiBi
���A�B�, �A25�

is already in the diagonal Schmidt form. From the fact that

TrA��X��ABX��AB� = TrA����AB��AB� , �A26�

we must have

���AB = 	
k=1

2n

�pk�e�k�A�f�k�B, �A27�

where �eA�
k� is another set of orthonormal basis in HA. Finally,

comparing Eqs. �A19� and �A27�, we conclude that UA is

simply the operator connecting the two bases sets ��ek�A� and
��e�k�A�:

�e�k�A = UA�ek�A, �A28�

or explicitly,

UA = 	
k=1

2m

�e�k�Aek�A. �A29�

As mentioned in Sec. II, in the special case of maximal
entanglement between Alice and Bob’s qubits �see Eq. �10��,
we have d=n and hence UB= I. Thus we see that the most
basic ingredients in the above construction are unitary trans-
formations connecting one orthonormal basis to another. In
general UA and UB are operators involving m and n qubits,
respectively. Of course, by the universality of two-level uni-
tary gates �7�, one can always decompose them into a prod-
uct of elementary operations involving one or two qubits. In
the special case specified below, they involve exclusively
single-qubit operations. Let ��0�i , �1�i� and ��0��i , �1��i� be two
single-qubit bases. One can readily check that, if and only if
the effect of a transformation is a simple substitution of
��0�i , �1�i� by ��0��i , �1��i� �for all qubits�, then it can be de-
composed into a product of single-qubit operations ui
= �0��i0�i+ �1��i1�i.
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