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The entanglement properties of non-Gaussian states are investigated, which are obtained by performing the
photon addition, photon subtraction, photon-addition-then-subtraction, and photon-subtraction-then-addition
operations on the two-mode squeezed vacuum state. We show that the partial von Neumann entropy of all the
resulting states is greater than that of the original squeezed state, but only the photon-subtracted states and the
photon-added-then-subtracted states have the stronger Einstein-Podolsky-Rosen correlation than the original
squeezed state. Quantum teleportation of Braunstein and Kimble protocol is studied for coherent states,
squeezed states, and mixed Gaussian states with the non-Gaussian entangled resources. For all the states to be
teleported, the fidelity with the photon-subtracted and the photon-added-then-subtracted entangled resources is
higher than that with the two-mode squeezed vacuum resource. Based on Bures fidelity, we find that quantum
teleportation for mixed and classical single-mode Gaussian states is more faithful than for single-mode Gauss-
ian states with high purity and nonclassicality.
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I. INTRODUCTION

Gaussian-type entangled resources such as two-mode
squeezed states and Gaussian operations that can be imple-
mented by any combination of linear, quadratic optics, and
homodyne detection have been widely used in the quantum
information processing of continuous variables. However, it
has been shown that Gaussian entangled resources and
Gaussian operations have some restrictions. For example,
quantum speed up is impossible for harmonic oscillators by
Gaussian operations with Gaussian inputs �1,2�, and en-
tanglement distillation from two Gaussian entangled states is
impossible only by Gaussian local operations and classical
communication �3–5�. Moreover, it has been proved very
recently that Gaussian operations are of no use for protecting
Gaussian states against Gaussian errors in quantum commu-
nication protocols �6�. Therefore, it is desirable to seek non-
Gaussian resources and operations which can be more effi-
cient in the quantum information processing. Performing
photon subtraction and addition on a given Gaussian state is
one possible approach to generate non-Gaussian entangled
resources.

In recent years, the progress in experimental technique
has made it possible to perform photon subtraction and ad-
dition on a given input state. In fact, photon-subtracted
squeezed states �7�, photon-added coherent states �8,9�, and
thermal states �10,11� have been generated in experiments.
Recently, photon-added-then-subtracted and photon-
subtracted-then-added thermal states have also been gener-
ated �11�. Based on the photon-addition and -subtraction ex-
perimental success, Kim et al. �12� proposed an experiment
scheme to directly prove the commutation relation between
bosonic annihilation and creation operators. Superposition of
quantum states such as coherent states has a very important

role for fundamental tests of quantum theory. Marek et al.
�13� showed that superposition of coherent states can be gen-
erated with nearly perfect fidelity by consecutively applying
photon subtraction from a squeezed vacuum state. Nonclas-
sicality of the states generated from the photon-addition and
-subtraction process has also been investigated both experi-
mentally �7–11� and theoretically �14–18�. It is shown that
the photon-subtracted Gaussian state is nonclassical if and
only if the original Gaussian state is nonclassical, while the
photon-added, photon-added-then-subtracted, and photon-
subtracted-then-added Gaussian states are always nonclassi-
cal no matter whether the original Gaussian state is nonclas-
sical or not; besides, nonclassicality of these states is
enhanced �18�. Since performing photon subtraction and ad-
dition on a single-mode Gaussian state can enhance nonclas-
sicality of the given state, one may ask if it is possible to
enhance entanglement of a two-mode Gaussian state via pho-
ton subtraction and addition. Opatrný et al. �19� and Co-
chrane et al. �20� showed that entanglement of the two-mode
squeezed vacuum state can be enhanced indeed by perform-
ing photon subtraction on both modes, and the fidelity of
quantum teleportation for coherent states and squeezed states
is improved by use of the photon-subtracted two-mode
squeezed state as entangled resource. Even if inconclusive
photon subtraction is considered, quantum teleportation can
still be improved as well if the squeezing parameter is below
a certain threshold �21�. Enhancement of nonlocality was
also investigated with such photon-subtracted two-mode
squeezed states �22–24�. Enhancement of fidelity of quantum
teleportation or nonlocality is closely related to enhancement
of entanglement. An entanglement evaluation is performed,
using negativity as a computable measure, of photon-
subtracted two-mode squeezed state generated by both ideal
single-photon subtraction and inconclusive photon subtrac-
tion �25�. In a recent experiment, photon-subtracted two-
mode squeezed states are generated through the coherent
photon subtraction process �26�.*Corresponding author; flli@mail.xjtu.edu.cn

PHYSICAL REVIEW A 80, 022315 �2009�

1050-2947/2009/80�2�/022315�9� ©2009 The American Physical Society022315-1

http://dx.doi.org/10.1103/PhysRevA.80.022315


Dell’Anno et al. �27� investigated the performance of
squeezed Bell-like entangled resources that take photon-
subtracted and photon-added two-mode squeezed states as
particular instances in continuous-variable quantum telepor-
tation of Braunstein and Kimble protocol �28�. Although
photon-subtracted and photon-added two-mode squeezed
states have the same degree of entanglement, the former can
always enhance the fidelity compared to the two-mode
squeezed state. It seems that the quality of quantum telepor-
tation is not determined only by the amount of entanglement
of the entangled resource. Besides adding or subtracting one-
photon operations, sequential adding �subtracting�-then-
subtracting �adding� one-photon operations are also realiz-
able in experiments �11�. In this paper, the entanglement
amount and the Einstein-Podolsky-Rosen �EPR� correlation
of non-Gaussian states are investigated, which are obtained
by performing the photon addition, photon subtraction,
photon-addition-then-subtraction, and photon-subtraction-
then-addition operations on the two-mode squeezed vacuum
state. The performance of these non-Gaussian entangled re-
sources in continuous-variable quantum teleportation of
Braunstein and Kimble protocol for coherent states,
squeezed states, and mixed Gaussian states is studied. We
find that in the weak squeezing region the photon-added-
then-subtracted state has the strongest EPR correlation and
leads to the highest fidelity.

This paper is organized as follows. In Sec. II the entangle-
ment properties of the non-Gaussian states are investigated.
In Sec. III continuous-variable quantum teleportation based
on the non-Gaussian entangled resources is studied. In Sec.
IV the obtained main results are summarized.

II. ENTANGLEMENT AND EPR CORRELATION
OF NON-GAUSSIAN STATES

The two-mode squeezed vacuum state is widely used as
an entangled resource in various quantum information pro-
cesses such as continuous-variable quantum teleportation
�28�, quantum dense coding �29�, and entanglement swap-
ping �30–32�, which can be written as

��� = er�a1
†a2

†−a1a2��0,0�12 = �1 − �2�
n=0

�

�n�n,n�12, �1�

where ai�ai
†� is the annihilation �creation� operator of pho-

tons in mode i �i=1,2�, and �=tanh�r� with the squeezing
parameter r. The two-mode squeezed state has a Gaussian-
type Wigner function and possesses the EPR correlation be-
tween phase-quadrature components that are analogous to
position and momentum operators of a massive particle �33�.

By performing the photon-subtracted, photon-added,
photon-added-then-subtracted, and photon-subtracted-then-
added manipulations on the two-mode squeezed state, one
can generate the following non-Gaussian states:

���s = Nsa1a2��� =��1 − �2�3

1 + �2 �
n=0

�

�n�n + 1��n,n�12, �2�

���a = Naa1
†a2

†��� =��1 − �2�3

1 + �2 �
n=0

�

�n�n + 1��n + 1,n + 1�12,

�3�

���sa = Nsaa1a2a1
†a2

†���

=� �1 − �2�5

1 + 11�2 + 11�4 + �6 �
n=0

�

�n�n + 1�2�n,n�12,

�4�

���as = Nasa1
†a2

†a1a2���

=� �1 − �2�5

1 + 11�2 + 11�4 + �6 �
n=0

�

�n�n + 1�2�n + 1,n + 1�12,

�5�

where Ns,a,as,sa is the normalization constant of ���s,a,as,sa. In
current experiments, from the two-mode squeezed vacuum
state, the photon-subtracted state can be generated using a
beam splitter of low reflectivity �7�, the photon-added state
can be generated using a parametric down-converter with
low gain �8–10�, and the photon-added �subtracted�-then-
subtracted �added� state can be generated by a sequence of
photon addition �subtraction� followed by photon subtraction
�addition� �11�.

Since these states are all bipartite pure states, their en-
tanglement can be quantified using the partial von Neumann
entropy E��12�=S��1�=−tr��1 ln �1�, i.e., entanglement of
formation �34�. Note that the photon-subtracted and photon-
added states have exactly the same degree of entanglement
because the two states have the same set of Schmidt coeffi-
cients which determine the entanglement. For the same rea-
son, the photon-added-then-subtracted and photon-
subtracted-then-added states have the same degree of
entanglement too. The entanglement of these states is plotted
in Fig. 1. We observe that the entanglement of all the states
obtained from the photon-addition and -subtraction manipu-
lation is greater than that of the two-mode squeezed state.
Moreover, for a given squeezing degree �, the photon-added
�subtracted�-then-subtracted �added� state has the largest
amount of entanglement among the states. It means that the
entanglement can be really enhanced by the photon addition
and subtraction operation on the two-mode squeezed state.

Besides the degree of entanglement, states �1�–�5� can
also be characterized by EPR correlations between phase-
quadrature components of the two modes. As counterparts of
position and momentum operators of a massive particle, the
phase-quadrature operators of each mode are defined as xj

= 1
�2

�aj +aj
†� and pj =

1
i�2

�aj −aj
†� �j=1,2�. In the vacuum state,

both the variances ��x1−x2�2 and ��p1+ p2�2 are equal to 1.
For any classical two-mode states, both the variances �
�x1−x2�2 and ��p1+ p2�2 are larger than 1. In the EPR state
�35�, ��x1−x2�2=��p1+ p2�2=0. It means that x1 and p1 of
the first mode can be exactly estimated by measured results
of x2 and p2 of the second mode or vice versa. In this sense,
we say the existence of the ideal EPR correlation between
the two modes. There may be some two-mode states that
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possess the EPR correlation beyond the limit of the vacuum
state, i.e., both the variances ��x1−x2�2 and ��p1+ p2�2 are
less than one. For example, the two-mode squeezed state has
the variances ��x1−x2�2=��p1+ p2�2=e−2r. Whenever the
squeezing parameter is not equal to zero, the EPR correlation
between the two modes exists. This quantum correlation is a
key ingredient for the realization of quantum teleportation of
continuous variables �28�.

For all the states �Eqs. �1�–�5��, ��x1−x2�2=��p1+ p2�2.
In Fig. 2, the variance ��x1−x2�2 of these states is plotted. It
is noticed that the variance of the photon-added and photon-
subtracted-then-added states is larger than that of the two-

mode squeezed state, and the variance of the photon-
subtracted and photon-added-then-subtracted states is
smaller than that of the two-mode squeezed state. We also
observe that if � is smaller than a certain value the variance
of photon-added-then-subtracted states is even smaller than
that of photon-subtracted states. Thus, the EPR correlation
can be enhanced only by either the photon-subtracted pro-
cess or photon-added-then-subtracted process. In Braunstein
and Kimble protocol of quantum teleportation of continuous
variables �28�, the quantum channel is based on the EPR
correlations and the fidelity of teleported states is determined
by the EPR correlations. Thus, one may expect that the qual-
ity of quantum teleportation of continuous-variables can be
improved by use of either the photon-subtracted state or the
photon-added-then-subtracted state as entangled resource. In
fact, Dell’Anno et al. �27� showed that the fidelity of
continuous-variable quantum teleportation is raised by use of
the photon-subtracted state for quantum channel. In the next
section, we will show that in the weak squeezing region the
fidelity of continuous-variable quantum teleportation can be
further raised by use of the photon-added-then-subtracted
state as entangled resource.

Comparing Figs. 1 and 2, one may notice that larger
amount of entanglement does not always mean stronger EPR
correlations. The states possessing large amounts of en-
tanglement such as photon-added states and photon-
subtracted-then-added states may not be of benefit to and
even harmful to quantum information processing. Thus, from
the respect of applications such as continuous-variable quan-
tum teleportation, the amount of entanglement and the EPR
correlation may not be the same thing.

III. CONTINUOUS-VARIABLE TELEPORTATION WITH
THE NON-GAUSSIAN ENTANGLED STATES

The original idea of teleportation was proposed by Ben-
nett et al. �36� in the discrete variable regime, sending an
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FIG. 3. �Color online� Fidelity as a function of � for �a� two-
mode squeezed state �blue full line�, �b� photon-subtracted state
�green full line�, �c� photon-added state �green dotted line�, �d�
photon-added-then-subtracted state �red dashed line�, and �e�
photon-subtracted-then-added state �red dotted-dashed line�.
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FIG. 1. �Color online� Entanglement of formation as a function
of the squeezing parameter � for �a� the two-mode squeezed state
�blue full line�, �b� photon-subtracted �added� state �green dotted
line�, and �c� photon-added �subtracted�-then-subtracted �added�
state �red dashed line�.
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FIG. 2. �Color online� Variance ��x1−x2�2 as a function of � for
�a� the two-mode squeezed state �blue full line�, �b� the photon-
subtracted state �green full line�, �c� the photon-added state �green
dotted line�, �d� the photon-added-then-subtracted state �red dashed
line�, and �e� the photon-subtracted-then-added state �red dotted-
dashed line�.
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unknown quantum state of a spin-1
2 particle to a distant re-

ceiver via dual classical and Einstein-Podolsky-Rosen chan-
nels. Later Vaidman put forward the idea of continuous-
variable teleportation �37�. As an example of quantum
teleportation of continuous variables, the quantum-optical
protocol for the teleportation of phase-quadrature compo-
nents of a light field was proposed by Braunstein and Kimble
�28�, and soon realized by Furusawa and co-workers �38�.

In Braunstein and Kimble protocol of quantum teleporta-
tion of continuous variables, coherent amplitudes � and � of
the entangled light that is described by the Wigner function
WEPR are distributed to Alice �sender� and Bob �receiver�,
respectively. The Wigner function of a state to be teleported
is Win�	�. The joint Wigner function of the total field under
consideration is given by

W�	,�,�� = Win�	� � WEPR��,�� . �6�

On Alice’s side, the input mode 	 and the entangled mode �
interfere at a 50:50 beam splitter. The amplitudes of the field
appearing from outports of the beam splitter are


 = �� + 	�/�2, � = �� − 	�/�2. �7�

After the beam splitter, the joint Wigner function becomes

W�
,�,�� = Win	
 − �

�2

 � WEPR	
 + �

�2
,�
 . �8�

At the outports, homedyne measurements on x
, the real part
of the amplitude 
, and p�, the imaginary part of the ampli-
tude � are performed at the same time. Once a result �x
 , p��
occurs, Winger function �8� collapses to

W��,z� = 2P−1�z�� d2x�d2p
Win	
 − �

�2



� WEPR	
 + �

�2
,�
 , �9�

where

P�z� = 2� d2	d2�Win�	� � WEPR�z� − 	�,�,t� �10�

is the probability of measuring the result �x
 , p��, and z
=�2�x
− ip��. Then, Alice sends Bob her measuring result
�x
 , p�� through a classical information channel. When re-
ceiving the result, Bob performs the displacement �→�
−gz, where g is the gain factor of the classical information
channel and can be used to optimize the teleportation process
�39�. After the displacement and on average over all the pos-
sible measuring results, the Winger function of the teleported
field is given by
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FIG. 4. �Color online� Fidelity as a function of � for �a� two-mode squeezed state �blue full line�, �b� photon-subtracted state �green full
line�, �c� photon-added state �green dotted line�, �d� photon-added-then-subtracted state �red dashed line�, and �e� photon-subtracted-then-
added state �red dotted-dashed line�.
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Wout��� =� d2zP�z�W�� − gz,z� . �11�

The quality of the teleported state is evaluated by the fidelity
�40�

F = �� d2�Win���Wout��� . �12�

For a given state, there is a one-to-one correspondence be-
tween its Wigner function and symmetrically ordered char-
acteristic function �33�. The above formalism of the Winger
function can be reformulated in terms of the corresponding
symmetrically ordered characteristic functions. It has been
shown that the characteristic function of the teleported state
takes the factorized form �41�


out��� = 
in���
12���,�� , �13�

where 
in��� and 
12�� ,�� are the symmetrically ordered
characteristic functions of the input state to be teleported and
the entangled resource, respectively, and the gain factor g of
the classical information channel is chosen to be unity. In the
formalism of the characteristic functions for quantum tele-
portation of continuous variables, the fidelity can be written
as �40�

F = tr��in�out� =
1

�
� d2�
in���
out�− �� . �14�

First, let us consider Braunstein and Kimble protocol of
quantum teleportation for single-mode coherent states, where
entangled states �1�–�5� are used for quantum channel. The
symmetrically ordered characteristic functions of two-mode
entangled states �1�–�5� are listed in Appendix A. Upon sub-
stituting these characteristic functions into Eq. �14�, we
worked out the fidelity for teleporting a coherent state based
on entangled resources �1�–�5�,

F =
1 + �

2
, �15�

Fs =
�1 + ��3��2 − 2� + 2�

4�1 + �2�
, �16�

Fa =
�1 + ��3

4�1 + �2�
, �17�

Fsa =
�1 + ��5��4 − 3�3 + 5�2 − 2� + 2�

4�1 + �2���4 + 10�2 + 1�
, �18�

Fas =
�1 + ��5��2 + � + 1�

4�1 + �2���4 + 10�2 + 1�
, �19�

where the subscript denotes the corresponding entangled re-
sources. It can be seen that the fidelity is only dependent on
the parameter � of the entangled resources and is indepen-
dent of amplitude of the coherent state.

The fidelity for teleporting a coherent state is plotted as a
function of � with entangled resources �1�–�5� in Fig. 3. As

expected, the fidelity with the photon-subtracted and photon-
added-then-subtracted states is higher than that with the
original two-mode squeezed state. Although the photon-
added and photon-subtracted-then-added states possess
larger amounts of entanglement, the fidelity with these en-
tangled resources is smaller than that with the two-mode
squeezed state. If the squeezing parameter � is smaller than a
certain value, the fidelity with the photon-added-then-
subtracted state is greater than that with the photon-
subtracted state. Therefore, instead of pursuing strongly
squeezed resources for continuous-variable quantum telepor-
tation of high fidelity, one can realize high-quality quantum
teleportation by use of the photon-added-then-subtracted
state obtained from the two-mode weak squeezed state.

Next we consider to teleport the single-mode squeezed
vacuum state exp��r /2��a2−a†2���0� whose symmetrically
ordered characteristic function reads


sq��� = exp�−
cosh 2r

2
���2 −

sinh 2r

4
��2 + ��2�
 . �20�

Upon substituting Eq. �20� into Eq. �14�, we can analytically
worked out the fidelity with entangled resources �1�–�5�. In
Fig. 4, the fidelity for the squeezed state with various values
of the squeezing parameter and the different entangled re-
sources is shown as a function of �. We see that unlike the
teleportation of coherent states the fidelity for the squeezed
state is strongly state dependent. When the squeezing degree
of the input state is low, the higher fidelity than that of the
two-mode squeezed state can be maintained by making use
of the photon-subtracted and photon-added-then-subtracted
entangled resources. Moreover, in the low-energy region of
the original two-mode squeezed state, the fidelity with the
photon-added-then-subtracted entangled resource is higher
than that of all the entangled resources under consideration.
As the squeezing degree of the input state increases, how-
ever, the fidelity decreases. In order to obtain high fidelity for
teleporting strongly squeezed states, one needs to have the
two-mode squeezed resource with ��1 where the energy of
the entangled resource becomes infinite. Therefore, it is more
difficult to teleport strongly squeezed states than coherent
states. We also observe that when the squeezing degree of the
input state is large the fidelity with all the non-Gaussian en-
tangled resources obtained from the photon addition and sub-
traction operations is higher than that of the two-mode
squeezed vacuum state, as shown in Fig. 4�d�. Among the
non-Gaussian entangled resources, the photon-added-then-
subtracted entangled state leads to the highest fidelity.

In the above discussion, the states to be teleported are
pure Gaussian states. We now consider to teleport the general
mixed single-mode Gaussian states characterized by the co-
variance matrix

V =�n +
1

2
m

m� n +
1

2
� , �21�

where n= �a†a�, m=−�a2�, and the first-order moments are
assumed to be zero without loss of generality. The two pa-
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rameters n and m of the physical Gaussian state have to
satisfy Heisenberg’s uncertainty relation n�n+1�� �m�2 �42�.
If the equality condition n�n+1�= �m�2 holds the state is pure
since the purity is 1 / �2��n+1 /2�2− �m�2�. For a fixed value
of the parameter n, the purity increases as the parameter �m�
increases. The nonclassical depth of the Gaussian state is
max�0, �m�−n� �43,44�. Thus, the state is classical when �m�
�n. When �m��n the state becomes nonclassical and its
nonclassicality increases as �m� increases. Therefore, we may
investigate the influence of purity and nonclassicality of the
input state on the fidelity of teleportation by varying values
of the parameter m.

If both the input and output states are mixed, the fidelity
defined previously by Eq. �14� is no longer appropriate for
evaluating the similarity of the teleported state to the input
state. For the case of mixed states, the well-known Bures
fidelity �45� is used to evaluate the quality of teleportation,
which is defined as

F��1,�2� = �tr���1�2
��1

�2. �22�

If both �1 and �2 are pure states or one of them is pure while
the other is mixed, Bures fidelity reduces to the fidelity de-
fined by Eq. �14�.

If input and output states are Gaussian, the analytical ex-
pression of Bures fidelity has been derived out in terms of
the covariance matrices �46�. When non-Gaussian entangled
resources �2�–�5� are used, the output states are non-
Gaussian although the input state is Gaussian type. For this
case, no analytical formula of Bures fidelity is available at
present. When using the definition Eq. �22� for the calcula-
tion of Bures fidelity, we have to deal with squared roots of
the matrices. For this reason, the diagonal representation of
the input and output states is convenient. On the other hand,
the characteristic functions of the input and output states are
easily worked out in the case under consideration. Thus, we
need the two steps to get the fidelity. First, the density ma-
trices are constructed from the characteristic functions. Then,
the density matrices are diagonalized and their squared roots
are worked out. In Appendix B, we propose a method of
reconstructing the corresponding density matrix in the repre-
sentation of photon number states from a given symmetri-
cally ordered characteristic function. Based on the recon-
structed matrices, with the photon number truncation
approximation, we can calculate the Bures fidelity for the
input Gaussian state and entangled resources �1�–�5�. Al-
though this method is accurate in principle, the calculation is
so lengthy and time consuming that we only consider some
weak input Gaussian states.

In Fig. 5, we plot the Bures fidelity as a function of � for
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FIG. 5. �Color online� Bures fidelity as a function of � for �a� two-mode squeezed state �blue full line�, �b� photon-subtracted state �green
full line�, �c� photon-added state �green dotted line�, �d� photon-added-then-subtracted state �red dashed line�, �e� photon-subtracted-then-
added state �red dotted-dashed line�, and �f� two-mode squeezed state �cyan circles� using the analytical formula in Ref. �46�. The state to be
teleported is a mixed Gaussian state: �a� �m�=0.1, �b� �m�=0.8, �c� �m�=1.1, and �d� �m�=1.414, while n=1 for all the four cases.
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the input Gaussian states with different values of �m� and a
fixed n using entangled resources �1�–�5�. The fidelity for the
two-mode squeezed state is calculated in two ways, one by
the reconstructed density matrix while the other by the ana-
lytical formula from the reference �46�. We find that the both
results agree with each other well. As is shown in Figs. 5�a�
and 5�b� where the input states are classical and mixed, the
fidelity can be maintained in a high level. Once �m��n and
then the input states are nonclassical, the fidelity lowers
down rapidly. We notice that in all the cases under consider-
ation the fidelity with the photon-subtracted and photon-
added-then-subtracted entangled resources is higher than that
of the two-mode squeezed state. Moreover, the highest fidel-
ity is always reached in the weak squeezing region by the
photon-added-then-subtracted state. In the limit of �m�
=�n�n+1�, the input state is pure and its nonclassical depth
becomes the largest. As is shown in Fig. 5�d�, the fidelity
drops down. Thus, compared to the mixed and classical
states, it is more difficult to teleport pure and nonclassical
states. In order to more clearly see this point, the fidelity is
shown for the input states with the fixed value of the param-
eter n and various allowed values of the parameter �m� and
the entangled resources with the fixed value of the squeezing
parameter � in Fig. 6. It is clearly observed that for the
mixed classical and nonclassical states the high fidelity can
be obtained but the fidelity goes down rapidly as the purity
condition is approached.

IV. CONCLUSIONS

The entanglement properties of non-Gaussian states are
investigated, which are obtained by performing the photon
addition, photon subtraction, photon-addition-then-

subtraction, and photon-subtraction-then-addition operations
on the two-mode squeezed vacuum state. We show that the
partial von Neumann entropy of all the resulting states is
greater than that of the original two-mode squeezed state.
Among the states, the photon-added �subtracted�-then-
subtracted �added� states has the highest amount of entangle-
ment. As for the EPR correlation between phase-quadrature
components of the two modes in the states, which signals the
existence of entanglement, we find that both the photon-
subtracted and photon-added-then-subtracted states have
stronger EPR correlation than the original two-mode
squeezed vacuum state. Moreover, in the low-energy region
of the two-mode squeezed vacuum state, the photon-added-
then-subtracted state has the strongest EPR correlation. We
also study quantum teleportation of Braunstein and Kimble
protocol for coherent states, squeezed states, and mixed
Gaussian states with the resulting non-Gaussian states as en-
tangled resources. For coherent states, the analytical expres-
sion of fidelity is found. It is noted that the fidelity is inde-
pendent of the amplitude of coherent states to be teleported.
For the other states, the fidelity is state dependent. For all the
states to be teleported, we notice that the fidelity with the
photon-subtracted and photon-added-then-subtracted en-
tangled resources is higher than that with the two-mode
squeezed vacuum resource. In the weak squeezing region of
the original two-mode squeezed state, the photon-added-
then-subtracted entangled resource can lead to the highest
fidelity. Thus, the quality of teleportation is determined by
the EPR correlation of the entangled resource instead of the
amount of entanglement. When the states to be teleported are
mixed, Bures fidelity is numerically calculated from sym-
metrically ordered characteristic functions of the input and
output states. We find that quantum teleportation for states
with high purity and nonclassicality is more difficult than for
mixed and classical states.
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APPENDIX A: CHARACTERISTIC FUNCTIONS

In this appendix, we list symmetrically ordered character-
istic functions of states �1�–�5�. The characteristic function of
the two-mode squeezed state is


��,�� = exp�−
�1 + �2�

2�1 − �2�
����2 + ���2�

+
�

�1 − �2�
��� + �����
 . �A1�

The characteristic functions of the photon-subtracted,
photon-added, photon-added-then-subtracted, and photon-
subtracted-then-added states can be written in a unified form
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FIG. 6. �Color online� Bures fidelity as a function of �m� for �a�
two-mode squeezed state �blue full line�, �b� photon-subtracted state
�green full line�, �c� photon-added state �green dotted line�, �d�
photon-added-then-subtracted state �red dashed line�, �e� photon-
subtracted-then-added state �red dotted-dashed line�, and �f� two-
mode squeezed state �cyan circles� using the analytical formula in
Ref. �46� with n=1 and �=0.2.
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x��,�� = Nx
2e−���2+���2/2�x����x����
��,��e���2+���2/2� ,

�A2�

where x denotes different states and the corresponding dif-
ferential operators �x���s are listed below,

�s��� =
�

��

�

��� , �A3�

�a��� = −
�

��

�

��� + �
�

��
+ ��

�

���
− ��� + 1, �A4�

�sa��� =
�2

��2

�2

���2 − �
�2

��2

�

���
− ��

�

��

�2

���2

+ ���� − 3�
�

��

�

��� + �
�

��
+ ��

�

���
+ 1,

�A5�

�as��� =
�2

��2

�2

���2 − �
�2

��2

�

���
− ��

�

��

�2

���2

+ ���� − 1�
�

��

�

��� , �A6�

while �x���s are of the same form.

APPENDIX B: RECONSTRUCTING DENSITY MATRIX
FROM CHARACTERISTIC FUNCTION

In this appendix, we propose a method of reconstructing
density matrix from characteristic function. The characteris-
tic function of a quantum state is defined as


�z� = tr�D�z��� , �B1�

where D�z�=eza†−z�a is the displacement operator. The den-
sity operator � can be expressed as

� =
1

�
� d2z
�z�D�− z� . �B2�

In the representation of photon number states, the density-
matrix element �nm is

�n���m� =
1

�
� d2z
�z��n�D�− z��m�

=
1

�
� d2z
�z�e−�z�2/2�n�

1

�
� d2����

����e−za†
ez�a 1

�
� d2�������m�

=
1

�
� d2z
�z�e−�z�2/2 1

�2

�� � d2�d2�
�n

�n!

��m

�m!
e−���2−���2+���−z��+z��.

�B3�

We introduce the integral with auxiliary parameters u and v,

Inm�u,v� =
1

�2� � d2�d2�

�
�n

�n!

��m

�m!
e−���2−���2+���−z��+z��+u�+v��

=
1

�n ! m!

�n

�un

�m

�vm

�� 1

�2� � d2�d2�e−���2−���2+���−z��+z��+u�+v��

=

1
�n ! m!

�n

�un

�m

�vme−uz+vz�+uv. �B4�

Then �nm can be express as

�n���m� =
1

�
� d2z
�z�e−�z�2/2Inm�0,0�

= � 1
�n ! m!

�n

�un

�m

�vm

�� 1

�
� d2z
�z�e−�z�2/2−uz+vz�+uv
�

u,v=0

. �B5�

Substituting the characteristic function of a given state into
Eq. �B5�, then elements of the density matrix can be one by
one obtained by completing the integral in the brackets of
Eq. �B5� and the differentiation with respect to auxiliary
parameters u and v.

For completeness, we list the characteristic functions of
the single-mode Gaussian state and the corresponding tele-
ported states for entangled resources �1�–�5�, which are in-
volved in the calculation of Bures fidelity �22�. The charac-
teristic function of the input Gaussian state with the
covariance matrix Eq. �21� is


in�z� = exp�− 	n +
1

2

�z�2 −

1

2
m�z2 −

1

2
mz�2
 . �B6�

Note that the second-order moments n and m used here are
different from the indexes in �n���m� used previously in this
appendix. Then the characteristic function of the teleported
state using the two-mode squeezed state as the entangled
resource is


�z� = exp�− 	1 − �

1 + �
+ n +

1

2

�z�2 −

1

2
m�z2 −

1

2
mz�2
 .

�B7�

The characteristic function of the teleported state using the
photon-subtracted state as the entangled resource is of the
form
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s�z� = �1 + c1�z�2 + c2�z�4�exp�− 	1 − �

1 + �
+ n +

1

2

�z�2

−
1

2
m�z2 −

1

2
mz�2
 , �B8�

where the coefficients cis �i=1,2� are only dependent of �.
The characteristic function of the teleported state using the
photon-added state as the entangled resource is of the same
form but with different cis.

The characteristic function of the teleported state using
the photon-added-then-subtracted state as the entangled re-
source is of the form


sa�z� = �1 + c1�z�2 + c2�z�4 + c3�z�6 + c4�z�8�

�exp�− 	1 − �

1 + �
+ n +

1

2

�z�2 −

1

2
m�z2 −

1

2
mz�2
 ,

�B9�

where the coefficients cis �i=1,2 ,3 ,4� are only dependent of
�. The characteristic function of the teleported state using the
photon-subtracted-then-added state as the entangled resource
is of the same form but with different cis.

�1� S. D. Bartlett, B. C. Sanders, S. L. Braunstein, and K. Nemoto,
Phys. Rev. Lett. 88, 097904 �2002�.

�2� S. D. Bartlett and B. C. Sanders, Phys. Rev. Lett. 89, 207903
�2002�.

�3� J. Eisert, S. Scheel, and M. B. Plenio, Phys. Rev. Lett. 89,
137903 �2002�.

�4� J. Fiurášek, Phys. Rev. Lett. 89, 137904 �2002�.
�5� G. Giedke and J. I. Cirac, Phys. Rev. A 66, 032316 �2002�.
�6� J. Niset, J. Fiurášek, and N. J. Cerf, Phys. Rev. Lett. 102,

120501 �2009�.
�7� J. Wenger, R. Tualle-Brouri, and P. Grangier, Phys. Rev. Lett.

92, 153601 �2004�.
�8� A. Zavatta, S. Viciani, and M. Bellini, Science 306, 660

�2004�.
�9� A. Zavatta, S. Viciani, and M. Bellini, Phys. Rev. A 72,

023820 �2005�.
�10� A. Zavatta, V. Parigi, and M. Bellini, Phys. Rev. A 75, 052106

�2007�.
�11� V. Parigi, A. Zavatta, M. Kim, and M. Bellini, Science 317,

1890 �2007�.
�12� M. S. Kim, H. Jeong, A. Zavatta, V. Parigi, and M. Bellini,

Phys. Rev. Lett. 101, 260401 �2008�.
�13� P. Marek, H. Jeong, and M. S. Kim, Phys. Rev. A 78, 063811

�2008�.
�14� S. S. Mizrahi and V. V. Dodonov, J. Phys. A 35, 8847 �2002�.
�15� M. S. Kim, E. Park, P. L. Knight, and H. Jeong, Phys. Rev. A

71, 043805 �2005�.
�16� A. R. Usha Devi, R. Prabhu, and M. S. Uma, Eur. Phys. J. D

40, 133 �2006�.
�17� A. Biswas and G. S. Agarwal, Phys. Rev. A 75, 032104

�2007�.
�18� Y. Yang and F.-L. Li, J. Opt. Soc. Am. B 26, 830 �2009�.
�19� T. Opatrný, G. Kurizki, and D.-G. Welsch, Phys. Rev. A 61,

032302 �2000�.
�20� P. T. Cochrane, T. C. Ralph, and G. J. Milburn, Phys. Rev. A

65, 062306 �2002�.
�21� S. Olivares, M. G. A. Paris, and R. Bonifacio, Phys. Rev. A

67, 032314 �2003�.
�22� S. Olivares and M. G. A. Paris, Phys. Rev. A 70, 032112

�2004�.
�23� C. Invernizzi, S. Olivares, M. G. A. Paris, and K. Banaszek,

Phys. Rev. A 72, 042105 �2005�.
�24� H. Jeong, Phys. Rev. A 78, 042101 �2008�.
�25� A. Kitagawa, M. Takeoka, M. Sasaki, and A. Chefles, Phys.

Rev. A 73, 042310 �2006�.
�26� A. Ourjoumtsev, A. Dantan, R. Tualle-Brouri, and P. Grangier,

Phys. Rev. Lett. 98, 030502 �2007�.
�27� F. Dell’Anno, S. De Siena, L. Albano, and F. Illuminati, Phys.

Rev. A 76, 022301 �2007�.
�28� S. L. Braunstein and H. J. Kimble, Phys. Rev. Lett. 80, 869

�1998�.
�29� S. L. Braunstein and H. J. Kimble, Phys. Rev. A 61, 042302

�2000�.
�30� R. E. S. Polkinghorne and T. C. Ralph, Phys. Rev. Lett. 83,

2095 �1999�.
�31� S. M. Tan, Phys. Rev. A 60, 2752 �1999�.
�32� P. van Loock and S. L. Braunstein, Phys. Rev. A 61,

010302�R� �1999�.
�33� D. F. Walls and G. J. Milburn, Quantum Optics �Springer-

Verlag, Berlin, 1994�.
�34� C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K.

Wootters, Phys. Rev. A 54, 3824 �1996�.
�35� A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777

�1935�.
�36� C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres,

and W. K. Wootters, Phys. Rev. Lett. 70, 1895 �1993�.
�37� L. Vaidman, Phys. Rev. A 49, 1473 �1994�.
�38� A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H.

J. Kimble, and E. S. Polzik, Science 282, 706 �1998�.
�39� T. Ide, H. F. Hofmann, A. Furusawa, and T. Kobayashi, Phys.

Rev. A 65, 062303 �2002�.
�40� A. V. Chizhov, L. Knöll, and D.-G. Welsch, Phys. Rev. A 65,

022310 �2002�.
�41� P. Marian and T. A. Marian, Phys. Rev. A 74, 042306 �2006�.
�42� B. G. Englert and K. Wódkiewicz, Int. J. Quantum Inf. 1, 153

�2003�.
�43� A. Ferraro, S. Olivares, and M. G. A. Paris, e-print

arXiv:quant-ph/0503237.
�44� H.-R. Li, F.-L. Li, and Y. Yang, Chin. Phys. 15, 2947 �2006�.
�45� R. Jozsa, J. Mod. Opt. 41, 2315 �1994�.
�46� Gh.-S. Paraoanu and H. Scutaru, Phys. Rev. A 61, 022306

�2000�.

ENTANGLEMENT PROPERTIES OF NON-GAUSSIAN… PHYSICAL REVIEW A 80, 022315 �2009�

022315-9


