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�-doublet spectra of light diatomic radicals have high sensitivity to the possible variations in the fine-
structure constant � and electron-to-proton mass ratio �. For molecules OH and CH sensitivity is further
enhanced because of the J-dependent decoupling of the electron spin from the molecular axis, where J is total
angular momentum of the molecule. When �-splitting has different signs in two limiting coupling cases a and
b, decoupling of the spin leads to the change in sign of the splitting and to the growth of the dimensionless
sensitivity coefficients. For example, sensitivity coefficients for the �-doublet lines J= 9

2 of the �1/2 state of
OH molecule are on the order of 103.
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I. INTRODUCTION

At present an intensive search is going on for the possible
space and time variations in fundamental constants �FCs�.
On a short time scale very tight bounds on such variations
were obtained in laboratory experiments �1,2�. On the other
hand astrophysical observations provide information on the
variation in FC on the time scale of the order of 1010 years.
Here results of Ref. �3� indicate variation in the level of five
sigma, �� /�= �−0.57�0.11��10−5. At the same time,
Ref. �4� reports no variation, �� /�= �−0.06�0.06��10−5,
and Ref. �5� reports variation of the opposite sign, �� /�
= �+0.54�0.25��10−5. An intermediate time scale �2
�109 years is tested by the Oklo phenomenon �6,7�.

Recently there was much attention in this context to the
microwave spectra of molecules. Generally these spectra are
sensitive to possible variations in the electron to proton mass
ratio �=me /mp. When fine and hyperfine structures are in-
volved, they also become sensitive to variations of the fine-
structure constant � and nuclear g-factor gnuc. There were
several proposals of microwave experiments with diatomic
molecules. Rotational microwave spectra were used numer-
ous times to study time variation in fundamental constants in
astrophysics. However, all such lines have same dependence
on FC, �	rot /	rot=�� /�, so one needs to use reference lines
with different dependence on FC. In the microwave band
there are several examples of such lines �see Table I�.

First, the famous 21 cm hydrogen hyperfine line depends
on all three FC, �	hf /	hf=�F /F, F=�2�gnuc �note that the
21 cm line of hydrogen was used to constrain variation in FC
as early as 1956 �13��. Second, the 18 cm �-doublet line of
OH molecule depends on � and � as follows: �	OH /	OH
=�F /F, with F=�−1.14�2.57 �14–16�. Third, the 1.2 cm in-
version line of ammonia depends only on �, �	inv /	inv
=4.46�� /� �17,18�. Finally, the fine-structure far-infrared
158 
m line of C II is sensitive only to �, �	fs /	fs
=2�� /�. All these four reference lines were used in combi-
nation with some rotational lines to put strong limits on
variation in FC �18–22�.

If the hydrogen 21 cm line is used as a reference for 18
cm OH line, the combination of constants, which is con-
strained, has the form �20�

F = �3.14�−1.57gnuc. �1�

The tightest limit on the variation in F was obtained from
observations of the absorber at the redshift z=0.765 and the
z=0.685 gravitational lens �20�:

�F/F = �0.44 � 0.36stat � 1.0syst� � 10−5. �2�

For OH molecule at least two more �-doublet lines were
detected from interstellar medium in addition to the lowest
18 cm line, which was used in Ref. �20�. Sensitivity coeffi-
cients for these lines were found in Ref. �23�. They appeared
to be rather different from those of the lowest �-doublet line.
Therefore, it is possible to use different �-doublet lines of
the OH molecule to place a limit on the variation in funda-
mental constants without using reference lines of other spe-
cies. This can help to eliminate systematic effect from the
different velocity distributions of different species in molecu-
lar clouds. Two lowest �-doublet lines of CH molecule �9
and 42 cm� were detected in the interstellar medium �11,24�.
Recently Henkel and Menten suggested that these lines can
be used for astrophysical search of the time variation in fun-
damental constants �25�. There are also several other light
molecules with � doubling, where microwave spectra were
observed in the interstellar medium. For example, the first
extragalactic microwave rotational spectra of NO were ob-
served in �26�. Therefore, we decided to study sensitivities of
the �-doublet lines to the variation in the fundamental con-
stants in a more systematic way.

Astrophysical studies of variation in fundamental con-
stants require accurate knowledge of the laboratory frequen-
cies. In the microwave band it is not so rare that the accuracy
of the astrophysical observations is higher than the accuracy
of the respective laboratory measurements. Therefore, some
of the recommended “laboratory” frequencies are actually
recalculated from astrophysical spectra �see, for example,
�11,27��. This method is based on the assumption that differ-
ent lines from the same distant object have the same red-
shifts. Thus, the redshift is first determined from one set of
lines and then is used to find rest frame frequencies of the
other set of observed lines. The logic in these works is op-
posite to the one used in the search of the variation in FC. In
such a search one looks for the difference in the apparent
redshifts of the lines from the same object and compare these
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differences to the sensitivities of respective lines to variation
in the constants to get information on constant variation.

Recently the laboratory frequencies of all four hyperfine
components of the 18 cm line of OH molecule were mea-
sured with a record precision ��10−9� �9,28�. Also, the fre-
quencies of all three components of the 9 cm �-doublet line
J= 1

2 in CH molecule were recently remeasured in Ref. �10�
with the accuracy of 0.1 ppm or better �1 ppm=10−6�. This
opens possibility to study variation in fundamental constants
at the level below 1 ppm. Such studies can supplement the
limits on �-variation based on the observations of the am-
monia inversion line �18,21,29,30� because �-doublet lines
are sensitive to variation in � and �, while ammonia line is
sensitive only to �. Moreover, as we will show below, be-
cause of the decoupling of the electron spin from the mo-
lecular axis, the sensitivity coefficients here strongly depend
on the rotational quantum numbers. Therefore, if more than
one line is observed, it may be possible to obtain model
independent limits on variation in both constants. Sensitivity
to the third constant gnuc is typically much weaker, except for
some low-frequency lines where hyperfine contribution to
transition frequency becomes significant. If such lines are
observed, it is possible to make full experiment and constrain
variation in all three constants.

Additional motivation to the present work comes from
rapid progress in laboratory experiments with cold and ultra-
cold molecules. New laboratory techniques can make it pos-
sible to use molecular �-doublet lines for laboratory tests on
variation in FC. The most recent developments in this field
are summarized in the review �31�.

In this paper we estimate sensitivity coefficients of differ-
ent �-doublet lines to variations in constants �, �, and gnuc.
The analysis is basically the same for all light molecules in
the 2�1/2 or 2�3/2 states. We include several of them here, for
which there are sufficient data in the databases of microwave
molecular spectra �32–34�. We use these data to find param-
eters of the effective spin-rotational Hamiltonian and to cal-
culate sensitivity coefficients.

II. SENSITIVITY COEFFICIENTS

We restrict ourselves to the case of the diatomic radicals
in doublet states 2�1/2 or 2�3/2. Let us define dimensionless

sensitivity coefficients to the variation in FC so that

�	

	
= K�

��

�
+ K�

��

�
+ Kg

�gnuc

gnuc
. �3�

Dimensionless sensitivity coefficients Ki are most relevant
in astrophysics, where lines are Doppler broadened, so �
��D=	��v /c, where �v is velocity variance and c is the
speed of light. The redshift of a given line is defined as zi
=	lab,i /	i−1. Frequency shift �Eq. �3�� leads to the change
in the apparent redshifts of individual lines. The difference in
the redshifts of two lines is given by

zi − zj

1 + z
= − �K�

��

�
− �K�

��

�
− �Kg

�gnuc

gnuc
, �4�

where z is the average redshift of both lines and �K�=K�,i
−K�,j, etc. We can rewrite Eq. �4� in terms of the variation in
a single parameter F:

zi − zj

1 + z
= −

�F
F , F � ��K���K�gnuc

�Kg. �5�

The typical values of �v for the extragalactic spectra is on
the order of few km/s. This determines the accuracy of the
redshift measurements on the order of �z=10−5–10−6, prac-
tically independent of the transition frequency. Therefore, the
sensitivity of astrophysical spectra to variations in FC di-
rectly depend on �Ki.

In optical range sensitivity coefficients are typically on
the order of 10−2–10−3, while in microwave and far-infrared
frequency regions they are typically on the order of unity. In
fact, as we will see below, in some special cases sensitivity
coefficients can be much greater that unity. This makes ob-
servations in microwave and far-infrared wavelength regions
potentially more sensitive to variations in FC as compared to
observations in optical region. Because of the lower sensitiv-
ity, systematic effects in optics may be significantly larger
�for the most recent discussion of the systematic effects see
�35� and references therein�.

In Sec. II A we briefly recall the theory of � and 
 dou-
blings in the pure coupling cases a and b and find respective
sensitivity coefficients. After that we will calculate sensitiv-
ity coefficients for particular molecules using simplified vari-

TABLE I. Quantum numbers and frequencies of microwave lines used for astrophysical studies of pos-
sible variation in FC. For � transitions of CH and OH molecules only one of the strongest hyperfine
components is given. Ammonia inversion transition has rotational structure described by quantum numbers J
and K, where K is projection of the angular momentum J on the molecular axis and smaller hyperfine
structure described by the total angular momentum quantum number F and intermediate quantum number F1.
Here we present one of the 18 hyperfine components of the inversion line �J ,K�= �1,1�.

Atom or molecule � �cm� Quantum numbers Frequency �MHz� Ref.

H 21 1s1/2 , F=0−1 1420.405751767�1� �8�
OH 18 �3/2 , J= 3

2 , F=2 1667.358996�4� �9�
CH 9.0 �1/2 , J= 1

2 , F=1 3335.481�1� �10�
CH 42 �3/2 , J= 3

2 , F=2 701.677�10� �11�
CH 4.1 �1/2 , J= 3

2 , F=2 7348.419�1� �10�
NH3 1.2 �J ,K�= �1,1� ; F ,F1= 1

2 ,1 23694.4591�1� �12�
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ant of effective Hamiltonian from Ref. �36�. This Hamil-
tonian accounts for decoupling phenomena and for the
hyperfine structure of � doublets. We fit free parameters of
this Hamiltonian to match experimental frequencies. After
that we use numerical differentiation to find sensitivity coef-
ficients.

A. � doubling and Ω doubling

Consider electronic state with nonzero projection � of the
orbital angular momentum on the molecular axis. The spin-
orbit interaction couples electron spin S to the molecular
axis, its projection being �. To a first approximation the spin-
orbit interaction is reduced to the form Hso=A��. Total
electronic angular momentum Je=L+S has projection 
 on
the axis, 
=�+�. For a particular case of �=1 and S= 1

2 we
have two states �1/2 and �3/2 and the energy difference be-
tween them is E��3/2�−E��1/2�=A.

Rotational energy of the molecule is described by the
Hamiltonian

Hrot = B�J − Je�2 �6a�

=BJ2 − 2B�J · Je� + BJe
2, �6b�

where B is rotational constant and J is the total angular mo-
mentum of the molecule. The first term in expression �6b�
describes conventional rotational spectrum. The last term is
constant for a given electronic state and can be added to the
electronic energy.1 The second term describes 
 doubling
and is known as Coriolis interaction HCor.

If we neglect Coriolis interaction, the eigenvectors of
Hamiltonian �6� have definite projections M and 
 of the
molecular angular momentum J on the laboratory axis and
on the molecular axis, respectively. In this approximation the
states �J ,M ,� ,� ,
	 and �J ,M ,−� ,−� ,−
	 are degenerate,
EJ,�
=BJ�J+1�. Coriolis interaction couples these states
and removes degeneracy. New eigenstates are the states of
definite parity p= �1 �37�:

�J,M,
,p	 = ��J,M,
	 + p�− 1�J−S�J,M,− 
	�/
2. �7�

Operator HCor can only change quantum number 
 by one,
so the coupling of states �
	 and �−
	 takes place in the 2

order of the perturbation theory in HCor.


 doubling for the state �1/2 happens already in the first
order in Coriolis interaction but has additional smallness
from the spin-orbit mixing. Operator HCor cannot directly
mix degenerate states ��=1,�=− 1

2 ,
= 1
2 	 and ��=−1,�

= 1
2 ,
=− 1

2 	 because it requires changing � by two. There-
fore, we need to consider spin-orbit mixing between � and �
states:

�
 =
1

2
� = �� = 1,� = −

1

2
,
 =

1

2
�

+ ��� = 0,� =
1

2
,
 =

1

2
� , �8�

where

� � A/�E� − E�� , �9�

and then



 =
1

2
�HCor�
 = −

1

2
� = 2�B�J +

1

2
��� = 1�Lx�� = 0	 .

�10�

Note that � depends on the nondiagonal matrix element of
spin-orbit interaction and Eq. �9� is only an order of magni-
tude estimate. It is important, though, that nondiagonal and
diagonal matrix elements have similar dependence on FC.
We conclude that 
 splitting for the �1/2 level must scale as
ABJ / �E�−E��.

The 
 doubling for �3/2 state takes place in the third
order in Coriolis interaction. Here HCor has to mix the states
�3/2 with �1/2 and �−3/2 with �−1/2 before matrix element
�10� can be used. Therefore, the splitting scales as
B3J3 / �A�E�−E���.

The above consideration corresponds to the coupling case
a when �A��B. In the opposite limit the states �1/2 and �3/2
are strongly mixed by the Coriolis interaction and spin S
decouples from the molecular axis �coupling case b�. As a
result, the quantum numbers � and 
 are not defined and we
only have one quantum number �= �1. Now � splitting
takes place in the second order in Coriolis interaction via
intermediate � state. The scaling here is obviously of the
form B2J2 / �E�−E��. Note that in contrast to the previous
case �A��B, the splitting here is independent of A.

We can now use found scalings of the � and 
 doublings
to determine the sensitivity coefficients �Eq. �3��. For this we
only need to know how parameters A and B depend on � and
�. In atomic units these parameters obviously scale as A
��2 and B��. We conclude that for the case a the

-doubling spectrum has following sensitivity coefficients:

State 2�1/2: K� = 2, K� = 1, �11a�

State 2�3/2: K� = − 2, K� = 3. �11b�

For the case b, when S is completely decoupled from the
axis, the �-doubling spectrum has following sensitivity co-
efficients:

State �: K� = 0, K� = 2. �11c�

When constant A is slightly larger than B, the spin S is
coupled to the axis only for lower rotational levels. As rota-
tional energy grows with J and becomes larger than the split-
ting between states �1/2 and �3/2, the spin decouples from
the axis. Consequently, the 
 doubling is transformed into �
doubling. Equations �11� show that this can cause significant
changes in sensitivity coefficients. The spin-orbit constant A
can be either positive �CH molecule� or negative �OH�. The

1Note that this term contributes to the separation between states
�1/2 and �3/2. This becomes particularly important for light mol-
ecules, where constant A is small.
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sign of the 
 doubling depends on the sign of A, while �
doubling does not depend on A at all. Therefore, decoupling
of the spin can change the sign of the splitting. In Sec. II B
we will see that this can lead to the dramatic enhancement of
the sensitivity to the variation in FC.

B. Intermediate coupling

� doubling for the intermediate coupling was studied in
detail in many papers, including �36,38,39� �see also the
book �37��. Here we use effective Hamiltonian Heff from Ref.
�36� in the subspace of the levels �1/2

� and �3/2
� , where upper

sign corresponds to parity p in Eq. �7�. Operator Heff in-
cludes spin-rotational and hyperfine parts2:

Heff = Hsr + Hhf. �12�

Neglecting third-order terms in Coriolis and spin-orbit inter-
actions, we get the following simplified form of spin-
rotational part:

��1/2
� �Hsr��1/2

� 	 = −
1

2
A + B�J +

1

2
�2

� �S1 + S2��2J + 1� ,

�13a�

��3/2
� �Hsr��3/2

� 	 = +
1

2
A + B�J +

1

2
�2

− 2B , �13b�

��3/2
� �Hsr��1/2

� 	 = �B � S2�J +
1

2
��
�J −

1

2
��J +

3

2
� .

�13c�

Here in addition to parameters A and B we have two param-
eters, which appear in the second order of perturbation
theory via intermediate state�s� �1/2. Parameter S1 corre-
sponds to the cross term of the perturbation theory in spin-
orbit and Coriolis interactions, while parameter S2 is qua-
dratic in Coriolis interaction. Because of this S1 scales as
�2� and S2 scales as �2. The third-order parameters ne-
glected in Eq. �13� consist of several terms each with differ-
ent dependencies on parameters � and � �36�. For this reason
we cannot use them to study sensitivity coefficients. Fortu-
nately, all third-order terms are very small for the molecules
considered here. They account only for the fine tuning of the
spectrum and do not noticeably affect sensitivity coefficients
for transitions with moderate quantum numbers J. It is easy
to see that Hamiltonian Hsr describes limiting cases �A��B
and �A��B considered in Sec. II A.

The hyperfine part of effective Hamiltonian is defined in
the lowest order of perturbation theory and has the form

��1/2
� �Hhf��1/2

� 	 = CF�2a − b − c � �2J + 1�d� , �14a�

��3/2
� �Hhf��3/2

� 	 = 3CF�2a + b + c� , �14b�

��3/2
� �Hhf��1/2

� 	 = − CF

�2J − 1��2J + 3�b , �14c�

CF �
F�F + 1� − J�J + 1� − I�I + 1�

8J�J + 1�
.

Here we assume that only one nucleus has spin and include
only magnetic dipole hyperfine interaction. In this approxi-
mation all four parameters of Hhf scale as �2�gnuc.

Effective Hamiltonian described by Eqs. �13� and �14� has
eight parameters. We use NIST values �32� for the fine-
structure splitting A, rotational constant B, and magnetic hy-
perfine constants a, b, c, and d. The remaining two param-
eters S1 and S2 are found by minimizing rms deviation
between theoretical and experimental �-doubling spectra.

In order to find sensitivity coefficients K� we calculate
transition frequency for two values of �=�0�� near its
physical value �0=1 /137.035 999 679�94� and similarly for
K� and Kg. We use scaling rules discussed above to recalcu-
late parameters of the effective Hamiltonian for different val-
ues of FC. Then we use numerical differentiation to find
respective sensitivity coefficient.

We check the accuracy of our approach by adding three
most important third-order parameters from Ref. �36� to
Hamiltonian �13� and including them in fitting procedure.
That leads to noticeable improvement of the theoretical fre-
quencies for higher values of J. Each of our three third-order
parameters actually include several terms, which scale as dif-
ferent combination of A and B �A2B, AB2, etc.� Each term,
therefore, has different dependence on � and �. On the other
hand, they have same dependence on the quantum numbers
and cannot be independently determined from the fitting pro-
cedure. Because of that it is impossible to unambiguously
determine dependence of these parameters on FC. Therefore,
we calculate sensitivity coefficients assuming dominance of
one term for each third-order parameter and look how the
answer depends on these assumptions. We found that sensi-
tivity coefficients changed by less than 1%. Therefore, we
conclude that this simple model is sufficiently accurate for
our purposes and currently there is no need to use more
elaborate theory.

Hyperfine Hamiltonian �14� accounts only for one nuclear
spin and does not include interaction with nuclear electric
quadrupole moment. Generalization to two spins is straight-
forward, but in this paper we restrict consideration to mol-
ecules with one spin. For molecules with I�

1
2 we must add

quadrupole term to Eq. �14�:

��

��H̃hf��


�	 =
C�C + 1� − 4I�I + 1�J�J + 1�
8I�2I − 1�J�J + 1��2J + 3�

��− 1�2J�3
2 − J�J + 1���eq0Qnuc� ,

C � F�F + 1� − J�J + 1� − I�I + 1� . �15�

In this case there is additional hyperfine parameter
eq0Qnuc which includes electronic matrix element eq0 and
nuclear quadrupole moment Qnuc. Matrix element eq0 for
light molecules can be calculated in nonrelativistic approxi-
mation and does not depend on FC. Dependence of Qnuc on
FC can be very complex �see discussion in �7��. Without

2Here we use notation Hsr to define part of the effective Hamil-
tonian, which describes rotational degrees of freedom and electron
spin.
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going into nuclear theory, one can consider Qnuc as indepen-
dent fundamental parameter and introduce additional sensi-
tivity coefficient KQ. Below we will see that coefficients Kg
and KQ are usually very small except for the transitions with
very low frequency.

III. RESULTS AND DISCUSSION

We applied the above method to 16OH, 12CH, 7Li16O,
14N16O, and 15N16O. Molecules CH and NO have ground

state 2�1/2 �A�0�, while OH and LiO have ground state
2�3/2 �A�0�. The ratio �A /B� changes from 2 for CH mol-
ecule to 7 for OH and to almost a hundred for LiO and NO.
Therefore, LiO and NO definitely belong to the coupling
case a. For OH molecule we can expect transition from case
a for lower rotational states to case b for higher ones. Fi-
nally, for CH we expect intermediate coupling for lower ro-
tational states and coupling case b for higher states.

Let us see how this scheme works in practice for the
effective Hamiltonians �13� and �14�. Figure 1 demonstrate J
dependence of sensitivity coefficients for CH and OH mol-
ecules. Both of them have only one nuclear spin I= 1

2 . For a
given quantum number J, each �-doublet transition has four
hyperfine components: two strong transitions with �F=0
and F=J�

1
2 �for J= 1

2 there is only one transition with F
=1� and two weaker transitions with �F= �1. The hyperfine
structure for OH and CH molecules is rather small and sen-
sitivity coefficients for all hyperfine components are very
close. Because of that Fig. 1 presents only averaged values
for strong transitions with �F=0.

We see that for large values of J the sensitivity coeffi-
cients for both molecules approach limit �Eq. �11c�� of the
coupling case b. The opposite limits �Eqs. �11a� and �11b��
are not reached for either molecule even for smallest values
of J. So, we conclude that coupling case a is not realized. It
is interesting that in Fig. 1 the curves for the lower states are
smooth, while for upper states there are singularities. For CH
molecule this singularity takes place for the state �3/2 near
the lowest possible value J=3 /2. Singularity for OH mol-
ecule takes place for state �1/2 near J=9 /2.

These singularities appear because � splitting turns to
zero. As we saw above, the sign of the splitting for the cou-
pling case a depends on the sign of the constant A. The same
sign determines which state �1/2 or �3/2 lies higher. As a
result, for the lower state the sign of the splitting is the same
for both limiting cases, but decoupling of the electron spin S
for the upper state leads to the change in sign of the splitting.
Of course, these singularities are most interesting for our
purposes as they lead to large sensitivity coefficients which
strongly depend on the quantum numbers. Note that when
the frequency of the transition is small, it becomes sensitive
to the hyperfine part of the Hamiltonian and sensitivity co-
efficients for hyperfine components may differ significantly.
Sensitivity coefficients of all hyperfine components of such
� lines are given in Table II. We can see that near the sin-
gularities all sensitivity coefficients, including Kg, are en-
hanced.

Now let us consider sensitivity coefficients for the mol-
ecule 15NO. Here we expect expressions for the coupling
case a to be applicable. In fact, for the state �1/2 coefficients
K� and K� agree with prediction �11a� within few percent
and Kg�1. However, for the state �3/2 Eq. �11b� works only
for transitions with �F=0, see Fig. 2. Indeed, � splitting for
low values of J is smaller than the hyperfine structure. As a
result, the frequencies of �F= �1 transitions strongly de-
pend on the hyperfine parameters. For some values of J these
frequencies can be very small because � splitting and hyper-
fine splitting cancel each other. This leads to enhancement of

(b)

(a)

FIG. 1. �Color online� Sensitivity coefficients K� and K� for
�-doublet lines with �F=0 in CH and OH molecules. The differ-
ence between lines with F=J+ 1

2 and F=J− 1
2 is too small to be

seen. For the state �3/2 of OH molecule the values for J= 9
2 are too

large to be shown on the plot. They are listed in Table II.
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sensitivity coefficients, similar to that discussed in Ref. �40�.
Figure 2 shows that for 15NO molecule such singularity takes
place for �F=−1 transition near J= 11

2 . For smaller values of
J the hyperfine contribution to transition frequency domi-
nates over � splitting. Sensitivity coefficients for this case
are similar to those of the normal hyperfine transitions, i.e.,
K��2 and K��Kg�1. For higher values of J they approach
limit �11b�. For �F=1 transitions there is no singularity and
sensitivities change smoothly between same limiting values.
Finally, the hyperfine energy for the lines with �F=0 is neg-
ligible and these lines are described by Eq. �11b� for all
values of J.

The spectrum and sensitivity coefficients of the molecule
14NO are similar to those of 15NO. Because 14N has nuclear
spin I=1, the hyperfine structure of the �-doublet lines is
more complex and consists of up to seven hyperfine compo-
nents. Hyperfine Hamiltonian includes magnetic dipole part
�Eq. �14�� and electric quadrupole part �Eq. �15�� and is de-
scribed by five hyperfine parameters, which we take from
Ref. �32�. As we said above, we are not discussing nuclear
theory here and consider nuclear quadrupole moment as in-
dependent FC. Because of that �-doublet spectrum is now
described by four sensitivity coefficients �see Table III�.

Sensitivity coefficients K� and K� of the �-doublet lines
of the state �1/2 again agree with Eq. �11a� within few per-
cent. The lowest-frequency transitions for J= 1

2 have sensitiv-

TABLE II. Frequencies �in MHz� and sensitivity coefficients for hyperfine components �J ,F→J ,F�� of �-doublet lines in CH and OH
molecules. Recommended frequencies and their uncertainties are taken from Refs. �32–34�.

Molecule Level J F F�

	
�MHz�

K� K� KgRecom. Uncert. Theor. Diff.

12CH 2�1/2 0.5 0 1 3263.795 0.003 3269.40 −5.61 0.59 1.71 −0.02

0.5 1 1 3335.481 0.001 3340.77 −5.29 0.62 1.70 0.00

0.5 1 0 3349.194 0.003 3354.11 −4.92 0.63 1.69 0.01

1.5 1 2 7275.004 0.001 7262.25 12.75 −0.24 2.12 −0.01

1.5 1 1 7325.203 0.001 7312.02 13.18 −0.23 2.11 0.00

1.5 2 2 7348.419 0.001 7335.30 13.12 −0.22 2.11 0.00

1.5 2 1 7398.618 0.001 7385.08 13.54 −0.20 2.10 0.01
12CH 2�3/2 1.5 2 2 701.68 0.01 682.96 18.72 −8.44 6.15 −0.01

1.5 1 2 703.97 0.03 679.83 24.14 −8.66 6.32 −0.01

1.5 2 1 722.30 0.03 702.98 19.52 −8.37 6.17 0.02

1.5 1 1 724.79 0.01 699.85 24.94 −8.07 5.97 0.02
16OH 2�3/2 1.5 1 2 1612.2310 0.0002 1595.42 16.81 −1.27 2.61 −0.03

1.5 1 1 1665.4018 0.0002 1648.93 16.47 −1.14 2.55 0.00

1.5 2 2 1667.3590 0.0002 1650.66 16.70 −1.14 2.55 0.00

1.5 2 1 1720.5300 0.0002 1704.17 16.36 −1.02 2.49 0.03
16OH 2�1/2 0.5 0 1 4660.2420 0.0030 4638.98 21.26 2.98 0.50 −0.02

0.5 1 1 4750.6560 0.0030 4729.51 21.15 2.96 0.51 0.00

0.5 1 0 4765.5620 0.0030 4744.50 21.06 2.96 0.51 0.01

4.5 5 4 88.9504 0.0011 64.34 24.61 −921.58 459.86 −0.56

4.5 5 5 117.1495 0.0011 92.35 24.80 −699.65 349.59 −0.19

4.5 4 4 164.7960 0.0011 141.20 23.60 −496.67 248.77 0.16

4.5 4 5 192.9957 0.0011 169.22 23.78 −424.05 212.68 0.28

FIG. 2. �Color online� Sensitivity coefficients for �-doublet
lines in �3/2 state of 15NO molecule. The difference between two
hyperfine components with �F=0 is too small to be seen. Sensitiv-
ity coefficients for �1/2 state correspond to the coupling case a �see
Eq. �11a��.
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ity coefficients Kg of the order of unity, but they rapidly
decrease with frequency and with J. Coefficients KQ for the
state �1/2 are always small.

For the state �3/2 there are transitions of three types. The
first type transitions correspond to �F=0. The hyperfine en-

ergy difference here is small compared to � splitting. These
transitions have sensitivity coefficients K� and K� close to
prediction �11b� and small coefficients Kg and KQ. The sec-
ond type transitions correspond to �F= �1 and small values
of J. Hyperfine energy for these transitions dominates over �

TABLE III. Frequencies �in MHz� and sensitivity coefficients for �-doublet lines in 14N16O. Experimental frequencies and their
uncertainties are taken from Refs. �32,33�.

Level J F F�

	
�MHz�

K� K� Kg KQExpt. Uncert. Theor. Diff.

2�1/2 0.5 0.5 0.5 205.9510 0.0002 205.96 −0.01 1.95 1.03 −0.73 0.00

0.5 0.5 1.5 225.9357 0.0002 225.93 0.00 1.95 1.02 −0.58 0.00

0.5 1.5 0.5 411.2056 0.0002 411.19 0.01 1.97 1.01 0.13 0.00

0.5 1.5 1.5 431.1905 0.0002 431.16 0.03 1.97 1.01 0.17 0.00

1.5 0.5 0.5 560.8538 0.0002 561.22 −0.37 1.97 1.02 −0.27 0.00

1.5 0.5 1.5 587.7467 0.0002 587.54 0.21 1.97 1.01 −0.21 0.09

1.5 1.5 0.5 624.6494 0.0002 624.93 −0.28 1.97 1.02 −0.14 −0.09

1.5 1.5 1.5 651.5425 0.0002 651.25 0.29 1.97 1.01 −0.09 0.00

1.5 1.5 2.5 693.8282 0.0002 693.88 −0.05 1.98 1.01 −0.02 −0.04

1.5 2.5 1.5 758.9106 0.0002 758.66 0.25 1.97 1.01 0.06 0.04

1.5 2.5 2.5 801.1963 0.0002 801.29 −0.10 1.98 1.01 0.11 0.00

2.5 3.5 3.5 1160.7768 0.0003 1160.95 −0.18 1.98 1.01 0.08 0.00

3.5 4.5 4.5 1514.768 0.001 1514.97 −0.20 2.00 1.00 0.07 0.00
2�3/2 1.5 0.5 0.5 0.81 −2.09 3.05 −0.11 0.00

1.5 1.5 1.5 0.612 0.001 0.87 −0.25 −2.96 4.31 −0.06 0.00

1.5 2.5 2.5 1.029 0.001 0.96 0.07 −1.94 2.83 0.05 0.00

1.5 0.5 1.5 44.45 2.09 0.93 1.01 1.25

1.5 1.5 0.5 46.464 0.003 46.12 0.34 1.92 1.00 0.96 1.19

1.5 1.5 2.5 73.286 0.003 73.33 −0.05 2.10 0.96 1.02 −0.42

1.5 2.5 1.5 74.931 0.003 75.15 −0.22 2.00 1.02 1.00 −0.41

2.5 1.5 1.5 3.38 −2.08 3.04 −0.06 0.00

2.5 2.5 2.5 3.121 0.001 3.54 −0.41 −2.36 3.44 −0.02 0.00

2.5 3.5 3.5 3.923 0.001 3.75 0.17 −1.99 2.91 0.04 0.00

2.5 1.5 2.5 27.37 2.64 0.70 1.14 −0.97

2.5 2.5 1.5 34.39 0.03 34.28 0.11 1.68 1.17 0.90 −0.77

2.5 2.5 3.5 40.172 40.07 0.10 2.46 0.76 1.08 0.46

2.5 3.5 2.5 47.211 0.001 47.36 −0.14 1.77 1.11 0.92 0.39

3.5 2.5 2.5 8.58 −2.07 3.03 −0.04 0.00

3.5 3.5 3.5 8.88 −2.07 3.03 −0.01 0.00

3.5 4.5 4.5 9.26 −2.07 3.03 0.03 0.00

3.5 2.5 3.5 13.59 5.06 −0.39 1.73 −6.83

3.5 3.5 2.5 31.550 0.004 31.05 0.50 1.03 1.51 0.73 −2.94

3.5 3.5 4.5 21.54 3.90 −0.01 1.38 3.32

3.5 4.5 3.5 39.221 0.002 39.67 −0.45 1.18 1.40 0.76 1.82

4.5 3.5 3.5 17.25 −2.05 3.02 −0.03 0.00

4.5 4.5 4.5 17.74 −2.05 3.02 −0.01 0.00

4.5 5.5 5.5 18.33 −2.05 3.03 0.03 0.00

4.5 3.5 4.5 0.96 −80.19 38.95 −19.07 157.32

4.5 4.5 3.5 35.045 0.002 34.02 1.02 0.16 1.95 0.50 −4.33

4.5 4.5 5.5 5.26 16.68 −6.81 4.16 23.52

4.5 5.5 4.5 40.512 0.001 41.33 −0.81 0.34 1.81 0.55 3.05
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splitting. The sensitivity coefficients here are close to those
of pure hyperfine transitions, i.e., K�=2 and K�=1. As long
as hyperfine energy includes comparable magnetic dipole
and electric quadrupole parts, coefficients Kg and KQ are of
the order of unity but may significantly differ from one tran-
sition to another. Note that all transitions of this type for
15NO molecule have Kg�1.

Transitions of the third type also correspond to �F= �1,
but higher rotational quantum numbers J= 7

2 , 9
2 . The hyper-

fine transition energy here is comparable to � splitting, and
they can either double or almost cancel each other. Conse-
quently, sensitivity coefficient are widely spread and can be-
come very large for transitions with anomalously low fre-
quency.

Note that low-frequency transitions for J= 9
2 were not ob-

served experimentally, and we use theoretical frequencies to
calculate sensitivity coefficients. Because of significant can-
cellation of different contributions, the accuracy of these fre-

TABLE IV. Frequencies �in MHz� and sensitivity coefficients for �-doublet lines in 7Li16O. Experimental frequencies and their uncer-
tainties are taken from Ref. �32�.

Level J F F�

	
�MHz�

K� K� Kg KQExpt. Uncert. Theor. Diff.

2�3/2 1.5 1 1 11.28 0.01 11.18 0.10 −1.90 2.94 0.00 0.00

1.5 2 2 11.28 0.01 11.18 0.10 −1.90 2.94 0.00 0.00

1.5 3 3 11.28 0.01 11.19 0.09 −1.90 2.94 0.00 0.00

1.5 0 1 9.82 −2.51 3.25 −0.14 0.63

1.5 1 0 12.53 −1.46 2.74 0.11 −0.49

1.5 1 2 8.55 0.10 8.41 0.14 −3.26 3.59 −0.33 0.72

1.5 2 1 14.00 0.05 13.95 0.05 −1.07 2.55 0.20 −0.44

1.5 2 3 6.95 0.05 6.87 0.08 −4.47 4.24 −0.61 −0.89

1.5 3 2 15.60 0.02 15.50 0.10 −0.76 2.36 0.27 0.40

2.5 1 1 45.02 0.03 44.80 0.22 −1.90 2.95 0.00 0.00

2.5 2 2 45.02 0.03 44.80 0.22 −1.90 2.95 0.00 0.00

2.5 3 3 45.02 0.03 44.81 0.21 −1.90 2.95 0.00 0.00

2.5 4 4 45.02 0.03 44.83 0.19 −1.90 2.95 0.00 0.00

2.5 1 2 44.04 0.03 43.82 0.22 −2.01 3.01 −0.02 −0.08

2.5 2 1 45.97 0.03 45.78 0.19 −1.81 2.90 0.02 0.08

2.5 2 3 43.60 0.03 43.37 0.23 −2.06 3.03 −0.03 −0.05

2.5 3 2 46.43 0.03 46.24 0.19 −1.76 2.88 0.03 0.04

2.5 3 4 43.17 0.03 42.97 0.20 −2.11 3.06 −0.04 0.08

2.5 4 3 46.86 0.03 46.67 0.19 −1.71 2.86 0.04 −0.08

3.5 3 3 112.237 0.002 112.28 −0.04 −1.91 2.96 0.00 0.00

4.5 4 4 223.756 0.003 225.24 −1.48 −1.91 2.99 0.00 0.00
2�1/2 0.5 1 1 2958.44 2.10 0.95 0.00 0.00

0.5 2 2 2969.20 2.10 0.95 0.00 0.00

0.5 1 2 2947.37 2.10 0.95 −0.01 0.00

0.5 2 1 2980.27 2.10 0.95 0.01 0.00

1.5 1 1 5971.29 2.10 0.96 0.00 0.00

1.5 2 2 5975.59 2.10 0.96 0.00 0.00

1.5 3 3 5982.05 2.10 0.96 0.00 0.00

1.5 1 2 5969.71 2.10 0.96 0.00 0.00

1.5 2 1 5977.18 2.10 0.96 0.00 0.00

1.5 2 3 5973.38 2.10 0.96 0.00 0.00

1.5 3 2 5984.26 2.10 0.96 0.00 0.00

2.5 2 2 9078.46 2.11 0.97 0.00 0.00

3.5 2 2 12321.51 0.03 12322.14 −0.63 2.13 0.99 0.00 0.00

3.5 3 3 12325.82 0.03 12325.21 0.61 2.13 0.99 0.00 0.00

3.5 2 3 12319.93 0.03 12321.60 −1.67 2.13 0.99 0.00 0.00

3.5 3 2 12327.41 0.03 12325.75 1.66 2.13 0.99 0.00 0.00
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quencies can be low. When these frequencies are measured,
respective sensitivity coefficients should be corrected:

Ki,cor = Ki
	theor

	expt.
. �16�

Sensitivity coefficients for LiO molecule are listed in
Table IV. The hyperfine structure here is smaller than for NO
molecule and sensitivity coefficients are closer to case a val-
ues �Eqs. �11a� and �11b��. Significant deviations are found
only for J= 3

2 , �F= �1 transitions of �3/2 state. Also, these
are the only transitions, where coefficients Kg and KQ are not
negligible. For this molecule there are no transitions with
anomalously small frequencies, and therefore, sensitivity co-
efficients are not enhanced.

IV. CONCLUSIONS

In this paper we calculated sensitivity coefficients to
variation in fundamental constants for �-doublet spectra of
several light diatomic molecules. We found several lines with
anomalously high sensitivity. All these lines have relatively
low frequencies and enhanced sensitivity is caused by the
significant cancellations between contributions from differ-
ent parts of the effective Hamiltonian �12�.

In CH and OH molecules enhancement takes place when
electron spin decouples from the molecular axis and 
 dou-
bling is transformed into � doubling. For one of the two
states �1/2 or �3/2 this transformation leads to the change in
sign of the splitting between states with definite parity and
enhanced sensitivity to FC variation.

Rotational constant B for 14NO and 15NO molecules is
much smaller than for CH and NH molecules and electron
spin is strongly coupled to the axis. Consequently, there is no
enhancement caused by decoupling. On the other hand, the
hyperfine structure of the �-doublet lines is comparable to �
splitting in �3/2 state. For some transition lines with �F
= �1 the hyperfine energy almost cancel � splitting leading
to enhanced sensitivity.

For LiO molecule electron spin is strongly coupled to the
axis and hyperfine structure is smaller than � splitting. As a
result, there is no strong enhancement of the sensitivity to FC
variation. However, even here sensitivity coefficients
strongly depend on the quantum numbers.

Sensitivity coefficients for six �-doublet transitions of
OH molecule were calculated before in Refs. �20,23�. For all
these transitions our results are in good agreement with those
calculations. In particular, from Table II we find sensitivity
coefficients for the 18 cm ground-state �-doublet transitions
with J= 3

2 and F�=F to be K�=−1.14, K�=2.55, and Kg=0.
In the paper �20� the 21 cm hydrogen line was used as a
reference. It has K�=2, K�=1, and Kg=1. Parameter F ac-
cording to Eq. �5� is given by the expression

F = ��K���K�gnuc
�Kg = �3.14�−1.55gnuc

1 . �17�

This result is sufficiently close to Eq. �1�.
For astrophysical observations it is important to have ac-

curate laboratory measurements so that frequency ratios for

distant object can be compared to the respective local ratios.
Sufficiently accurate frequency measurements were done
only for 18 cm lines of OH �9,28� and for 9 cm lines of CH
�10�. These lines can be used for new studies of the variation
in FC without significant preliminary work. For other lines at
present there are no sufficiently accurate laboratory frequen-
cies. New laboratory measurements are necessary before
these lines can be used for our purposes. In particular, the
hyperfine components of the 42 cm CH line are most inter-
esting as they have high sensitivity to both fundamental con-
stants and were already observed in astrophysics for distant
objects.

In principle it is possible to study time variation in FC
without referring to the laboratory measurements. For this
purpose it is possible to compare microwave spectra for mo-
lecular clouds from our galaxy with extragalactic spectra of
the same species. In many cases the line widths for the ga-
lactic spectra are one to two orders of magnitude smaller
than for objects at cosmological distances so they can serve
as very good reference.

Let us briefly discuss the feasibility of the laboratory tests
of time variation of FC using molecular � doublets. Present
model independent laboratory limit on � variation is �1�

d�/dt

�
= �3.8 � 5.6� � 10−14 yr−1, �18�

and the limit on � variation is three orders of magnitude
stronger on the level 10−17 �2�. To improve constrained Eq.
�18� one needs to measure frequency shifts �	�K�	�� /�.
For the 18 cm OH line this corresponds to the shift �	�4
�10−4 Hz. This is few orders of magnitude smaller than the
accuracy of the best present measurements �9,28�. On the
other hand, at present there is rapid progress in precision
molecular spectroscopy caused by development of sources of
ultracold molecules �see review �31� and references therein�.
Thus it is possible that molecular tests of FC variation using
�-doublet lines can become competitive in the near future.

When comparing sensitivity of different laboratory ex-
periments on time variation it is not sufficient to look for
large dimensionless sensitivity coefficients �Eq. �3��. In high-
precision laboratory measurements the line widths are not
dominated by the Doppler effect and are not proportional to
the frequency. Because of that, instead of the dimensionless
sensitivity coefficients Ki, which determine relative fre-
quency shifts �Eq. �3��, one has to look for large absolute
sensitivities Ki	, which determine absolute frequency shifts
�	 and for narrow lines. In astrophysics, on the contrary, all
lines are Doppler-broadened and dimensionless sensitivity
coefficients Ki become crucial.
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