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Defeating passive eavesdropping with quantum illumination
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A two-way protocol for defeating passive eavesdropping is proposed. For each information bit, Alice sends
Bob T sec of signal-beam output from a spontaneous parametric down-converter over a pure-loss channel
while retaining the idler beam with which it is maximally entangled. Bob imposes a single information bit on
the light he receives from Alice via binary phase-shift keying. He then amplifies the modulated beam and sends
the resulting light back to Alice over the same pure-loss channel. Even though the loss and amplifier noise
destroy any entanglement between the light that Alice receives from Bob and the idler she has retained, she can
decode Bob’s bit with an error probability that can be orders of magnitude lower than what is achieved by a
passive eavesdropper who receives all the photons that are lost en route from Alice to Bob and from Bob to
Alice. In particular, Alice and Bob can communicate at 50 Mbit/s over 50 km of low-loss fiber with an error
probability of less than 107 while the passive eavesdropper’s error probability must exceed 0.28.
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The use of quantum key distribution (QKD) to ensure the
security of classical information transmission has moved
from its theoretical roots [1-3] to a major network demon-
stration [4]. The objective of QKD is for two geographically
separated users—Alice and Bob—to create a shared set of
completely random key bits in a manner that precludes an
eavesdropper (Eve) from having anything more than an in-
consequentially small amount of information about the entire
set of key bits. That such a goal is possible arises from a
fundamental quantum mechanical principle: Eve cannot tap
the Alice-to-Bob channel without creating a disturbance on
that channel. By ascribing all errors encountered to Eve’s
intrusion, Alice and Bob can either abort their QKD
protocol—if this intrusion is too severe—or distill a final key
about which Eve has a vanishingly small amount of informa-
tion. QKD, however, is extremely lossy. In recent work [5],
the Bennett-Brassard 1984 (BB84) protocol with a gigahertz
transmitter pulse rate led to a distilled key rate of
~250 kbit/s over a 50-km-long fiber. So, although QKD
systems can provide shared secret bits, they do not them-
selves afford a viable means for transmitting the random bit
stream derived from source coding (lossless data compres-
sion) of an information-bearing message to its Shannon limit
[6]. Indeed, for the 50 km system from [5], only ~0.4% of
the transmitted bits were detected, and ~3% of them were
received in error.

In this paper we present an optical communication proto-
col that defeats passive eavesdropping, in which Eve merely
listens to Alice and Bob’s transmissions. Our system is vul-
nerable to active attacks, in which Eve injects her own light
to probe Alice and Bob’s communication apparatus. Never-
theless, the enormous disparity between the bit error prob-
abilities of a passive eavesdropper and the intended receiver
make this scheme attractive for unencrypted information
transmission when active attacks can be ruled out. In particu-
lar, unlike the BB84 protocol, our scheme is capable of high
data rate, low error-probability transmission of the random
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bit stream derived from source coding of an information-
bearing message.

The basis for our protocol is quantum illumination, spe-
cifically the Gaussian-state radar system described in [7].
There, the entangled signal and idler outputs from spontane-
ous parametric down conversion (SPDC) were shown to af-
ford a substantial error-probability advantage—over a
coherent-state system of the same average transmitted pho-
ton number—when the signal beam is used to irradiate a
target region containing a bright thermal-noise bath in which
a low-reflectivity object might be embedded, and the idler
beam is retained at the transmitter for use in an optimal joint
measurement with the light returned from the target region.
This performance advantage is surprising because the loss
and noise combine to destroy any entanglement between the
return light and the retained idler. The origin of this advan-
tage is the stronger-than-classical phase-sensitive cross cor-
relation between the signal and idler produced by SPDC.
When the source is operated in the low-brightness regime,
this leads to a phase-sensitive cross correlation between the
target return and the retained idler that outstrips any such
correlation produced by a classical-state transmitter of the
same average transmitted photon number [7]. Here, we will
turn that capability to the task of secure communication be-
tween Alice and Bob in the presence of a passive eavesdrop-
per Eve.

The communication system of interest is a two-way pro-
tocol. Alice transmits a light beam to Bob, who modulates
and amplifies the light he receives, and then sends it back to
Alice for detection. To exploit the quantum illumination
paradigm, Alice uses a continuous-wave (cw) SPDC source,
transmitting her signal beam to Bob while retaining (without
loss) her idler beam for subsequent joint measurement with
what she will receive from Bob. Each T-sec-long transmis-
sion from Alice comprises M=WT>1 signal-idler mode
pairs—where W is the source’s phase-matching bandwidth—
with annihilation operators {ds .,d; :1=m=M}. Their joint
density operator pg; is the tensor product of independent,
identically distributed (iid) density operators for each mode
pair that are zero-mean, jointly Gaussian states with the com-
mon Wigner-distribution covariance matrix
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where S=2Ng+1 and C,=2VN4(Ng+1), and Ny is the aver-
age photon number of each signal (and idler) mode [8].
Alice-to-Bob transmission occurs over a pure-loss channel
[9]. Hence Bob receives a light beam whose modal annihi-
lation operators are

A A P
dg =\kds +\N1—-kég , for l=m=M, (2)
where the environmental modes, {éBm}, are in their vacuum
states [10]. Bob first imposes a binary phase-shift keyed
(BPSK) information bit (k=0 or 1) on the light he has re-
ceived. He then employs a phase-insensitive amplifier with
gain G, and transmits the amplified modulated light, with
modal annihilation operators

A [~ A At
ap =(-1)NGay +VG-1dy , for l=m=M,
m M m

(3)

back to Alice through the same pure-loss channel. Here
the {de} are in iid thermal states with <dedjv )
=Ny/(G-1)=1. Alice thus receives a light beam whose
modal annihilation operators are

dg =\"Kd1; +\Vl-ké, , for I=m=M, (4)
where the {eA } are in their vacuum states. Given Bob’s in-
formation bit k we have that p%‘,), the joint state of Alice’s
{ag ,a, } modes, is the tensor product of iid, zero-mean,

jointly Gaussian states for each mode pair with the common
Wigner-distribution covariance matrix

A 0 (- ke, 0
k+1
RO A 0 (1M,
RE= 41 (- DrC, 0 S 0 ’
0 (- D¢, 0 S

(5)

where A=2«k’GN4+2kNg+1 and C,= K\fECq [11]. Alice’s
task is to decode Bob’s bit, which is equally likely to be k
=0 or k=1, with minimum error probability.

Eve will be assumed to collect all the photons that are lost
en route from Alice to Bob and from Bob to Alice [12], i.e.,

she has at her disposal the mode pairs {¢5 ,éx :1=m=»M},
where
A | A ’!/_A
CSm =\ 1- Kasm -\ KeBm’ (6)
. . .
ép =N1- Kagm —VKéy . (7)

50 s
Given Bob’s bit value, Eve’s joint density operator, f,. e 18
the tensor product of M iid mode-pair density operators that
are zero-mean, jointly Gaussian states with the common

Wigner-distribution covariance matrix
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D 0 (- D¥c, 0
AW _1 0 D 0 (- Drc,
k4] (- DrC, 0 E 0 ’
0 (- Dc, 0 E
(®)
where  D=2(1-x)Ng+1, C,=2(1-k)VkGN;,  and

E=2(1-k)kGNg+2(1—x)Ng+1. Eve too is interested in
minimum error-probability decoding of Bob’s bit.

Alice’ s mlmmum error-probability decision rule is to
measure pR, - pR,, and declare that k=1 was sent if and only
if her measurement outcome is non-negative. Similarly,
Eve s minimum error-probability decision rule is to measure

pcSL —f)g(;c and declare that k=1 was sent if and only if her

measurement outcome is non-negative. The exact error prob-
abilities for these Gaussian-state hypothesis tests are not easy
to evaluate. Thus, as in [7], we shall rely on quantum Cher-
noff bounds [13], which are known to be exponentially tight
for iid M mode-pair problems, i.e., with

Pr(e) = e M mX0=s=1 £65)/2 9)
for
E(s) = = In(al (3, (5, D). (10)

giving the Chernoff bound (in terms of the conditional mode-
pair density operators ﬁffj)) on the exact error probability, we
have

lim —In[2 Pr(e)]/M = max &(s). (11)

M—x 0=s=1

The BPSK symmetry in ﬁRk, and ﬁC];CR implies that s=1/2
optimizes the Chernoff bound exponents for both Alice and
Eve. The following lower bound on the error probability of
any receiver [7] will also be of use,

1- \1'1 _ e—2M£(1/2)
Pr(e) = 5 ; (12)

it is not exponentially tight for the problems at hand.

Because all our conditional density operators are zero-
mean Gaussian states, we can use the results of [14] to evalu-
ate £(1/2) for Alice and Eve’s receivers. To do so we need
the symplectic diagonalizations of their conditional Wigner-
distribution covariance matrices. The symplectic diagonal-
ization of a 4 X4 dimensional covariance matrix A consists
of a 4 X4 dimensional symplectic matrix S and a symplectic
spectrum {v,: | =n =2} that satisfy

0 1 0 O
. 10 0 0
SQS' =0 = , (13)
0 0 1
0 0 -10
A=S diag(Vl,Vl,Vz, Vz)ST, (14)
where diag (-,-,-,) denotes a diagonal matrix with the

given diagonal elements.
For our quantum-illumination (Alice-to-Bob-to-Alice)
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FIG. 1. (Color online) Error-probability bounds for Ng=0.004,
k=0.1, and G=Nz= 10*. Solid curves: Chernoff bounds for Alice
and Eve’s optimum quantum receivers. Dashed curve: error-
probability lower bound for Eve’s optimum quantum receiver. Dot-
dashed curve: Bhattacharyya bound for Alice’s OPA receiver.

communication, the symplectic matrices needed for the di-
agonalization of A are

X - )X
S(k):{ ; 1) } (15)
(= 1)X_ X,
for k=0,1. Here, X, =diag(x., *x.) with
A+S+\(A+S)2-4C
Xy = — ¢ (16)
2\(A+S)*-4C

The associated symplectic spectra are identical for k=0 and
1, i.e., for n=1,2 we have

V,(zk) =[(- 1)(S-A)+ \m]/& (17)

For Eve’s attempt to listen in, the symplectic matrices
needed for the diagonalization of AE?(R are

Y (_ 1)k+1Z
N { , 18
(- 1z Y (18)
for k=0,1. Here, Y=diag(cos(f),cos(#)) and Z
= diag(sin(6),sin(6)) with
D-FE
COS(Z&) = /=2 (19)
V(D - E)*+4C>

The associated symplectic spectra are identical for k=0 and
1, i.e., for n=1,2 we have

W =[(D+E)-(-1)N(D-E)>+4C2)8.  (20)

The preceding diagonalizations lead to Chernoff bound
expressions that are far too long to exhibit here. In Fig. 1 we
compare the Chernoff bounds for Alice and Eve’s optimum
quantum receivers when «=0.1, Ng=0.004, and G=Npy
=10* Also included in this figure is the error-probability
lower bound from Eq. (12) on Eve’s optimum quantum re-
ceiver. We see that Alice’s error probability upper bound—at
a given M value—can be orders of magnitude lower than
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Eve’s error-probability lower bound when both use optimum
quantum reception. This occurs despite Eve’s getting nine
times more of Alice’s transmission than Bob does and nine
times more of Bob’s transmission than Alice does. Note that
Alice’s performance advantage may be better assessed from
comparing her error-probability upper bound with that of
Eve’s receiver, in that both are exponentially tight Chernoff
bounds.

To show that the advantage afforded by quantum illumi-
nation extends well beyond the specific example chosen for
Fig. 1, we have used an algebraic computation program to
obtain the following approximate forms for the Chernoff
bounds on the error probabilities of Alice and Eve’s optimum
quantum receivers:

exp(— 4MkGNy/Np)
P e =
r(e)Ahce D)

: (21)

exp(— 4M k(1 — k)GN3/Np)
2

Pr(e)Eve = > (22)
which apply in the low-brightness, high-noise regime, viz.,
when Ng¢<<1 and «Nz>1. We see that Alice’s Chernoff
bound error exponent will be orders of magnitude higher
than that of Eve in this regime, because

gAlice(l/z)/gEve(l/Z) = 1/(1 - K)Ns > 1. (23)

Thus the advantageous quantum illumination behavior
shown in Fig. 1 is typical for this regime.

As yet we have not identified specific implementations for
Alice or Eve’s optimum quantum receivers. So, while we
will accord Eve an optimum quantum receiver, let us show
that Alice can still enjoy an enormous advantage in error
probability when she uses a version of Guha’s optical para-
metric amplifier (OPA) receiver for the quantum-illumination
radar [15]. Here Alice uses an OPA to obtain a light beam
whose modal annihilation operators are given by

I ”—A
a:n = \"GOPAIZIW + VGOPA - 1a;m, for l=m= M,
(24)

where Gopa=1+Ng/ \K_NB She then makes a minimum
error-probability decision based on the results of the photon-
counting measurement 3 4’7’ [16]. The Bhattacharyya
bound [17] on this receiver’s error probability in the Ng<<1,

kN> 1 regime turns out to be

exp(—2M kNg/Np)
2

Pr(e)opa = , (25)
which is only 3dB inferior, in error exponent, to Alice’s op-
timum quantum receiver. We have included the numerically
evaluated Bhattacharyya bound for Alice’s OPA receiver in
Fig. 1, for the case Ng=0.004, k=0.1, and G:NB=104.
Some additional points are worth noting. BPSK commu-
nication is intrinsically phase sensitive, so Alice’s receiver
will require phase coherence that must be established
through a tracking system. More importantly, there is the
path-length versus bit-rate tradeoff. Operation must occur in
the low-brightness regime. So, as channel loss increases, Al-
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ice must increase her mode-pair number M at constant Ny
and G to maintain a sufficiently low error probability and
immunity to passive eavesdropping. For a T-sec-long bit in-
terval and W Hz SPDC phase-matching bandwidth, M=WT
implies that her bit rate will go down as loss increases at
constant error probability. With W=1 THz and 7=20 ns, so
that M=2X 10%, the case shown in Fig. 1 will yield 50
Mbit/s communication with

Pr(e)ops = 5.09 X 1077 (26)
and
0.285 = Pr(e)g,e = 0.451 (27)

when Alice and Bob are linked by 50 km of 0.2 dB/km loss
fiber, assuming that the rest of their equipment is ideal. In
fact, almost all of the equipment needed for realizing this
performance is within reach of available technology. Com-
mercial modulators and erbium-doped fiber amplifiers can
fulfill Bob’s needs. It is Alice who faces the more difficult
equipment requirements. However, the periodically poled
magnesium-oxide-doped lithium niobate (PP-MgO:LN)
down-converter employed in [18] has a 17 THz phase-
matching bandwidth and is capable of Ng=0.004 with 250
mW of cw pump power. Likewise, the PP-MgO:LN OPA
employed in  that same work can  achieve
Gopa—1=0.00013—the gain value needed for N¢=0.004, «
=0.1, and Nz=10*—with only 8 mW of cw pump power.
Furthermore, Alice’s OPA receiver does not require single-
photon sensitivity. The average number of photons imping-
ing on her photodetector under the two bit-value possibilities

are N,=2.90x 10° for k=0, and 2.33 X 10? for k=1, imply-
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ing that Alice may approach the photon-counting perfor-
mance assumed in our analysis with a high quantum effi-
ciency linear-mode avalanche photodiode. There is, however,
one major technical difficulty Alice must face: lossless stor-
age of her idler beam. Any loss in idler storage will degrade
Alice’s error-probability advantage over the ideal Eve. That
loss of error-probability advantage could be ameliorated by a
more realistic assessment of Eve’s capabilities. In particular,
is it reasonable to assume that a passive eavesdropper can
collect all of Alice’s light that does not reach Bob and all of
Bob’s light that does not reach Alice? For a free-space opti-
cal link, it should be easy to verify that Eve can only collect
a fraction of the light that does not reach its intended desti-
nation. With optical time-domain reflectometry on a fiber
link, it should be possible to estimate localized propagation
losses that should be ascribed to an eavesdropper.

In conclusion, we have shown that quantum illumination
can provide immunity to passive eavesdropping in a lossy,
noisy environment despite that environment’s destroying the
entanglement produced by the source. To ward off active
attacks, Alice and Bob must take measures to detect and
defeat Eve’s use of impersonation attacks, man-in-the-middle
attacks, and optical probing of Bob’s BPSK modulator.
These attacks might be identified and dealt with if Alice and
Bob employ authentication, monitor the physical integrity of
the communication channel, check the received power level
and its frequency spectrum at Bob’s station, and verify the
error probability at Alice’s station.
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