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We have studied numerically the evolution of an adiabatic quantum computer in the presence of a Markov-
ian Ohmic environment by considering Ising spin-glass systems with up to 20 qubits independently coupled to
this environment via two conjugate degrees of freedom. The required computation time is demonstrated to be
of the same order as that for an isolated system and is not limited by the single-qubit decoherence time T2

�, even
when the minimum gap is much smaller than the temperature and decoherence-induced level broadening. For
small minimum gap, the system can be described by an effective two-state model coupled only longitudinally
to environment.

DOI: 10.1103/PhysRevA.80.022303 PACS number�s�: 03.67.Lx, 03.65.Yz

Adiabatic quantum computation �1� �AQC� is an attrac-
tive model of quantum computation �QC�. It eliminates the
need for precise timing of the qubit transformations required
in the gate-model computation scheme and is also expected
to possess some degree of fault tolerance afforded by the
energy gap separating the ground from excited states of the
qubit Hamiltonian. AQC approach is particularly appealing
in the context of superconducting qubits which in principle
have the required flexibility for implementation of compli-
cated interactions. In the AQC, a system starts from a readily
accessible ground state of some initial Hamiltonian Hi and
slowly evolves into the ground state of the final Hamiltonian
Hf which encodes a solution to the problem of interest:

HS�t� = �1 − s�t��Hi + s�t�Hf , �1�

where s�t�� �0,1� is a monotonic function of time t. Here,
we only consider a linear time sweep s�t�= t / tf, where tf is
the total evolution time. Transitions out of the ground state
can be caused by the Landau-Zener processes �2� at the an-
ticrossing �s=s��, where the gap g between the ground state
�0� and first excited state �1� goes through a minimum: gm
�g�s��. The probability of being in the ground state at the
end of the adiabatic evolution is approximately ��=kB=1�

P0f = 1 − e−tf/ta, ta �
4

�gm
2 �	1�

dHS

ds
�0��

s=s�

. �2�

To ensure large P0f, one needs tf � ta. The computation time
is hence determined by ta and thus by gm.

In the gate-model QC, there is no direct correspondence
between the wave function and the instantaneous system
Hamiltonian. The Hamiltonian is only applied at the time of
gate operations and usually involves only a few qubits. The
wave function, therefore, is strongly affected by the environ-
ment and is irreversibly altered after the decoherence time,
which is typically smaller than the single-qubit dephasing
time T2

�. This means that T2
� imposes an upper limit on the

total computation time, unless some quantum error correc-
tion scheme �which requires significant resources� is utilized.
This is not true for AQC, as the wave function is always very
close to the instantaneous ground state of the system Hamil-
tonian and is consequently more stable against the decoher-

ence. Qualitatively, one expects decoherence to drive the sys-
tem’s reduced density matrix toward being diagonal in the
energy basis, which is not harmful for AQC but is detrimen-
tal for the gate-model QC. Such robustness has been demon-
strated in previous studies �3–10�. However, those studies
have either used a two-state model to describe the behavior
of a multilevel system at the anticrossing or assumed noise
models that are not motivated by physical implementations.
In this paper, we numerically study quantum evolution of a
multiqubit system directly without the two-state approxima-
tion, assuming a quite general and realistic coupling to
environment.

We consider a very general Hamiltonian H�t�=HS�t�
+HB+Hint, which includes system, bath, and interaction be-
tween them, respectively. The dynamics of the total �system
plus environment� density matrix is governed by the Liou-
ville equation �11�: �̇�t�=−i�H�t� ,��t��. The reduced density
matrix for the system is obtained by partially tracing over the
environmental degrees of freedom: �S=TrB���. Let �n�t�� de-
note the instantaneous eigenstates of the system Hamil-
tonian: HS�t��n�t��=En�t��n�t��. In this basis, we define
�nm�t�= 	n�t���S�t��m�t��. Taking the time derivative, we ob-
tain �dropping explicit time dependences�

�̇nm = 	n��̇S�m� + 	ṅ��S�m� + 	n��S�ṁ� . �3�

We begin by focusing on the first term in Eq. �3� which is
responsible for the decay processes. We treat it quasistati-
cally, assuming that the evolution of the Hamiltonian is much
slower than the environmentally induced decay rates, so that
the eigenstates can be taken as time independent. We also
assume that the effect of the system on the environment is so
small that the bath maintains its equilibrium distribution �B
at all times. Moreover, the bath is taken to have correlation
time �B shorter than all the decay times of the system so that
one can apply Markovian approximation. Then, using the
standard Bloch-Redfield formalism, one can show that
�11,12�

	n��̇S�m� = − i�nm�nm + e−i�nmt	n��̇SI�m�

= − i�nm�nm − 

k,l

Rnmkl�kl, �4�

where �nm=En−Em, and
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Rnmkl = �lm�nrrk
�+� + �nk�lrrm

�−� − �lmnk
�+� − �lmnk

�−� ,

�lmnk
�+� = �

0

	

dte−i�nkt	H̃I,lm�t�H̃I,nk�0�� , �5�

�lmnk
�−� = �

0

	

dte−i�lmt	H̃I,lm�0�H̃I,nk�t�� ,

H̃I,nm�t� = 	n�eiHBtHint�t�e−iHBt�m� . �6�

Here, 	¯ ��TrB��B¯�, and summation over repeated indi-
ces is implied in Eq. �5�.

Substituting Eq. �4� into Eq. �3�, we obtain

�̇nm = − i�nm�nm − 

k,l

�Rnmkl − Mnmkl��kl, �7�

where Mnmkl=�nk	l � ṁ�+�ml	ṅ �k�. The tensors Mnmkl and
Rnmkl are responsible for nonadiabatic and thermal transi-
tions, respectively. For a time-independent Hamiltonian,
Mnmkl=0, and Eq. �7� becomes the Bloch-Redfield equations
�11,12�. The derivatives like �ṅ� can be calculated numeri-
cally. It is important to ensure that the equation stays trace
preserving, which requires Re 
n,m	n � ṁ�=0. This condition
is exactly satisfied �even with the truncation discussed be-
low�, if we write 	n�t� � ṁ�t��= 1

4�t �	n�t+�t��+ 	n�t−�t��
��m�t+�t��− �m�t−�t��.

To introduce coupling to environment, we consider a quite
general interaction Hamiltonian

Hint = − 

i=1

n

�Qx
�i�
x

�i� + Qz
�i�
z

�i�� , �8�

where 
x,z
�i� are the Pauli matrices of the ith qubit and Q�

�i� are
the heat-bath operators. Using Eq. �6�, and assuming uncor-
related heat baths, we find

�lmnk
�+� =

1

2

i,�

S�
�i��− �nk�
�,lm

�i� 
�,nk
�i� ,

�lmnk
�−� =

1

2

i,�

S�
�i���lm�
�,lm

�i� 
�,nk
�i� , �9�

where S�
�i����=�−	

	 dtei�t	Q�
�i��t�Q�

�i��0�� are the bath spectral
densities and 
�,lm

�i� = 	l�
�
�i��m�. Here, we have neglected the

imaginary parts of �lmnk
��� , as they only produce small shifts of

energies which in principle can be accounted for by proper
renormalization.

To model the spectral densities, we assume Ohmic
bosonic heat baths in thermal equilibrium �13�: S�

�i����
=�

�i��e−���/�c / �1−e−�/T�. The dimensionless coefficients �
�i�

describe the strength of coupling between the qubits and en-
vironment and �c is a cutoff frequency which we assume to
be larger than all relevant energy scales. The Markovian ap-
proximation is valid as long as �B�1 /�c is shorter than all
the decay times and the characteristic time variation of the
Hamiltonian.

We now use the above model to study the evolution of a

multiqubit Ising system with the initial and final Hamilto-
nians given by

Hi

E
= −

1

2

i

�i
x
�i�, �10�

Hf

E
= −

1

2

i

hi
z
�i� +

1

2

i�j

Jij
z
�i�
z

�j�, �11�

where �i, hi, and Jij are dimensionless parameters and E is
an energy scale. We consider square lattice configurations
with nearest- and next-nearest-neighbor couplings between
the qubits. The choice of only two-qubit short-range interac-
tions is motivated by the feasibility of experimental imple-
mentation. We generate spin-glass instances involving 6, 9,
12, 16, and 20 qubits by randomly choosing hi and Jij from
�−1,0 ,1 and identifying small gap instances with nonde-
generate final ground state �see, e.g., Fig. 1�. Such instances
are very rare and represent difficult problems; a degenerate
ground state �multiple solutions� ensures higher probability
of finding one of the solutions. We also choose �i=1 for
all i.

Figure 1 shows the energy spectrum for a 20-qubit in-
stance with a very small gm. The first two energy levels an-
ticross near the middle of the evolution. We should mention
that this is not a typical 20-qubit spectrum for the problem
we consider. Indeed for an average problem the minimum
gap is much larger and instances with such a small gap are
very rare. For such instances, the bottleneck of the adiabatic
evolution is expected to be near the anticrossing. Moreover,
since the gap is much smaller than the typical energy sepa-
ration of the levels, two-state approximation is expected to
be sufficient to describe the evolution. This can be tested by
comparing a fully numerical simulation without two-state ap-
proximation with a two-state model, which will be done at
the end of this paper.

To study the evolution, we numerically integrate Eq. �7�
starting from �S�0�= �0�	0�. For large number of qubits, the
computation becomes extremely time consuming because of
the large number of matrix elements in �S. However, since �S
is written in the energy basis at all times, it is possible to
significantly simplify the computation by truncating �S to
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FIG. 1. �Color online� Energy spectrum for a 20-qubit instance
with a very small minimum gap: gm /E�5�10−4. Only the first 50
energy levels of the total �106 are shown. The dashed line in the
bottom represents the ground-state entanglement calculated using
Meyer and Wallach entanglement measure �12�.
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only the lowest few energy levels occupied in the course of
evolution. To ensure small error, we increase the number of
levels kept in the calculation until the results do not change.
Typically maximum 7–8 energy levels are sufficient for the
type of evolution and instances we consider here. For very
slow evolutions, even two states suffice to achieve accept-
able accuracy. The numerical integration time can also be
significantly reduced by refining the integration steps based
on the gap size.

Figure 2 shows the probability of staying in the ground
state at the end of the evolution as a function of tf for the
20-qubit instance depicted in Fig. 1. For simplicity, we have
chosen the same coupling to the environment for all qubits:
�

�i�=. Notice that with the chosen parameters, the mini-
mum energy gap is much smaller than temperature �gm /T
�10−2�, hence thermal excitation at the anticrossing is ex-
pected. For a closed system �=0� the numerics agree very
well with Eq. �2�. For an open system �=0.2�, however, the
probability is enhanced �compared to the closed system� at
small tf, while it is suppressed for large tf, asymptotically
approaching its equilibrium value. Therefore, it is more effi-
cient to run the system for a shorter time and repeat the
process than to wait for a long time to attain significant prob-
ability. An important point is that the time scale for the prob-
abilities to reach some nonvanishing value is almost the
same ��1 ms� for all curves. This has been a generic prop-
erty for all instances that we have studied regardless of the
size of the gap.

The thermally assisted behavior in short tf regime is the
result of large relaxation after the anticrossing region and is
not expected to enhance the scaling of the computation �8�.
To confirm this, we have repeated the numerical calculations,

but now allowing transitions only in the thermal mixing re-
gion by choosing =0.2��T−g�. This type of coupling coef-
ficient only allows thermalization in a region with g�T and
therefore eliminates the relaxation back to the ground state
after the anticrossing. The result �dotted line in Fig. 2� shows
no initial enhancement compared to the closed system, con-
firming the above statement.

We now compare the numerically calculated computation
time with the single-qubit decoherence times. If the qubits
are uncoupled �Jij =0�, the single-qubit decoherence rates, in
weak coupling limit, are given by 1 /T2

��S�
�i��0��T. For

the parameters of Fig. 2, T2
��10 ns, which is typical for

solid-state qubits. This decoherence time is five orders of
magnitude smaller than the computation time ��1 ms� for
the problem of Fig. 2. Therefore, unlike the gate model QC,
in AQC, the computation time is not limited by the single-
qubit decoherence time.

It should be noted that the qubits will go through an en-
tangled state during the evolution. To demonstrate that, we
have displayed in Fig. 1 the ground-state entanglement
�dashed line� calculated using the measure originally pro-
posed by Meyer and Wallach �14�:

Q����� =
1

n


k=1

n

2�1 − Tr��k
2�� , �12�

where �k�Trj�k���	�� is obtained by partially tracing over
all qubits except the kth one. The ground-state entanglement
becomes nonzero in the first half of the evolution with a very
sharp peak at the anticrossing. The measure �12�, however,
does not describe quantitatively the actual �mixed-state� en-
tanglement at that point, since it does not account for thermal
mixing. Unfortunately, no practical mixed-state entangle-
ment measure exists for more than two qubits �15�. The en-
tanglement will not be destroyed by the environment �except
maybe at the anticrossing� as long as the system dominantly
populates the ground state. Therefore, despite the fact that
the evolution time is far beyond the qubits’ dephasing time,
the system still preserves its quantum-mechanical behavior
throughout the evolution. Once again, this is in contrast to
what is expected in the gate-model QC. Qualitative demon-
stration of the nonvanishing ground-state entanglement dur-
ing the evolution is also important as it shows that the evo-
lution cannot be described efficiently in only classical terms.

The numerical method presented here is valid only for a
Markovian environment. Most environments, however, espe-
cially in superconducting systems, are not Markovian and
have a significant amount of low frequency noise. In Ref.
�10�, we have used the two-state model �TSM� approxima-
tion to study the effect of a non-Markovian environment on
AQC. For the rest of this paper, we focus on showing that the
TSM is adequate for the description of the AQC performance
in the small-gap regime. For the environment to be able to
cause transitions out of the ground state, the interaction
Hamiltonian should have nonzero matrix elements between
the ground state and the target state. We introduce

M� = �1

n



i

�
�,10
�i� �2�1/2

�13�

which give the rms values of the matrix elements of Pauli
matrices 
�

�i� between the lowest two states. They represent

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

tf (ms)

P
0
f

LZTSM

FIG. 2. �Color online� Probability of success P0f as a function of
tf for the 20-qubit instance of Fig. 1. The solid lines are calculated
with �=0.2� and without �=0� coupling to the environment.
Other parameters are E=10 GHz and T=25 mK. The case without
coupling to the environment is compared with the pure Landau-
Zener behavior using Eq. �2� �see dashed blue line marked by LZ�.
The excellent agreement confirms that for the coherent evolution,
the two-state model is sufficient to calculate the probability. The
�black� dashed line, marked by TSM, is obtained using analytical
formula �17� obtained using a two-state model. It asymptotically
shows the same behavior as the numerical result �solid line marked
by =0.2�. The dotted line is numerical calculation with 
=0.2��T−g�, which eliminates relaxation after the anticrossing �see
the text for description�.
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some average behavior of the corresponding matrix elements
and are closely related to relaxation between the two levels.
Especially, if all the qubits have the same coupling  to the
environment, the relaxation rate between the two states is
given by

� = n�Mx
2 + Mz

2�S̃��10� , �14�

where S̃��� is the symmetrized spectral density of the �un-
correlated� baths. Figure 3�a� displays Mx and Mz as a func-
tion of s for the 20-qubit system of Fig. 1. Except for the
initial region, they both show the same behavior: a sharp
peak at the anticrossing, with a width proportional to gm,
followed by a vanishingly small value. For small T, the ex-
citation from the ground state will be suppressed everywhere
except near the anticrossing, where g�T.

The transitions at the anticrossing can be described by an
effective two-state Hamiltonian:

HS
TSM = −

1

2
�gm�x + ��z� ,

Hint
TSM = − �Qx

TSM�x + Qz
TSM�z� , �15�

where �� are the Pauli matrices in the two-state subspace,

�=2Ẽ�s−s��, with s� being the position of the anticrossing

and Ẽ an energy scale �in our case, close to E� characterizing
the anticrossing. We introduce the matrix elements

Mx
TSM = �	0��x�1�� = �cos �� ,

Mz
TSM = �	0��z�1�� = �sin �� , �16�

which are responsible for the transitions between the two
levels, where tan �=gm /�. Except for an overall factor, Mz

TSM

has the same shape as both Mx,z �see the inset of Fig. 3�,
while Mx

TSM is completely different; it has a sharp dip at �
=0 where it vanishes. Thus, in order for the effective two-
state model to give the same result as the full system, it
needs to couple to the environment only via �z �i.e., Qx

TSM

=0�. In other words, a generic single-qubit coupling to the
environment reduces to only longitudinal coupling in the ef-
fective TSM. Besides the numerical agreement, the fact that
Qx

TSM=0 in the two-state model has a deep physical meaning.
As is clear in Eq. �16�, Mx

TSM�1 everywhere except for a
very small region near the anticrossing. In the presence of a
nonvanishing Qx

TSM, the relaxation rate will be very large
almost everywhere and therefore the system should relax to
the ground state in constant time even when s=1. This is
obviously unphysical and especially not expected for spin
glasses for which the relaxation time to the ground state is
extremely long. In the appendix of Ref. �9�, the effective
Hamiltonian �15� is systematically derived for the case of
adiabatic Grover search problem �16�. For that problem, one
finds Qx

TSM=O�1 /�N�, but Qz
TSM=O�1�, and therefore in

large N limit the former vanishes in agreement with our
physical expectation. Notice that in this case, the relaxation
rate due to coupling of the bath to �x is �� �Qx

TSM�2

=O�1 /N�, therefore solving the problem merely based on
relaxation leads to a computation time tf =O�N�, which is the
complexity of classical computation.

From the TSM Hamiltonian �15� with this type of longi-
tudinal coupling, the success probability in the large-T limit
is �8,10�

P0f
TSM =

1

2
�1 − e−2tf/ta� . �17�

This formula is also plotted in Fig. 2. The qualitative
asymptotic agreement with other numerical curves in the fig-
ure indicates that most of the transitions occur in the small-
gap region �g�T� where the TSM is adequate for their de-
scription.

To summarize, by studying spin-glass instances of up to
20 qubits �only one is illustrated�, we have explicitly dem-
onstrated that the computation time in AQC can be much
longer than the single-qubit decoherence time T2

�. In the case
of small minimum gap �i.e., hard instances�, effective two-
state model with only the longitudinal coupling to environ-
ment describes transitions at the anticrossing. The numerical
results also show that the computation time scale is unaf-
fected by Ohmic environment. This conclusion cannot be
understood directly as suppression of transitions to the ex-
cited states by the energy gap, since in the chosen instances
it was much smaller at the anticrossing than the temperature
and decoherence strength. Rather, it arises from the balance
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FIG. 3. �Color online� �a� The rms value of the matrix elements
of the Pauli matrices between the first two states as defined in Eq.
�13�. Solid �blue� line is Mz; dashed-dotted �black� line is Mx. We
have also plotted the matrix element �Mz

TSM� of �z between the two
energy levels of a two-state model described by Hamiltonian �15�.
�b� The same curves zoomed near the anticrossing show qualitative
agreement �except for a prefactor� between all three curves.
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of transitions between the two lowest levels. It should be
emphasized that these results were obtained under the as-
sumption of weak coupling to the environment, for which the
discrete energy structure of HS is mostly preserved. In the
case of strong coupling, the interaction Hamiltonian would

dominate, and both the method and the conclusions of this
work would not hold.
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