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Symmetric extendibility of quantum states has recently drawn attention in the context of quantum crypto-
graphy to judge whether quantum states shared between two distant parties can be purified by means of
one-way error correction protocols. In this paper we study the symmetric extendibility in a specific class of
two-qudit states, i.e., states composed of two d-level systems, in order to find upper bounds on tolerable error
rates for a wide class of qudit-based quantum cryptographic protocols using two-way error correction. In
important cases these bounds coincide with previously known lower bounds, thereby proving sharpness of
these bounds in arbitrary finite-dimensional systems.
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Quantum cryptography or quantum key distribution was
introduced by the seminal work of Bennett and Brassard �1�
in 1984. It was widely conjectured to provide means for
unconditionally secure communication of two distant parties,
Alice and Bob, even in the presence of an adversary, Eve,
who can be detected by the quantum-mechanically-induced
noise every attack produces. However, security proofs still
left loopholes, until Mayers �2� came up with a proof which
provided unconditional security even for some finite amount
of noise. Since every real physical channel inevitably pro-
duces noise, however low it may be, this proof amounts to
the advent of practically useful quantum cryptography. Start-
ing from this work, the security of quantum cryptography
has been investigated in various scenarios and its security
was proved therein. Whereas most of the efforts have been
performed with respect to two-dimensional systems �qubits
with Hilbert space H=C2� as basic quantum systems, a large
number of concepts and methods carry through for arbitrary
finite-dimensional systems �qudits with Hilbert space H
=Cd�. Such general finite-dimensional systems will be the
main focus of this paper. However, we do not consider
infinite-dimensional systems �continuous-variable quantum
key distribution�, since the protocols and scenarios employed
there differ considerably from the finite-dimensional case.

A particularly important task in quantum-cryptography-
related research is to identify maximally tolerable error rates,
i.e., the error rates measurable by Alice and Bob, up to which
a physical channel may be used for quantum key distribution
without compromising the unconditional security. For the
BB84 protocol, this question can be answered by considering
an entanglement-based version �3� of that protocol with an
appropriate choice of entanglement purification. Under par-
ticular circumstances, this protocol can be reduced to yield
security of the original BB84 protocol itself by transforming
the entanglement purification to some postprocessing,
namely error correction and privacy amplification. One ge-
nerically distinguishes two types of postprocessing. The first
kind only uses one-way classical communication, i.e., in the
course of postprocessing Alice may send classical informa-
tion to Bob, but not vice versa; Shor and Preskill �4� used
such protocols to show security of the BB84 protocol up to
an error rate of 11.0%. The second kind of postprocessing
uses both one- and two-way classical communication �5� and
this can be used to derive tolerable error rates of 20% for the

BB84 protocol �6–8�. �One should note, that by one-way
protocols only, it is impossible to exceed a rate of about
15%, since an arbitrary qubit state can be duplicated, if this
rate of error is allowed.� By now no protocol is known which
works above 20% error rate, although it has been shown �9�
that effective entanglement, which is necessary for key gen-
eration, exists up to an error rate of 25%. At present, there
exists no purification protocol which works between these
two bounds and it is unknown whether this gap can be closed
at all.

A different approach to investigate this problem was re-
cently undertaken by Myhr et al. �10,11�, who posed the
question, which condition a quantum state has to fulfill in
order to be correctable, using one-way classical communica-
tion only. They found that the concept of symmetric extend-
ibility served their purpose, i.e., that a state which possesses
a symmetric extension cannot be purified by any possible
protocol with one-way communication only. By working out
a criterion for symmetric extendibility for two-qubit states
they achieved to show that the above-mentioned bound of
20% cannot be surpassed by standard means of two-way en-
tanglement purification �5–8�, which indicates the need of
new two-way protocols. Finally, we should note that all re-
sults we mentioned for the BB84 protocol carry over for the
six-state protocol �12�, if the rates of 20% and 25% are re-
placed by 27.6% and 33.3% �6–11�.

The aforementioned results show that the tolerable error
rates of the most important qubit-based protocols are known,
at least in a reasonable scenario using the error correction
and privacy amplification available at present. One may ask
whether similar results hold true for general finite-
dimensional systems, in case we use generalized BB84 and
six-state schemes. While lower bounds for such cases are
known �13–16�, with the exception of disentanglement
bounds �17� we are not aware of a systematic study of upper
bounds, which is the main purpose of this paper. By perform-
ing an analysis similar to that of Myhr et al., we will derive
upper bounds on the tolerable error rates with two-way com-
munication. As Myhr et al. did for qubit-based protocols, we
show that these upper bounds coincide with the lower
bounds already known �13–16�, thus proving sharpness of
these bounds. In the following we will state the details of the
model and our proof.

Let us start by introducing the concept of symmetric ex-
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tendibility and its relevance in quantum cryptography
�10,11,18�.

Definition (symmetric extendibility). A state �AB on the
tensor product HA � HB of two Hilbert spaces is said to be
symmetrically extendible, if there exists a tripartite state �ABE
on HA � HB � HE with HE=HB, such that TrE �ABE=�AB
�extendibility� and �ABE=�AEB �symmetry� hold.

Obviously all separable states possess symmetric exten-
sions, while no pure entangled state can be extended. The
general solution to the problem, whether a state is symmetri-
cally extendible or not is unsolved, however, a criterion for
Bell-diagonal two-qubit states is known �10� and, more gen-
erally, criteria for general two-qubit states have been inves-
tigated �11�. The relevance of symmetric extendibility in
quantum cryptography arises from the following observation
�10�: if Alice and Bob share a symmetrically extendible state,
we cannot exclude the possibility that Eve holds the exten-
sion. If Alice then tries to use one-way communication to
establish a secret key with Bob, she will fail, since Eve could
do precisely the same as Bob, and Bob and Eve are indistin-
guishable to Alice.

We shall now introduce a class of two-qudit states, which
was shown to be relevant in quantum cryptography. For
states within this class we have derived a criterion for sym-
metric extendibility �theorem 1�, which enables us to obtain
a simple sufficient condition for this property. Based upon
this condition, we will derive upper bounds for qudit-based
quantum cryptographic protocols and compare them with the
previously known results. To this end, we will in the course
of this paper focus on a particular two-way error correction
step, the Bn

�d� step �see below�, which is essentially the only
genuine two-way postprocessing method used in quantum
cryptography. Applying this step to a chosen initial state, we
will check whether we can reach a state which does not
possess a symmetric extension. If this is not the case, we
conclude that no protocol in the class considered can produce
a secret key for a particular given error rate. The bounds
which we derive lie below the disentanglement threshold
�17�. Thus, in order to achieve this threshold—if it is pos-
sible at all—new two-way methods have to be invented.

To determine whether a general state is symmetrically ex-
tendible or not is a complicated task, even for two-qubit
states �11�. However, in the context of entanglement-based
quantum cryptography by using arguments of the
Gottesman-Lo type �5� we may concentrate on a subclass of
all states, namely, the �generalized� Bell-diagonal states
�5–8,13–15� on H=Cd � Cd, where d is the dimension of a
single quantum system shared by Alice and Bob. This is
achieved by a fictive-measurement argument �5�: one can
perform a measurement in the so-called Bell basis before
starting the actual protocol and such measurement does not
have any measurable effect on the key. The Bell basis con-
sists of vectors �we denote zªexp�2�i /d�, and � is to be
taken modulo d�

��lm� ª d−1/2�
k=0

d−1

zlk�k��k � m� �1�

for l ,m� �0, . . . ,d−1	, and the Bell-diagonal states can be
written in the form

� = �
l,m=0

d−1

Alm��lm�
�lm� . �2�

These states are completely determined by their coefficient
matrix �Alm�l,m=0

d−1 . Choosing the perfect state to be
��00�
�00�—Alice and Bob can locally measure in the stan-
dard basis and get one perfectly correlated key dit—we can
interpret nonzero l and m to be phase and dit errors,
respectively.

In quantum cryptography we may assume that Alice and
Bob share a large number of identical Bell-diagonal states,
i.e., ��N for Bell-diagonal � and N�1, which have to be
processed by using one-way and two-way communication to
yield the state ��00�
�00� �5�. Assuming that the state is sym-
metrically extendible, we have to use two-way entanglement
purification in order to transform it into a state which is not
�10,11�. Apart from minor modifications, all known genuine
two-way protocols are variations of the Bn

�d� step, so we may
focus on that particular step �15�: Alice and Bob choose n
�N qudit pairs, all prepared in the state � with coefficients
�Alm�l,m=0

d−1 . They then locally apply generalized XOR opera-
tions �i��j�� �i��i � j� from the first to all other pairs and af-
terward measure the dit values of all pairs except the first
one. They compare the parities of all n−1 measurements by
means of classical �two-way� communication and keep the
first pair, only if all parities coincide. If they keep the first
pair, it will be described by coefficients �Alm� �l,m=0

d−1 , which are
given by �15�

Alm� = �dN�−1�
i=0

d−1 �z−il��
j=0

d−1

zijAjmn� , �3�

where Nª�m=0
d−1 ��l=0

d−1Alm�n. This state has in general less dit
errors but more phase errors than the original state by the
properties of the generalized XOR. Since we can assume an
error rate below 50% �17�, i.e., �lAl0�1 /2, in the limit of
large n�N, the output state of the Bn

�d� step lies in the neigh-
borhood of the separable state defined by Alm=d−1�m0.

We can even further reduce the set of states which have to
be taken into consideration by enforcing their invariance
with respect to the Abelian unitary group U2
ª �U � U� �U diagonal in the standard basis	. This is due
to the fact that the Bn

�d� step eliminates all kinds of error
affected by this symmetrization, so that they do not enter in
the one-way correction part �15�. Such U2-invariant Bell-
diagonal states are characterized by the additional property
that Alm=d−1A�m holds with A�mª�lAlm for all m�0.

One can now try to explicitly construct a symmetric ex-
tension of the given state as a d3�d3 matrix. The U2 invari-
ance implies that a symmetric extension, if it exists at all, can
be chosen to be invariant with respect to U3ª �U � U�

� U� �U diagonal in the standard basis	, and this leads to
a block matrix structure of the extension. By some further
processing, one can work out a criterion for symmetric ex-
tendibility for U2-invariant Bell-diagonal states. Defining

Ãipª�lAl0zl�i−p�, this criterion reads as follows ��19�,�20�, p.
91�:

Theorem 1 (symmetric extendibility). A U2-invariant Bell-
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diagonal state is symmetrically extendible, if and only if

�d−1Ãip�i,p=0
d−1 �Cd�d can be decomposed into the sum of d

matrices B0 ,B1 , . . . ,Bd−1, such that every matrix Bk

= �aip
�k��i,p=0

d−1 is positive and aii
�k��d−1A�,i�k for all i ,k

� �0, . . . ,d−1	.
Although this condition is in general difficult to check, it

turns out that it is sufficient for calculating upper bounds on
tolerable error rates in quantum cryptography. To this end,
we have to find an explicit solution to theorem 1 nearby the
state with coefficients Alm=d−1�m0 as mentioned before.

For such a state A�0�1 and A�m�0 for m�0 hold. Com-
paring this with theorem 1, we conclude that in every matrix
Bk one of the diagonal elements can be large, while all others
have to be small. Thus we are tempted to choose the matrix,
e.g., B0 to have the form

�
	 
1

� 
2
� . . . 
d−1

�


1 �1 0 . . . 0


2 0 �2 � ]

] ] � � 0


d−1 0 . . . 0 �d−1

� � Cd�d, �4�

where 	=a00
�0� may be large and the �i=aii

�0� have to be small.
For the other Bk we assume a similar structure, but 	 and the

i lie on the �k−1�th row and column. Since the matrix has
to be positive, and thus every 2�2 principal minor must be
non-negative, we may say that the elements set to zero have
to be quadratically small in �i

1/2, while the 
i are only lin-
early small. �The restriction to matrices of the given form
results in sufficient conditions for symmetric extendibility,
but this is sufficient for our purpose.�

The point of enforcing this matrix structure is that it is
positive, if and only if �a� all diagonal elements are non-
negative and �b� its determinant is non-negative. This fol-
lows by direct application of the well-known Hurwitz-
Sylvester criterion for positive semidefiniteness, which states
that a Hermitian matrix is positive semidefinite, if and only if
all principal minors are non-negative; see, e.g., ��21�, p.
282�. If all �k are strictly positive, we can write the determi-
nant of the matrix in Eq. �4� as

��
l=0

d−1

�l�	 − �
k=1

d−1 �
k�2

�k
 , �5�

and we may focus on the right factor of that product.
We now want to construct a matrix B0 of the form men-

tioned in Eq. �4�. The other matrices Bk shall have the same
entries, but the row and column structure is permuted ac-
cording to the conditions of theorem 1. Note that the excep-
tional element 	 for these Bk wanders along the diagonal
with increasing k=0,1 , . . . ,d−1, but that does not alter posi-
tivity. It seems appropriate to set the small values to their
maximally possible value �mªd−1A�m according to theorem
1, so normalization enforces 	ª �2A�0−1� /d. Since all diag-
onal elements are non-negative, we find

�
m=1

d−1 �
m�2

d−1A�m
�

2A�0 − 1

d
=

1 − 2�1 − A�0�
d

�6�

to be necessary and sufficient for positivity. �Given the case
that some A�m=0, this is to be interpreted that the coefficient

m must vanish.� For a state to be symmetrically extendible,


m+
d�m
� =d−1Ãm0 must hold in addition for all m

� �1, . . . ,d−1	. Since in inequality �6�, there appear only
absolute values, we may set the phases of 
m and 
d�m

� to be
equal, for choosing small �
i� does not harm positivity. We

thus remain with the condition �
m�+ �
d�m�=d−1�Ãm0�. Set-

ting �
m�ª�md−1�Ãm0�, we can rewrite the inequality as

�
m=1

d−1 ��m
2 �Ãm0�2

A�m
+ 2A�m� � 1, �7�

which is to be fulfilled under the additional constraint �m
+�d�m=1.

Applying a Bn
�d� step to the state, Eq. �3� implies A�m�

=A�m
n /N and Ãm0� = Ãm0

n /N with N=�mA�m
n , and the condition

then reads

�
m=1

d−1 ��m
2 1

N
� �Ãm0�2

A�m
n

+ 2
A�m

n

N
� � 1. �8�

We shall ignore the second term in the limit n→, since it
converges to zero. For the first term we can use the inequal-
ity N�A�0

n , which gets tight for n→. The term in question

then is �Ãm0�2 / �A�0A�m�; if it is less than 1, it will disappear
for n→, otherwise we have to suppress it by setting �m

ª0. This will not be possible, if both �Ãm0�2 / �A�0A�m� and

�Ãm0�2 / �A�0A�,d�m� are greater than 1, which shows the
following theorem.

Theorem 2 (noncorrectability). After the application of a
Bn

�d� step for sufficiently large n to a U2-invariant Bell-
diagonal state with A�0�1 /2, the output state is symmetri-

cally extendible, if there hold the inequalities �Ãm0�2
�A�0 max�A�m ,A�,d�m	 for all m� �1, . . . ,d−1	.

In the apparently isotropic case, that is the case where we
enforce A�m= �1−A�0� / �d−1� for all m�0, the condition
reads

�maxm=1
d−1 �Ãm0��2 � A�0

1 − A�0

d − 1
. �9�

If we replace “�” by “�,” this is our sufficient condition for
correctability �15�, so that these two results are complemen-
tary �apart from the case of equality�.

A particularly simple and instructive case is the
generalized-isotropic case �14,15�. In the U2-invariant case,
we have two non-negative real parameters 	 and � which
fulfill 	+ �d−1���1 and the coefficients of the state are
given by
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Alm = �
	 , if l = m = 0,

� , if l � m = 0,

1 − 	 − �d − 1��
d�d − 1�

else. � �10�

Denoting xª	+ �d−1��, we thus compute

Ãip = �x , if i = p

	 − � , else
�, A�m = �x , if m = 0,

1 − x

d − 1
, else, �

�11�

inequality �9� now reads �	−��2�d−1��x�1−x� and can be
rewritten as

	2 + �d − 1��2 −
	 + �d − 1��

d
� 0. �12�

This again is complementary to our result �15�, that a state

can indeed be corrected, if the left-hand side is strictly posi-
tive, leaving apart the case where we have equality.

To conclude this paper, we have used a criterion for the
symmetric extendibility �theorem 1� within the class of
U2-invariant two-qudit states in order to show that standard
two-way error-correction procedures �Bn

�d� steps� cannot be
used to improve on the already known constructive bounds
stated, e.g., in �13–15� by any type of one-way communica-
tion. This was done by choosing a well-suited class of ma-
trices for that problem, which enabled us to derive upper
bounds; these bounds coincide with the previously known
bounds, thereby showing their sharpness. In particular, our
results coincide with those of Myhr et al. �10� in the case of
qubits �d=2�.
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