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Based on a proposed coherence measure, we show that the local coherence of a bipartite quantum pure state
�coherence of its reduced density matrix� is exactly the same as the minimal average coherence with all
potential pure-state realizations under consideration. In particular, it is shown that bipartite concurrence of pure
states just captures the maximal difference between local coherence and the average coherence of one sub-
system induced by local operations on the other subsystem with the assistance of classical communications,
which provides an alternative operational meaning for bipartite concurrence of pure states. The relation be-
tween concurrence and the proposed coherence measure can also be extended to bipartite mixed states.
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I. INTRODUCTION

Coherence and entanglement arise from quantum super-
position, the most distinctive and puzzling feature of quan-
tum mechanics. Quantum coherence is an important subject
in quantum mechanics, where decoherence due to the inter-
action with an environment is a crucial issue that is of fun-
damental interest. If there exists coherence among multiple
quantum subsystems, a special nonlocal coherence-quantum
entanglement may be generated besides the local coherence
of each constituent subsystem. As an ingredient of quantum
information, quantum entanglement has been recognized to
be an important physical resource in quantum-information
processing including quantum communication and quantum
computation and plays a key role in quantum-information
theory �1–4�. Recently, many works based on some special
models have been written to show the relation between local
decoherence and disentanglement of a composite quantum
system by considering the interaction with environments
�5–10�. In fact, so long as there exists interactions between
two subsystems, the coherence of each subsystem might also
be changed. For example, if a composite quantum system is
maximally entangled, each subsystem is completely incoher-
ent. It is natural to ask how entanglement is related to local
coherence.

In fact, the previous question means finding some kind of
operational meaning of the entanglement measure that we
are going to employ. Even though quantification of entangle-
ment has attracted many interests in recent years and a lot of
entanglement measures have been proposed and explored
from different viewpoints �11–17�, one is usually concerned
mainly about the monotonicity of entanglement measure un-
der local operation and classical communication �LOCC�,
i.e., not increase under LOCC operations �18–21�, hence
only a few entanglement measures have been considered
from the operational meanings point of view �22–26�. The
most popular two examples are entanglement cost �22,23�
and distillable entanglement �14,23,24� which show the con-
version rate between the entangled state of interests and

maximally entangled state. As a remarkable entanglement
measure, concurrence �16� has been widely employed in lots
of cases of quantum-information theory. However, to our
knowledge, concurrence per se of pure states is related to the
purity of one subsystem which only roughly or qualitatively
shows the effect of the other subsystem �27�.

In this paper, we focus on the relation between concur-
rence and localized coherence, which can provide an alterna-
tive operational meaning for concurrence. Suppose Alice and
Bob share a composite bipartite state, Alice’s local coherence
is determined by her reduced density matrix but independent
of its pure-state realization. However, if Bob performs some
operations on his subsystem, with the assistance of classical
communication Alice might owe her quantum ensemble with
different average local coherence. For example, for a Bell
state in �z representation, Alice’s reduced density matrix is
completely mixed. But if Bob performs a �x measurement on
his subsystem and tell his outcome to Alice, Alice will obtain
a pure state with maximal coherence. In this sense, we say
that the coherence can be localized assisted by Bob �or
LOCC�. In this paper we propose a coherence measure with
explicit geometric meaning by collecting the contribution of
all off-diagonal elements of a density matrix. Based on this
coherence measure, we show that local coherence of a bipar-
tite pure state is just the same as the minimal average coher-
ence with all potential pure-state realizations taken into con-
sideration. In particular, it is shown that with this coherence
measure, concurrence can be regarded as the difference be-
tween the maximal and the minimal localized �local� coher-
ence. Thus it provides an operational meaning for concur-
rence. This is much like what we have found for �2 � 2
� n�-dimensional three-tangles which can be considered as
the difference between concurrence of assistance and concur-
rence of �2 � 2�-dimensional subsystem �28�. This paper is
organized as follows. In Sec. II, we consider coherence mea-
sure of quantum systems of a qubit and show the relation
between the coherence measure and the concurrence of
�2 � n�-dimensional quantum systems; in Sec. III, we focus
on coherence measure of general high-dimensional quantum
system and consider the relation between coherence measure
and concurrence of a general �n1 � n2�-dimensional quantum
systems; in Sec. IV, we extend both the relations given in
Secs. II and III to concurrence of bipartite mixed states. The
conclusion is drawn in Sec. V.
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II. QUANTUM COHERENCE OF QUBIT AND
CONCURRENCE OF (2‹n)-DIMENSIONAL

PURE STATES

A. Quantification of coherence

It has been shown that a good definition of coherence
depends on not only the state of the system � but also the
alternatives under consideration which are usually attached
to different eigenvalues of an observable A. Since the off-
diagonal elements of � characterize interference, they are
usually called coherences with respect to the basis in which �
is written �29–31�. The measurements on the observables
that do not commute with A can reveal the interference. It is
obvious that if � is diagonalized, there is not any relevant
coherences with respect to that basis. Thus one can straight-
forwardly quantify the coherence in given basis by measur-
ing the distance between the quantum state � and the nearest
incoherent state.

Definition 1. If � is written in some basis, the coherence
with respect to the same basis can be measured by

D��� = �� − ���1 = �
i�j

��ij� , �1�

where �� is the diagonal matrix with �ii
� =�ii and � · �1 is the

“entrywise” norm. In fact, � · �1 can also be replaced by
Frobenius norm � · �F for some convenient applications.

It is easily to find that D���=min��I��−��1= ��−���1,
where I is the set of incoherent states with the same basis to
�. This shows the direct geometric meaning of the coherence
measure. In addition, the measure collects the contribution of
all off-diagonal elements of � which is consistent with what
we have stated previously.

B. Localizable coherence

There exists infinitely many pure-state realizations of a
given mixed state. Unlike quantum entanglement of a bipar-
tite quantum state � which is defined as the minimal average
entanglement with all pure-state realizations of � taken into
account, in usual it seems not to be meaningful to define the
average coherence of a mixed state by considering the dif-
ferent pure-state realizations. However, it is not the case if
we have known that �A owned by Alice was reduced from a
bipartite state �AB shared with Bob, i.e., �A=TrB �AB. Based
on Gisin—Hughston—Jozsa—Wootters theorem �32�, any
pure-state realization of �A can be obtained by appropriate
positive operator valued measure performed on subsystem B
�33�. Therefore, if Bob informs Alice of the measurement
outcomes via classical communication, Alice can obtain the
corresponding pure state ��i� with probability pi. In other
words, Alice will obtain the corresponding coherence D���i��
with probability pi. Averagely, the coherence that Alice can
obtain should be given by

D̄��A� = �
i

piD���i�� . �2�

In this case, D��A� defined in Eq. �1� is called local coher-
ence because it describes the coherence of the local sub-
system A in contrast to the whole composite system �AB, and

the average coherence given in Eq. �2� can also be called
localized coherence because the average coherence is gener-
ated based on Bob’s assistance.

Definition 2. The localizable coherence of �A is defined as
the maximal average coherence with all possible pure-state
realizations taken into account, i.e.,

DL��A� = max D̄��A� . �3�

It is implied in the definition that one can distinguish the
different pure-state realizations with the help of LOCC be-
tween the two components A and B of the composite quan-
tum system �AB.

C. Relation between coherence and concurrence

Theorem 1. Suppose E= 	pi , ��i�
 is a potential pure-state
realization of a quantum state of qubit �, then the coherence
measure

D��� = �
i�j

��ij� = min
E

D̄��A� = min
E �

i

piD���i�� = �1 − �2

�4�

and the localizable coherence

DL��� = max
E �

i

piD���i�� = �1 + �2, �5�

where �i is the square root of the eigenvalues of ��x�
��x and

�x= � 0 1
1 0 �.

Proof. At first, by a simple algebra, one can easily find
that Eq. �1� can be rewritten as D�����= ������x���� for a pure
state of qubit. Thus for a mixed state �=�pi��i���i�, the av-
erage coherence can be given by

D̄��� = �
i

pi���i
���x��i�� . �6�

Considering the matrix notation �=�W�†, where the col-
umns of � correspond to ��i� and W is a diagonal matrix
with diagonal entries corresponding to pi, one can find that

D̄��� = �
i

�W1/2�T�x�W1/2�ii, �7�

with superscript T denoting transpose operation. Based on
the eigenvalue decomposition: �=�M�†, where the col-
umns of � correspond to the eigenvectors and M is a diag-
onal matrix with diagonal entries corresponding to the eigen-
values, it is easily find that W1/2�=UT�TM1/2, with UU†

=1 and 1 as the identity. Thus Eq. �7� can be rewritten as

D̄��� = �
i

�UTM1/2�T�x�M1/2U�ii. �8�

The minimal and maximal �localizable coherence� average
coherence can be directly calculated from Eq. �8� based on
Thompson theorem �34,35� and Ref. �36�. In this way, we
have

D̄min��� = min
U

�
i

�UTM1/2�T�x�M1/2U�ii = �1 − �2 �9�

and
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DL��� = max
U

�
i

�UTM1/2�T�x�M1/2U�ii = �1 + �2, �10�

where �i is the singular values of matrix M1/2�T�x�M1/2 in
decreasing order or the square roots of the eigenvalues of
��x�

��x.

In order to explicitly show the D̄min��� and DL���, we
suppose �= � a b�

b c �, where a and c=1−a are real and ac
− �b�2�0 due to the positive �. From Eq. �1�, it is obvious
that the coherence of � is D���=2�b�. Substitute � into Eq.
�9�, we can obtain that

��x�
��x = �ac + �b�2 2ab�

2bc ac + �b�2

 . �11�

The eigenvalue equation of ��x�
��x can be given by

	2 − 2�ac + �b�2�	 + �ac − �b�2�2 = 0. �12�

Thus based on Vieta’s theorem �37�, one can easily find that

D̄min��� = �1 − �2 = 2�b� = D��� �13�

and

DL��� = �1 + �2 = 2�ac . �14�

In particular, Eq. �13� shows that D̄min��� is exactly the same
as the coherence of �. In this sense, we can redescribe the
coherence of � as the minimal average coherence. �

Theorem 2. For a bipartite �2 � n�-dimensional quantum
pure state �
�AB with �A=TrB�
�AB�
� defined in two dimen-
sion, the concurrence C��
�AB� of �
�AB satisfies

C2��
�AB� = DL
2��A� − D2��A� . �15�

Proof. Suppose the reduced density matrix of the bipartite
pure state �
�AB is given by

�A = TrB�
�AB�
� = �a b�

b c

 , �16�

then the concurrence of �
�AB is defined �38� as

C��
�AB� = �2�1 − Tr �A
2� . �17�

Substitute Eq. �16� into Eq. �17�, one can have

C��
�AB� = �4�ac − �b�2� . �18�

Based on Eqs. �13� and �14�, it is obvious that

DL
2��A� − D2��A� = 4�ac − �b�2� . �19�

Therefore, Eq. �15� holds. �

III. QUANTUM COHERENCE OF QUDIT AND
CONCURRENCE OF GENERAL BIPARTITE PURE STATES

A. Quantification of coherence and localizable
coherence for a qudit

In order to study the previous question for high-
dimensional quantum states, the key question is how to gen-
eralize the coherence measure and the average coherence of

quantum qubit states. The discussion in Sec. II provides a
direct understanding of average coherence, especially for qu-
bit systems. In a different matter, we can give an alternative
understanding to average coherence of high-dimensional
quantum system. Since coherence is closely related to the
nonzero off-diagonal elements, it requires at least two levels
for a given quantum system �for example, the excited and
ground states of an atom� in order to demonstrate the coher-
ence. In other words, a two-level system can be considered
as the minimal unit in researching coherence, which just cor-
responds to two off-diagonal elements of density matrix in
terms of definition 1. In this sense, if �AB is shared by Alice
and Bob, Alice can first be concerned about the coherence
with respect to the given basis in some 2�2 subspace and
then collect all the contributions of different subspace.

For an n-dimensional density matrix �A, there exist N
= n�n−1�

2 alternative 2�2 subspace with all potential choices
of two levels under consideration. It happened that each such
choice for a density matrix just corresponds to one generator
Si of the group SO�n�. Suppose Li is a 2�n matrix derived
from �Si� �� · � denotes the absolute value of the matrix ele-
ments� by deleting the row where all the elements are zero,
then the quantum state in each 2�2 subspace �or corre-
sponding to a generator Si� can be achieved by

�i =
Li�ALi

†

Tr Li�ALi
† , �20�

where Tr�Li�ALi
†� is normalization factor. The average coher-

ence in the ith subspace can be given by D̄��i� defined as Eq.
�2�. Defining an N-dimensional average coherence vector as

D��A� = �D̄��1�,D̄��2�, . . . ,D̄��N�� �21�

and the corresponding weightlike vector as

P��A� = �Tr L1�AL1
†,Tr L2�AL2

†, . . . ,Tr LN�ALN
† � , �22�

then the total average coherence of all subspace can be de-
fined as the length of the weighted vector, i.e.,

D̄F��A� = �P � D� , �23�

where � denotes the Hadamard product, � · � denotes the L2
norm of a vector, and the subscript F will be explained later.

It is obvious that D̄F��A� and D��A� depend on Bob’s opera-
tions. In this sense, we can define a vector of maximal aver-
age coherence as

DL��A� = �P � max D� = �D̄L��1�,D̄L��2�, . . . ,D̄L��N�� ,

�24�

with D̄L� · � is given by Eq. �3� and max �min� on a vector
denotes the maximum �minimum� of every elements of the
vector. In terms of Eq. �24� we can analogously define the
localizable coherence as follows.

Definition 3. The localizable coherence of �A is defined as
the length of the weighted maximal average coherence vec-
tor DL��A�, i.e.,
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DFL��A� = �P � DL� . �25�

At the end of this subsection, we would like to emphasize

that the generalized coherence measures D̄F��A� and DFL��A�
can be reduced to D̄��A� and DL��A�, respectively, when �A is
a density matrix of a qubit. We have shown that D��A�
=minE D̄��A� for a qubit density matrix �A, the analogous

relation with D̄F��A� and DF��A� taken into account is also
satisfied for a high-dimensional �A, which will be proved in
the next subsection. In addition, it should be noted that the
subscripts F means that DF��A�=��i�j��Aij�2, namely, in
definition 1 of coherence measure, we employ Frobenius
norm.

B. Relation between coherence and concurrence

Theorem 3. For a quantum state of qudit �, let D��� be
the average coherence vector defined as Eq. �21� and DL���
be the maximal average coherence with the corresponding
weightlike vector P��� defined as Eq. �22�. Then the coher-
ence measure DF��� can be given by

DF��� = ��
i�j

��ij�2 = �P��� � min D���� =��
j

��̃1
j − �̃2

j �2

�26�

and the localizable coherence

DFL��� = �P��� � DL���� =��
j

��̃1
j + �̃2

j �2, �27�

where �̃k
j is the square root of the eigenvalues of ��Sj����Sj�.

Proof. Let E= 	qi , ��i�
 be a potential decomposition of
n-dimensional density matrix �. Substitute E into Eq. �26�
�or Eq. �23��, one can find that

Tr Lj�Lj
†D̄� Lj�Lj

†

Tr Lj�Lj
†
 = �

i

qiD�Lj��i���i�Lj
†�

= �
i

qi���i
��Lj

T�xLj��i��

= �
i

�ŨTM̃1/2�̃T�Sj��̃M̃1/2Ũ�ii,

�28�

where ŨŨ†=1 by which any decomposition of �=�̃W̃�̃† is

related to the eigenvalue decomposition �=�̃M̃�̃†. Based
on Thompson theorem and Ref. �36�, one can find that

Tr Lj�Lj
† min

E
D̄� Lj�Lj

†

Tr Lj�Lj
†
 = �̃1

j − �̃2
j , �29�

Tr Lj�Lj
† max

E
D̄� Lj�Lj

†

Tr Lj�Lj
†
 = �̃1

j + �̃2
j , �30�

where �̃k
j is the square root of the eigenvalues of ��Sj����Sj�

in decreasing order. In Eqs. �29� and �30�, it should be em-
phasized that ��Sj����Sj� has only two nonzero eigenvalues

��̃1
j and �̃2

j � since the nonzero block of ��Sj����Sj� is com-
pletely the same as Lj�Lj

†�xLj�
�Lj

T�x. Thus

�P � min D� =��
j

��̃1
j − �̃2

j �2, �31�

�P � max D� = �P��� � DL���� =��
j

��̃1
j + �̃2

j �2. �32�

In fact, one can find that for each Lj, Lj�Lj
† can be written

by

Lj�Lj
† = ��kk �kl

�kl
� �ll


 , �33�

where �kk and �ll are the kth and lth diagonal elements of �
and �kl is the off-diagonal element of � subject to the two
diagonal elements. Analogous to the proof of theorem 1, one
can find that

�̃1
j − �̃2

j = 2��kl� ,

�̃1
j + �̃2

j = 2��kk�ll. �34�

Since each pair of off-diagonal elements of � corresponds to
a Lj, the contribution of all the off-diagonal elements can be
described as

DF��� = ��
i�j

��ij�2 =��
j

��̃1
j − �̃2

j �2 = �P � min D� .

�35�

Equations �31�, �32�, and �35� show that this theorem
holds. �

Theorem 4. For a bipartite �n1 � n2�-dimensional quantum
pure state �
�AB with �A=TrB�
�AB�
� defined in n1 dimen-
sion, the concurrence C��
�AB� of �
�AB satisfies

C2��
�AB� = DFL
2 ��A� − DF

2��A� . �36�

Proof. Since the concurrence of �
�AB is defined as Eq.
�17�, based on �ij �the entries of �A�, C��
�AB� can be rewrit-
ten by

C��
�AB� = �4�
ij

��ii� j j − ��ij�2� . �37�

According to Eqs. �31� and �32�, we have

DFL
2 ��A� − DF

2��A� = �
j

��̃1
j + �̃2

j �2 − �
j

��̃1
j − �̃2

j �2.

�38�

Substitute Eq. �34� into Eq. �36�, one can find that

DFL
2 ��A� − DF

2��A� = 4�
kl

��kk�ll − ��kl�2� . �39�

Comparing Eq. �37� with Eq. �39�, one can conclude that Eq.
�36� holds. �
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IV. QUANTUM COHERENCE AND BIPARTITE
CONCURRENCE OF MIXED STATES

In this section, we will show that theorems 2 and 4 can be
extended to bipartite mixed states. For a bipartite mixed state
�AB, one can always introduce an auxiliary system C such
that ���ABC is a purification of �AB. If subsystem A is two
dimensional based on theorem 2 one can obtain

C2����A�BC�� = DL
2��A� − D2��A� . �40�

If subsystem A is more than two dimensional based on theo-
rem 4 one can obtain

C2����A�BC�� = DFL
2 ��A� − DF

2��A� . �41�

In Eqs. �40� and �41�, �A=TrBC���ABC���. Since concurrence
C����A�BC�� is an entanglement monotone—–it does not in-
crease under LOCC �18,19� and �AB can always be obtained
from ���A�BC� by local operations on subsystem C, one has

C����A�BC�� � C��AB� . �42�

Thus we can have the following theorem.
Theorem 5. For bipartite mixed state �AB, if subsystem A

is two dimensional, the concurrence satisfies

C2��AB� � DL
2��A� − D2��A� , �43�

otherwise,

C2��AB� � DFL
2 ��A� − DF

2��A� . �44�

V. CONCLUSION AND DISCUSSION

In summary, we have shown that the local coherence
based on a proposed coherence measure can be understood
as the minimal average coherence with all potential pure-
state realizations taken into account. In particular, we have
revealed the relation between the local coherence including
localizable coherence and bipartite concurrence of pure
states which provides an alternative operational meaning for
concurrence of pure states. In addition, it is also shown that
the relation can also be extended to the case of bipartite
mixed state.

Before the end, we would like to briefly discuss the po-
tential applications of our relations. As mentioned in Sec. I, a
lot of works have been done to study disentanglement and
local decoherence by considering different
�2 � 2�-dimensional physical models. However, for high-
dimensional quantum systems, there does not generally exist
an analytic entanglement measure which greatly limits the
relevant researches. It can be easily found that the coherence
measures presented in this paper can be analytically calcu-
lated, in particular the relations given in theorem 5 provide
an upper bound of concurrence, therefore, one can find that a
sufficient condition of disentanglement can be provided by
local decoherence.
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