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A one-step scheme is proposed to realize three-qubit controlled-PHASE �CPHASE� gate for electron spins in
lateral quantum dots, and two different quantum-dot configurations �ring- and line-type� are considered. We
investigate the effect of the acoustic phonon and spontaneous emission on the scheme. Numerical results show
that the gate performance is primarily related to quantum-dot configuration and temperature, and can be
significantly improved by selecting lower single-exciton resonance in line-type configuration.
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I. INTRODUCTION

All-optical quantum computation using electron spins in
quantum dots �QDs� seems particularly attractive in view of
long decoherence time of spins ��ns� �1–3� and the high
speed of optical transitions ��ps� �4�. With well developed
technologies in semiconductors and lasers, initializing �5,6�,
manipulating �4� and detecting spin qubit �7� in a QD has
been achieved experimentally. Although many two-qubit
quantum operations, such as optical entanglement prepara-
tion �8,9� and controlled-phase gate �10,11�, have been pre-
sented, very few multiqubit quantum gates in QD system
�12� have been proposed so far. In fact, comparing with
quantum networks consisting of many two-qubit gates and
single qubit rotations, the multiqubit gate, which can reduce
the number of quantum gates �13�, is more efficient in con-
structing simpler and faster complicated quantum computa-
tion, such as quantum error correction �14� and Grover’s
search algorithm �15�.

In this paper, we present an all-optical one-step scheme
for realizing three-qubit controlled-phase gate on electron
spins in lateral quantum dots. We investigate the effect of the
acoustic phonon and spontaneous emission on the scheme.
For three lateral QDs, there are two different coupling con-
figurations: ring type and line type. We show that the factors,
which affect the gate fidelity, mainly come from quantum-
dot configuration and temperature. Furthermore, the gate
quality can be significantly improved by selecting lower
single-exciton resonance in line configuration. The study on
multiple quantum gate in different configurations is of some
practical reference values for complicated large scale quan-
tum computing.

The structure of this paper is organized as follows. In Sec.
II, we introduce the theoretical model based on quantum-dot
system. In Sec. III, we explain the basic idea of implement-
ing the three-qubit controlled-PHASE �CPHASE� gate via only
one laser field, and also give the approximate analytical so-
lution to the model. In Sec. IV, the effect of dissipation is
discussed. To fully understand the scheme, in Sec. V, the
numerical simulations to the model are presented to evaluate
the influence of various phonon interactions, different con-

figurations, as well as anisotropy of quantum dot. Finally, our
conclusion follows in Sec. VI.

II. MODEL

The systems studied in this paper are schematically shown
in Figs. 1�a� and 1�b�, where three quantum dots are
arranged in ring- or line-type configuration, respectively.
Each QD is doped with a single excess electron, and qubit
bases are defined by electron spin states: �mz= 1

2 �= �↑ �, and
�mz=− 1

2 �= �↓ �. Ideally, what we would like to realize is the
three-qubit phase gate �16�, which generates a � phase on
one of the eight three-qubit computational basis states, while
leaving the other seven states unchanged, i.e.,

Up = exp�i� �
j=1

3

�↑ j��↑ j�� . �1�

To perform such an operation, a �+ polarized laser with fre-
quency �l is applied to drive the transition between spin state
�↑ � and exciton state �X⇑

+�= �↑↓⇑�, where �X⇑
+� is a positive

charged trion state including an exciton �electron-hole pair�
and a spin �see Fig. 1�c��. The corresponding coupling
strength is given by �. If a qubit is initialized at �↓ �, no
exciton will be created because of the Pauli blocking effect
�10�. The Hamiltonian of system is given by H=H0+Hint,
with

H0 = �x	
i=1

3

ni + VF	
�i,j�

ci
†cj + Vxx	

�i,j�
ninj , �2�
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FIG. 1. �Color online� Possible configurations of three QDs sys-
tem, ring configuration for �a� and line configuration for �b�. The
exciton energy level diagram due to Pauli blocking effect is illus-
trated in �c�.
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Hint = � cos��lt�	
i=1

3

�ci
† + ci� , �3�

where ci
†= �X⇑

+��↑ � �ci= �↑ ��X⇑
+�� is the creation �annihilation�

operator of exciton at the ith QD, and we set ni=ci
†ci. The

symbol �i , j� means that the sum is performed over the near-
est neighbors only. �x is the exciton energy for each dot, VF
is the interdot Förster interaction strength �17�, and Vxx is the
bitrion energy shift. Förster interaction has been recently
demonstrated by Kim et al. in semiconductor QDs �18�.

Since the operator 	i=1
3 �↓ �i�↓ � commutates with the

Hamiltonian �1� and is a conserved quantity, the Hamiltonian
can be decoupled into four subspaces sorted by the number
of qubit in the basis state �↓ �. Additionally, with the help of
Förster interaction VF and static Coulomb interaction Vxx, the
energy shift is different for each subspace. We pay attention
to the subspace associated with the electron state �↑↑↑�. In
this subspace, under the condition VF, Vxx��, transitions
from the initial state �↑↑↑� to multitrion states can be effec-
tively suppressed, and only the terms containing single trion
need to be considered. In Fig. 2�a�, we present the lowest
four eigenstates of Eq. �2� in the ring-type configuration,

��1� = �↑↑↑� ,

��2� = −
1

6

�c1
† − 2c2

† + c3
†��↑↑↑� ,

��3� =

2

2
�c1

† − c3
†��↑↑↑� ,

��4� =
1

3

�c1
† + c2

† + c3
†��↑↑↑� . �4�

Similarly, the lowest four eigenstates for the line-type con-
figuration are shown in Fig. 2�b�,

��1� = �↑↑↑� ,

��2� =
1

2
�c1

† − 
2c2
† + c3

†��↑↑↑� ,

��3� = −

2

2
�c1

† − c3
†��↑↑↑� ,

��4� =
1

2
�c1

† + 
2c2
† + c3

†��↑↑↑� . �5�

III. ONE-STEP THREE-QUBIT CPHASE GATE

In this section, we develop an analytical model for one-
step implementation of the three-qubit phase gate. In general,
the implementation of the three-qubit phase gate requires a
lot of two-qubit controlled gates and one-qubit rotations �13�.
However, we will show that such a gate can be realized via
only one step operation. For this purpose, we tune the laser
frequency so that the initial state ��1� interacts resonantly
with ��s�, which is one of the single-exciton dressed states
�shown in Fig. 2�. Under the condition VF, Vxx��, the laser
field is far off the resonance with undesirable transitions, and
the effective Hamiltonian can be given by

Heff =
���t�

2
���s��↑↑↑� + H.c.� , �6�

where � is character factor, which is determined by
quantum-dot configuration. For ring-type configuration,
�=
3, ��s�= ��4�, but for line configuration, there exist two
cases: �i� high exciton energy level, �=1+


2
2 , ��s�= ��4�; �ii�

low exciton energy level, �=1−

2
2 , ��s�= ��2�. Hence the

time evolution of the initial state �↑↑↑� has the following
form:

�↑↑↑� → cos ��t��↑↑↑� + ie−i�lt sin ��t���s� , �7�

with ��t�= �
2 �0

t d	��	�. If we choose the interaction time T
for ��T�=�, the state �↑↑↑� will acquire a � phase, i.e.,

�↑↑↑� → − �↑↑↑� . �8�

For the weak coupling strength, the polarized laser field
cannot induce any transitions in other three subspaces which
are associated with the number of qubits �↓ �, and only the
state �↑↑↑� experiences dynamic evolution. Thus, the three-
qubit phase gate is achieved only in need of one laser field to
couple the three qubits collectively �10,11�. Moreover, this
one-step scheme does not require laser addressing of indi-
vidual quantum dot, and may be of much more feasibility
with current experimental technology.

To implement the control gate, we should designate the
control and target qubits in our scheme. From the perspective

FIG. 2. �Color online� The energy level diagrams for ring and
line configuration are shown in �a� and �b�, respectively. The arrows
represent the possible resonant transitions to implement the gate
operation. The definition of ��i� can be found in the text.
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of geometric symmetry, the three qubits are of equal status in
the ring type, therefore one can choose any qubit to be target
qubit, and the other two qubits to be control qubits. For the
line type, the central qubit is different from the other two end
qubits, so we can select one of the end qubits to be target
qubit. For example, we set qubits 1 and 2 as control qubits,
and set qubit 3 as target qubit �illustrated in Figs. 1�a� and
1�b��.

The three-qubit phase gate can be used to generate en-
tanglement. To characterize and quantify the entanglement of
three-qubit state, we can use the measure of the three tangle
	123 �19�. If the input state is ��in�= � 1


2
��↑ �+ �↓ ����3, the

output state of this three-qubit phase gate will be
��out�= � 1


2
��↑ �+ �↓ ����3−2�↑↑↑�. We can find that the input

state is a separable state with 	123=0, while the output state
is an entangled state with 	123=0.5. The nonlocal property of
the three-qubit phase gate is testified.

It should also be noted that the dots in practice always
have energies which are not the same, and the energy differ-
ence is at least hundreds of 
eV. Take the ring configuration
for example. We suppose that the energy of single exciton in
one dot is different from the other two dots by �. Without
loss of generality, we assume the single-exciton energies for
both QD1 and QD3 are �x, while energy for QD2 is �x+�.
The three single-exciton eigenvectors in the subspace asso-
ciated with �↑↑↑� are

��2� = − A2�c1
† +

3VF + B

3VF − A
c2

† + c3
†�↑↑↑� ,

��3� =

2

2
�c1

† − c3
†��↑↑↑� ,

��4� = − A4�c1
† +

3VF + A

3VF − B
c2

† + c3
†�↑↑↑� , �9�

with A=�+
8VF
2 + �VF−��2, B=�−
8VF

2 + �VF−��2. In
above equations, Ai represents the normalization factor of
��i�. And those corresponding energies are

E2 = �0 +
VF + B

2
,

E3 = �0 − VF,

E4 = �0 +
VF + A

2
. �10�

We still choose ��s�= ��4�, and �

=
9VF−�+3
8VF
2 + �VF−��2 / �
2�8VF

2 + �VF−��2�1/4�. When
�=0, the result reduces to the special case where three dots
are resonant. However, as the energy difference ��� increases,
the minimum energy difference between ��4� and all other
single-exciton states decreases. This adds more challenges
for us to select the transition ��1�↔ ��4� without driving
other unwanted transitions. Another effect is that the opera-
tion time for three-qubit gate is prolonged. To this end, we
had better control the value ��� within �500 
eV to guaran-
tee the good performance of three-qubit gate. There are some

techniques, such as applying external electric field �20� and
annealing �21,22�, which can tune the exciton energies of
dots in order to fabricate resonant or near-resonant QDs.

IV. DECOHERENCE DUE TO ENVIRONMENT AND
CONFIGURATION EFFECTS

To explore the CPHASE performance in an open mesos-
copic system which is embedded in both phonon environ-
ment and radiation field, we derive a full master equation
including various dissipation sources to describe the dynamic
evolution. Here we focus on the low temperature regime, and
consider the influence of the acoustic phonons. The exciton-
phonon interaction �23� can be written as

Hep = 	
j=1

3

	
q

gq,jcj
†cj�aq + aq

†� , �11�

with the effective excitonic coupling strength

gq,j = eiq·dj�Mq,j
e �e�q� − Mq,j

h �h�q�� , �12�

in which

�e�h��q� =� d3r�e�h��2eiq·r, �13�

is the form factor and Mq,j
e�h� denotes the bulk coupling matrix

element. aq�aq
†� is the annihilation �creation� operator for

phonon with wave vector q. dj represents the location of
QDs, which is determined by the configuration. The wave
function we choose is e�h��exp�−r2 /2le�h�

2 �, with le�h� de-
noting the electron �hole� localization length.

Since the interaction between acoustic phonons and exci-
tons may be mediated by deformation potential coupling and
piezoelectric coupling, the bulk coupling matrix element
Mq,j

e�h� is given by �23�

Mq,j
e�h� = 	

q

 �

2
�q�Vcs
��q�De�h� + iPq� , �14�

in which 
 denotes the mass density, V the normalization
volume, cs the sound velocity of the phonon, and �q�= �

cs
the

modulus of q. De�h� is the deformation potential coupling
constant of electron �hole� which is zero except for the
longitudinal-acoustic �LA� mode. Pq is the piezoelectric cou-
pling which arises from both longitudinal-acoustic mode and
transverse-acoustic �TA� mode �24�,

Pq = − 	
q

8�ee14

�0�s�q�2
��xqyqz + �yqzqx + �zqxqy� , �15�

with

�� �LA� = �sin � cos �,sin � sin �,cos �� ,

�� �TA1� = �sin �,− cos �,0� ,

�� �TA2� = �− cos � cos �,− cos � sin �,sin �� , �16�

where �0 and �s are the vacuum permittivity and the static
dielectric constants, respectively.
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Following the Markov approximation, the master equa-
tion for the density matrix of the whole system may be re-
duced to a Lindblad form

�̇ = − i�H,�� + 	
i

J��i���N��i� + 1�D�Li�� + N��i�D�Li
†��� ,

�17�

where

D�L�� = L�L† −
1

2
�L†L� + �L†L� �18�

is the decay operator of phonon effect, and N���
= �exp�� /kBT�−1�−1 is the thermal occupation of the phonon
modes. J��� denotes the phonon spectral density, which de-
pends strongly on the configuration. We set Gd��� as the
common factor of deformation potential effect, Gp��� as the
common factor of piezoelectric potential effect, fp�� ,�� as
the factor of three kinds of phonon modes, and Jc��� as the
factor of configuration effect in spectral densities. The spec-
tral density J��� is calculated as

J��� =� d�Jc����Gd��� + Gp���fp��,��� , �19�

with

Gd��� =
�3

8�2
cs
5 �Dee

−��le/2cs�
2

− Dhe−��lh/2cs�
2
�2,

Gp��� =
8e2�e14

2

�0
2�s

2
cs
3 �e−��le/2cs�

2
− e−��lh/2cs�

2
�2,

fp��,�� =
1

32
sin2 ��18 + 14 cos 2� + cos�2� − 4��

− 2 cos�4�� + cos�2� + 4��� . �20�

In the case of the ring configuration, the Hamiltonian of
the total system �acoustic phonon and quantum dots� fol-
lows:

H = Hsub� + 	
q

�qaq
†aq + Hep, �21�

where Hsub� describes the transitions between the dressed
states shown in Fig. 2�a�,

Hsub� = − 3VF��2���2� − 3VF��3���3�

+

3�

2
���1���4� + H.c.� . �22�

Following approaches mentioned in �25�, we move the
Hamiltonian into the interaction picture with respect to
Hsub� +	

q

�qaq
†aq, and calculate the spectral densities J���. The

relevant parameters are shown in Table I. The states ��1�,
��2�, ��3�, and ��4� are the eigenstates of Hsub� , with
��1�= 1


2
���1�− ��4�� and ��4�= 1


2
���1�+ ��4��.

The analysis of the line configuration can be derived in
analogy to the ring configuration. As shown in Fig. 2�b�, both

��2� and ��4� have an energy shift from �x, and can be
resonantly coupled to the level ��1�. Then we obtain spectral
densities J��� in two different resonant transitions: one is
from ground state ��1� to low exciton energy level ��2�, and
the other is from ��1� to high exciton energy level ��4�. The
corresponding results are listed in Table II. For convenience,
we label two new eigenvectors as ��1�= 1


2
���1�− ��s��,

��s�= 1

2

���1�+ ��s�� �s=2,4�.
So far, we have only considered the influence of acoustic

phonon on the system. Nevertheless, the finite exciton life-
time might also affect the gate operation. This can be taken
into account by adding the spontaneous emission terms �with
decay rate ��

R��� = 	
i=1

3

��ci�ci
† −

1

2
�ci

†ci� + �ci
†ci�� �23�

to the right side of the density operator master equation Eq.
�17�.

V. DISCUSSION AND NUMERICAL SIMULATIONS

In the preceding sections, we present the theoretical
model and basic formulations. Now for a more concrete cal-
culation, we will compare the effects of two phonon interac-
tions, then discuss the anisotropic effect of the QD, and fi-
nally give an exact solution to the system dynamics through
numerical simulations. Here we consider the prototype InAs/
GaAs QDs, and choose the parameters VF=0.85 meV, exci-

TABLE I. Configuration factors of spectral density with differ-
ent frequencies and dissipative operators in ring configuration. The
character factor �=
3 �in Eq. �6�� and d=R /
3.

Jc��� L �

2−2 cos�
3�q�d sin � sin �� 1
2
3

��2���4� 3VF+ 1
2��

1
2
3

��2���1� 3VF− 1
2��

9 sin2 � cos2 ��q�2d2− 1
6 ��3���4� 3VF+ 1

2��
9

32sin4 ��3+cos 2�−cos 4���q�4d4 1
6 ��3���1� 3VF− 1

2��

9− 9
2sin2 ��q�2d2+ 27

32sin4 ��q�4d4 1
6 ��1���4� ��

TABLE II. Configuration factors of spectral density with differ-
ent frequencies and dissipative operators in line configuration. The
character factor �=1+


2
2 for transition between ��1� and ��4�, and

�=1−

2
2 for transition between ��1� and ��2�. Here we set d=R in

the line configuration.

Jc��� Llow-level Lhigh-level �

4 sin2��q�d cos �� 1
4 ��1���3� 1

4 ��3���4� 
2VF+ 1
2��

1
2
2

��3���4� 1
2
2

��2���3� 
2VF
1
4 ��2���3� 1

4 ��3���1� 
2VF− 1
2��

16 sin4� �q�d cos �
2 � 1

4
2
��1���4� 1

4
2
��2���4� 2
2VF+ 1

2��
1

4
2
��2���4� 1

4
2
��2���1� 2
2VF− 1

2��

16 cos4� �q�d cos �
2 � 1

8 ��1���2� 1
8 ��1���4� ��
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ton energy �x=1.1 eV, bi-trion binding energy
Vxx=3 meV, Rabi frequency of external laser field
�=0.1 meV, radiative decay rate �=1.6 
eV, distance be-
tween adjacent QDs R=3.5 nm �25�, electron and hole
ground state localization length le=2.16 nm, lh=1.44 nm,
mass density 
=5.3 g /cm3, and the sound velocity
cs=4.8�105 cm /s. We set deformation potential coupling
constant as De=−14.6 eV and Dh=−4.8 eV, piezoelectric
constant as e14=0.16 C /m2, static dielectric constant as
�s=12.56 �23�.

A. Exciton-phonon interaction

In the above calculations, we introduce two kinds of
exciton-phonon interaction: deformation potential interaction
and piezoelectric interaction. For two-qubit case �11�, the
decay rate due to deformation potential interaction is one
order of magnitude larger than that due to piezoelectric in-
teraction. Thus the deformation potential coupling due to LA
phonons might be considered to be the dominant phonon
decoherence mechanism, while the piezoelectric coupling
can be neglected. For three-qubit case, we take the spectral
functions of line configuration for example. As shown in Fig.
3, the spectral density of piezoelectric coupling Jp is compa-
rable to that of deformation potential coupling Jd. Therefore,
piezoelectric decoherence cannot be ignored. We also find
that the deformation potential coupling remains the primary
decoherence mechanism in the region ��3 meV.

B. Effect of anisotropic quantum dot

In the theoretical analysis above, we have assumed that
the wave function of QD is isotropic, which indicates that the

electron �hole� localization length has tantamount value
as le�h� in all directions. But the wave function e�h� of
real QD might in principle be anisotropic, which typically
exhibits cylindrical symmetry, and can be expressed as
e�h��exp�− 1

2 � x2+y2

l�e�h�
2 + � z

lze�h�
�2��. However, we find that the

spectral densities generated from both the isotropic and an-
isotropic wave functions are in good agreement within the
low-frequency regime ��3 meV�. The numerical results of
three kinds of spectral densities Ji��� in the line configura-
tion are shown in Fig. 4. The blue dashed lines show the
isotropic case that le=2.16 nm and lh=1.44 nm. Since a real
QD is of flat and cylindrical symmetric shape, the transverse
component l�e�h� is larger than the longitudinal axis compo-
nent lze�h�. We use �e�h� to describe the offset ratio of

FIG. 3. �Color online� The spectral densities of line configura-
tion: �a� for deformation potential interaction, �b� for piezoelectric
interaction. All the three spectral densities of Jdi��� or Jpi��� cor-
responding to Jc��� listed in Table II: Jd�p�1���, Jd�p�2���, and J3���
are relevant to Jc1���=4 sin2��q�d cos ��, Jc2���=16 sin4� �q�d cos �

2 �
and Jc3���=16 cos4� �q�d cos �

2 �, respectively.

FIG. 4. �Color online� Comparisons of spectral densities in dif-
ferent wave function model. The spectral densities Ji��� correspond
to Jc��� which are listed in Table II: J1��� in �a�, J2��� in �b� and
J3��� in �c� are relevant to Jc1���=4 sin2��q�d cos ��,
Jc2���=16 sin4� �q�d cos �

2 � and Jc3���=16 cos4� �q�d cos �
2 �, respectively.

The four curves in each figure describe the relationship between the
spectral density and frequencies under different wave functions:
isotropy in which the offsets are �e�h�=0 �blue, dashed line�, cylin-
drical symmetry with the offsets �e�h�=0.1 �red, dash-dot line�,
�e�h�=0.2 �black, solid line�, as well as �e�h�=0.3 �green, dotted
line�.
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localization length which represents the anisotropy of QD.
Thus in-plane component l�e�h� and the longitudinal compo-
nent lze�h� of localization length can be written as

l�e�h� = le�h��1 + �e�h�� ,

lze�h� = le�h��1 − 2�e�h�� . �24�

We discuss the anisotropy cases ��e�h��0� and choose three
offsets: �i� �e�h�=0.1, �ii� �e�h�=0.2, and �iii� �e�h�=0.3. The
larger the offset is, the more obvious the anisotropy will be.
From the simulation results illustrated in Fig. 4, we find that
in the low-frequency limit, the isotropic wave function
model is representative and the spectral density does not
change a lot when the wave function becomes anisotropic.

C. Fidelity of three-qubit CPHASE gate

In order to check effects of acoustic phonon and
spontaneous emission on our scheme, we give numerical
calculations on the ring- and line-type system via the full
master equation. In Fig. 5, we plot the fidelity
F= ���in�Up

†��t�Up��in�� of state created from the initial
state ��in�= � 1


2
��↑ �+ �↓ ����3, where ��t� is time-dependent

density operator and Up is three-qubit phase gate
Up=exp�i�� j=1

3 �↑ j��↑ j��.
The fidelity of the ring configuration is illustrated in Fig.

5�a�. The black solid line is the result when no dissipation is
considered, and shows perfect Rabi oscillations. We may find
that spontaneous radiation is not a primary decoherence
source, since its contribution is so small that Rabi oscilla-
tions can preserve for a long time. Furthermore, the decoher-
ence due to phonon-exciton interaction, which includes both
deformation potential and piezoelectric coupling, can be con-
sidered as the dominant decay source. The fidelity is shown
to be quickly damped, and no clear oscillations are observ-
able even if the temperature achieves its limit T=0 K. As T
increases, the system suffers a stronger damping, and oscil-
lations rapidly disappear after one period ��50 ps�.

The numerical simulations of line configuration including
all four levels are presented in Fig. 5�b� for high-level and
Fig. 5�c� for low-level case. For the high-level case, though
the maximum fidelity is a little higher, the behavior is similar
to the one in the ring configuration that Rabi oscillations are
damped quickly when phonon effect exists. This is because
both cases share a similar character factor of configuration.
For the low-level case, the gate has a longer oscillation pe-
riod because it has the smaller character factor than the other
two cases. Moreover, this level is the ground state of the
system and does not suffer severe decoherence as the other
two cases. Therefore, the gate here becomes more insensitive
to temperature, and phonon effect does not result in a strong
damping at very low temperature. Especially at 0 K, the be-
havior is as the same as that when only the spontaneous
radiation is considered. As the temperature increases, oscil-
lations are damped: for T=5 K, two periods of Rabi oscil-
lations are still visible, but no clear oscillations are exhibited
for T=10 K. This enables us to perform a CPHASE gate be-
low T=5 K with fidelity beyond 94.7%, which is much
larger than the other two cases.

To further emphasize the effect of anisotropic quantum
dot and the role of piezoelectric interaction in decoherence
mechanism, we study the fidelity of the CPHASE gate in cor-
responding occasions. We consider the low-level case of the
line configuration, and fix the temperature T=5 K. In Fig. 6,
we compare the gate fidelities of different offset rations �e�h�,
then find that those anisotropic cases are in good agreement
with the isotropic case. It confirms that the anisotropy of
electron �hole� does not have a strong impact on the behavior
of three-qubit gate. As shown in Fig. 7, the fidelity of the
phase gate can, respectively, achieve 97.3%, 95.3%, or
94.7%, when piezoelectric, deformation potential, or both
coupling is considered. It infers that at T=5 K, the gate
fidelity is reduced by 0.6% because of the piezoelectric cou-
pling, while the fidelity decreases by 2.6% for the deforma-
tion potential interaction.

FIG. 5. �Color online� The fidelity as a function of time with
�=0.1 meV and R=3.5 nm: �a� for ring configuration, �b� for line
configuration with transition ��1�↔ ��4�, �c� for line configuration
with transition ��1�↔ ��2�. We present five curves in each figure to
describe the performance of CPHASE gate in different conditions:
without noise �black, solid line�, only spontaneous radiation �red,
dashed line�, combining both spontaneous and phonon effects at
three finite temperature. Temperature T varies from T=0 K �green,
dotted line�, 5 K �pink, dash-dot line�, 10 K �blue, solid line�.
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VI. CONCLUSION

In summary, we have studied the configuration effect on
the one-step CPHASE gate via modifying energy level struc-
ture and phonon-exciton coupling strength. By comparing
the fidelity between ring and line configuration, we show that
the gate fidelity is primarily related to QD configuration and
temperature, and the gate quality can be significantly im-
proved by selecting lower single-exciton resonance in line-
type configuration. Our work will permit a detailed experi-
mental investigation in arrangement of QD arrays and in
fabrication of complicated quantum information processing.
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FIG. 6. �Color online� The comparison of three-qubit CPHASE

gate fidelity in isotropic and anisotropic wave function model: iso-
tropic �black, solid line�, �e�h�=0.1 �green ��, �e�h�=0.2 �red ��, as
well as �e�h�=0.3 �blue, ��.
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FIG. 7. �Color online� The influence of exciton-phonon interac-
tion on three-qubit CPHASE gate fidelity: only the deformation po-
tential coupling �black, dashed line�, only the piezoelectric coupling
�blue dash-dot line�, and both the deformation potential and piezo-
electric coupling �red, solid line�.
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