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Quantum detection processes in quantum field theory (QFT) must play a key role in the description of
quantum-field correlations, such as the appearance of entanglement, and of causal effects. We consider the
detection in the case of a simple QFT model with a suitable interaction to exact treatment, consisting of a
quantum scalar field coupled linearly to a classical scalar source. We then evaluate the response function to the
field quanta of two-level pointlike quantum model detectors, and analyze the effects of the approximation
adopted in standard detection theory. We show that the use of the RWA, which characterizes the Glauber
detection model, leads in the detector response to nonlocal terms corresponding to an instantaneously spread-
ing of source effects over the whole space. Other detector models, obtained with nonstandard or no application
of RWA, give instead local responses to field quanta, apart from source-independent vacuum contribution

linked to preexisting correlations of zero-point field.
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I. INTRODUCTION

The appearance of nonlocal effects in quantum mechanics
has received great attention beginning from the well-known
Einstein-Podolsky-Rosen (EPR) paradox [1]. This indicates
that the result of a measurement performed on one of a pair
of correlated systems has a nonlocal effect on the correlated
physical measurement on the partner distant system. Such a
nonlocal behavior is related to the presence of quantum en-
tanglement between the systems. Thus detection of quantum
correlations between two separated systems plays a key role
in establishing whether the systems are entangled or not. In
particular models of measurements not causally connected
are required to evaluate a genuine manifestation of the en-
tanglement. In this case if correlations are detected they may
violate Bell’s inequality [2] and therefore the two systems
can be considered as entangled. Instead some models of mea-
surement, leading by their same nature to the instantaneous
development of nonlocal effects over the whole space, could
give rise in their interpretation to the appearance of entangle-
ment even in the absence of real quantum correlations.

Another place where nonlocality may manifest itself is in
the space-time evolution of single-particle wave function that
gives place to nonzero contributions outside of the light cone
[3-5]. This aspect of nonlocality in quantum mechanics, with
the building up of probability on spacelike distances, appears
instead to give rise to a violation of causality. It was however
suggested that, since strict localization of a quantum system
requires particle detectors sensitive to zero-point fluctuations
that extend all over the space, this behavior shall not be in
contrast with causal propagation [6,7]. It is one of the aims
of this paper to investigate on this aspect. Nonlocal effects
show up also in quantum-field theory (QFT) in the time evo-
lution of initially localized quantum-field states both for free
fields and for interacting matter-field models [3-5,8—12].
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The use of appropriate model of the detection process for
the interpretation of the measurements in the observation of
nonlocal correlations plays a key role into evaluating the
reality of these quantum correlations defining entanglement
or even of effects that appear to not satisfy the causal propa-
gation of signals. In this context it results thus to be impor-
tant the adoption of suitable quantum detector models, and
the appropriate detector model that must be adopted appears
to be still questioned [13-16]. Different quantum detector
models have been proposed in literature. Among them are
the Glauber detector (GD) model, extensively used in photo-
detection theory and quantum optics [17,18], and the Unruh-
DeWitt detector (UDD) model utilized to describe acceler-
ated detectors and their excitations as response to the inertial
vacuum [19-22]. The GD model adopts the so-called rotat-
ing wave approximation (RWA) whose application in the so-
lution of QFT systems seems, however, to lead to the appear-
ance of nonlocal effects [23,24]. In particular, for the case of
the interaction between atom and electromagnetic field
within the dipole approximation, it has been shown that the
use of the RWA leads to the atomic dipole being coupled to
the field at points other than the position of the dipole [25].
From this point of view the GD model could result to be
inappropriate in models of matter-field interaction in describ-
ing the experimental observation aimed to detect quantum
entanglement. In fact by its nature this model gives rise to
the appearance of quantum correlations over spacelike dis-
tances which do not represent a manifestation of a genuine
entanglement. Thus the use of GD model also could lead to
appearance of violation of the causal propagation of signals,
even if the effective connection between RWA and causality
in the Glauber detection theory is yet debated. In particular,
it has been shown that the photocounting probabilities for
short observation times appear to violate causality [15,16],
and this has led some authors to suggest relevant modifica-
tions of the Glauber photodetection theory [15,16]. Other
investigations seem instead to indicate that an appropriate
use of the RWA in the GD model guarantees causality [13].
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Thus the observability and the measurement of quantum
correlations in order to evidence entanglement and causal
effects require the use of appropriate detector models and in
particular the adoption of a suitable Hamiltonian that does
not induce by itself nonlocality. The aim of this paper is to
discuss the typical models adopted in describing quantum
detection processes and their relation to the possible appear-
ance of nonlocal effects in the context of QFT. To this pur-
pose in the first part of the paper we will analyze the GD
model and the role played by the RWA into the appearance of
effects over spacelike distances. Then, in order to connect the
measurement of quantum correlations to detection processes,
we then shall analyze another suitable detector model and
will obtain its response to the quantum field. To this end here
we shall consider a system consisting of a quantum scalar
field linearly interacting with a classical source localized in a
finite space-time region [26-29]. Such a model, which can
be exactly solved, appears to be of interest because it allows
us to have a clear view of the role played by nonlocal effects
in the quantum correlations in the system without the limita-
tions linked to the perturbative calculations.

The paper is organized as follows. In Sec. II we illustrate
the GD and UDD models, while in Sec. III a nonstandard
application of the RWA to the quantum detection of fields
generated by sources is analyzed. In Sec. IV we shall intro-
duce the model of quantum scalar field coupled to a classical
source and then evaluate the response function of the GD and
UDD to the field for different situations. Finally in Sec. V we
comment the results obtained.

II. QUANTUM DETECTION MODELS OF SCALAR FIELD

The quantum theory of photodetection, with the construc-
tion of a model of detector, as developed by Glauber [17],
has played a key role in quantum optics. Extensions of the
GD model that take into account the back action of the de-
tector on the field have also been considered [30]. However
other kinds of detectors have also been used in QFT [19-22].
In both approaches the detectors are particle detectors and
the detection process represents the quantum measurement to
detect the quanta of the field. Here we shall utilize the GD
and UDD models in the case of scalar field detection [20].

A. Unruh-De Witt scalar detector

UDD model [19] is represented as an idealized particle of
negligible spatial extension and with internal energy levels,
coupled via a monopole interaction with a scalar field ®(x).
The latter may be expressed in terms of its positive and nega-
tive frequency part as

P(x) = B*(x) + P™(x), (1)

where, taking =1 and c=1,

i,y
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1 d’k
o )mf —a(k)e™** and P (x) = P*(x).
(2)

w=\|k|?+m? and a(k) and a’(k) are, respectively, the usual
annihilation and creation operators that satisfy the relativistic
commutator rules,

[a(k),a' (k)] =208 (k-K'). (3)

P*(x) =

The detector is characterized by two energy levels w, and w,,
with eigenstates |g) and |e), respectively. It moves along the
line word line described by the function x(7), with 7 the
proper time. The UDD model in the case of scalar fields is
defined by the following interaction Hamiltonian:

HILL == epi(D®(x(1), (4)

with m(7) the detector monopole moment and ¢, the field-
detector coupling constant. Notice that H{"L contains both
conserving and nonconserving energy terms. We shall take
the interaction turned on only for a finite time interval 7
=171,— 7. The state of the detector-field system at initial time
7 is |i)=|g¥)=|g) ®|¢;), where |g) is the detector state
ground and |i;) the field state.

Using the interaction picture the first-order transition am-
plitude from |gu;) to |eds) is

AupDlgy)—lev) = ey U(n)|g )

Tf ) ,
ey | e )l

)

with m,,=(e|m(0)|g) and w,,=w,—w,. Using the positive
and negative frequency parts of the field operator, the matrix
elements appearing within the integral in Eq. (5) can be writ-
ten as

(WD (TN ) + (Yl D™ (7)) [), (6)

with the first term describing the absorption and the second
term describing the emission of field quanta by the detector.
In the UDD both the terms (®*(x(7'))|;) and
<¢f|q> (x(7"))|#;) contribute to the detector excitation ampli-
tude and correspond, respectively, to detector excitation with
absorption or emission of a field quantum. In particular the
second term represents the response of the detector to the
vacuum fluctuations. In order to have a better insight into the
different kinds of processes occurring in the scalar field-
UDD interaction, here we give the expression of the ampli-
tude probability of excitation UDD in terms of annihilation
and creation operators of scalar quanta. By inserting Eq. (2)
in Eq. (5), we obtain

7 i i ! —ik-x(7) i(w,,+w) 7"
AvpDles)—les) = (3 2 f f d7 [ T (yla(l) ) + Xt (' () ), (7)
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where the emission of quanta of the field with energy w is
given in the integrand by the factor ¢i(@egt@)7 The absorption

process instead leads to the factor @)™ in the integrand
of the above expression.

The probability of detection of the UDD is thus obtained
by taking the square modulus of Eq. (5) and summing over
all the possible field final states,

(T o
PUDD(Tfs T,) = C%|meg|2f J dT'dT"elw@A'(T,_T )
T[' Ti

XD (e(7) P (7)) (8)

From the above expression it comes out that the response of
detector depends on the motion of the detector itself; the
well-known Unruh effect is in fact related to this property.
The response of a uniformly accelerated UDD with accelera-
tion « to the vacuum fluctuations is the same as that of an
unaccelerated UDD immersed in a bath of thermal radiation
at temperature T=1/2mka) [19].

B. Glauber scalar detector

The GD model [17], commonly adopted in quantum op-
tics, is obtained by applying the RWA in the interaction term.
The use of such an approximation, which permits to easily
evaluate the photodetection probability, is valid as long as
the measurement time and pulse length of detected field are
long compared to a typical optical cycle.

The RWA can analogously be applied for the case of sca-
lar detection in the field-detector interaction Hamiltonian of
Eq. (4). It reduces to the Hamiltonian

HE = = ¢1[mgo(7)|g)e| D™(x(1) + meo(7)]e)g| D (x()],
9)

where the closure relation for detector eigenstates |g){g]
+|e)(e|=1 has been used and m, (), (7)=(e(g)|m(7)|g(e)).
Note that in the above expression, the antiresonant terms
Mg (7)|e)(g|P™(x(7)) and m,(7)|g)(e|]P*(x(7)), which de-
scribe the creation of scalar quanta with excitation of the
detector and the annihilation of scalar quanta with the decay
of the detector, respectively, do not appear. In fact the RWA
implies the neglect of such counter-rotating terms.

According to this model the detection is only considered
as an absorption process. As seen from Eq. (7), in the term
describing the emission of quanta of the field the factor
ei(@egro)7’ appears, which is rapidly oscillating and gives a
negligible contribution for (7,—7,)>1/w,,. In this sense
such a process can be considered virtual since it can occur
only for short time intervals (7,—7,) obeying w,,(7,~7)=<1
and moreover does not conserve energy. Instead the absorp-
tion process is given in the integrand by the factor e/(“es=) v,
The adoption of RWA forbids the virtual transitions where
the energy is not conserved. This implies that the only term,
that now comes out in Eq. (5), is the matrix element
Moy @*(x(7))[ ), thus only the positive frequency part of
the field appears in the first-order amplitude transition from
the initial state |g)|1;) to [e)|ify) for the GD model. This is
given by '
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o ,
—_7 lwe T + / 3 !
AGDgl/,/)Hle’_)—lclmng‘T "™ (Y| O (x(7")) [¢hd T

| (10)

and then leads to the probability detection
Tf Tf . 1
Pgp(75 1) = C%|meg|2f f dr' d7"ei®e ")
Ti YT

XD~ (e()D*(x(7) | ). (11)
The response of the GD to the vacuum field state |0) is

Tf ’Tf ) , ,
Pgp(7p,7) = C%|meg|2f f d7' d7"e e 7T
T; Ti

X{0[®~(x(7")) D* (x(7))|0)
=0. (12)

The GD, as a consequence of the RWA, therefore does not
feel the zero-point vacuum fluctuations. From Eq. (12) it
follows also that the response of the GD to the vacuum does
not depend from the state of the motion of the same detector.
The detection probability vanishes in particular for detectors
traveling either along inertial or accelerated world lines.
Therefore such a detector cannot show the well-known Un-
ruh effect.

The adoption of the GD model, with its use of the RWA,
to detect quantum correlations due to entanglement appears
to be controversial in QFT systems [13,15,16]. By applying
an approach already used in the photodetection of free elec-
tromagnetic fields [15,16], here we want to show the appear-
ance of nonlocal effects in the Glauber scalar detection
theory. To this aim we examine a free quantum scalar field
|¥), expressed as

371
vy = exp{ f “ falk)a W) - a*(k’)a(k')]}|0>,
(13)

and therefore | W) is the multimode coherent state satisfying
a(k)|¥)=a(k)| V). Taking into account Egs. (1) and (13), the
action of the operator ®*(x) on |¥) gives

O*(x)| W) = V(x)| V), (14)
where
1 &k .
= — _ez(k~x—wt)a )
V(x) o) 20 (k) (15)

It may easily be shown that V(x) satisfies the classical ho-
mogeneous Klein-Gordon equation

d d
(;—E+m2)V(x)=O, (16)
and can be therefore interpreted as a classical signal propa-
gating freely. In Eq. (15) it appears only the factor e with
®>0. Extending ¢ to a complex variable, this corresponds in
the complex plane r=t,—it,, to the appearance of the term
e 2, V(x) is thus an analytical function in the lower com-
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plex ¢ half-plane and then its real and imaginary parts are
therefore related by a Hilbert transformation,

1 (*R V(x,t
f Re V(x.t) .,

Im V(x,f) = — . (17)
TJ_» t—t1

Now we can easily evaluate the time evolution of quanti-
ties of interest in terms of V(x). The first-order Glauber cor-
relation function is defined as

G(x,x) = (P (x)P*(x)), (18)

and therefore is given by the expectation value of the opera-
tor ®~(x)®*(x) on the quantum-field state. Such a function
permits to estimate the rate of scalar quanta counting prob-
ability. By inserting Eq. (13) in Eq. (18), we obtain for it

G(x,x) = |[V(x)[>=[Re V(x)]* + [Im V(x)]°. (19)

The mean value of the scalar field operator ®(x) has instead
the form

(P|®(x)|¥)=2 Re V(x). (20)

Let us consider a signal V(x) consisting of a plane wave
with a sharp front moving in the positive z axis direction
whose real part is given by

Re V(x)=0O((r—2z)f(z-1), (21)
where O is the Heaviside function and

fo, for t—z e[0,AZ]
flz-1)= _ (22)

0, for t—z «[0,AZ]
with Az indicating the signal length here assumed to be
small. We note from Egs. (20) and (21) that Re V and there-
fore the mean value of the field reaches the detector at time

t=z and is equal to 0 for 1<<z. Im V, related by Eq. (17) to
Re V, will be given by

Im V(x) = @ln
T

(23)

1—1z
t—-z-AzZ|’

It results to differ from zero for all ¢ even if Re V=0 for ¢
<z. Therefore the Glauber correlation function
(P~ (x)®*(x)) written in Eq. (19) does not vanish before
(®(x)) for t<z.

The state consisting of the field vacuum and the atom in
the ground state is the eigenstate of the GD Hamiltonian of
Eq. (9) with eigenvalue 0. In this case the detector transition
amplitude from the ground to the excited state is thus iden-
tically zero, meaning that each single measurement it per-
forms when the field is in its vacuum state gives zero. There-
fore the GD is not sensible to the field vacuum fluctuations
of the field and non-null measurements must be attributed to
the signal and not to preexisting vacuum correlations. Thus
the behavior exhibited by the Glauber correlation function in
relation to mean value of the field for the state |¥) implies
that the GD model, leading by its very nature to the devel-
opment of effects over spacelike distances, is inappropriate
to detect both the appearance of entanglement and causality
in the time evolution of free fields [15,16].
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III. NONSTANDARD APPLICATION OF THE RWA
TO QUANTUM DETECTION THEORY

In the previous section we have seen that already for a
free scalar field, the Glauber detection correlation function
presents a nonlocal behavior that cannot be accounted for by
the pre-existing correlations of the zero-point field. This in-
duces first to inquire if such a behavior may be observed
when other kinds of detectors are used, and then to examine
the detection processes in the case of field generated by
quantum sources.

In particular, we shall here investigate the role played by
a “nonstandard” application of the RWA to the quantum de-
tection theory for the case of quantum scalar fields interact-
ing with sources. Starting from a complete Hamiltonian H,
which contains conserving and nonconserving energy terms,
the detection probability rate for the UDD point like at rest
and localized at x with x(7)=x=(x,7) is given by the time
derivative of Eq. (8) and can be expressed as

t
Pupp(t) = 2¢i|m, |"Re f dt' (| D(x, ) D(x, 1) | ihye s,
0
(24)

where we have assumed that the field-detector interaction is
turned from 7,=0 to 7,=¢. We shall analyze the detection
probability rate in the Heinseberg picture. It has again the
form of Eq. (24), where ®'(x,1) is now the Heisenberg op-
erator satisfying the equation of the motion

% [ H.® (x.0)]. (25)

Following the same approach previously adopted in quantum
electrodynamics [13], a formal solution of Eq. (25) can be
expressed by writing the Heinseberg operator ®'(x,7) as

D' (x,1) = D)(x,1) + Dpp(x,1) + P (x,1) (26)

with ®(x,7) the free field, ®x(x,#) the radiation reaction
field of the detector on itself, while ®/(x,7) indicates the
field due to the source. The retarded source field can be
expressed as P!(x,1)=F'(x,1)O(t—r), where O is the
Heaveside function guaranteeing causality and therefore

D' (x,1) = D)(x,1) + Ppp(x,0) + F'(x,0)O(t—r).  (27)

In the above expression we have assumed the external field
source to be at distance r from the pointlike detector local-
ized at x.

Now let us define

O (x,1) = OFH(x,1) + DR (x,0) + BFO(x,1),
(28)

where @) and @+~ are the positive (negative) frequency
parts of the free and reaction radiation field, respectively, and

&+ i
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&I (x,1) = F*Ox.0)0(t - r) (29)

with F'+0) indicating the positive (negative) frequency part
of F'.

For time intervals larger than 1/w,,, we can adopt the
approximation already used by Milonni et al. to treat the
electromagnetic field case [13]. This consists in approximat-
ing Eq. (24) with the expression

PUDD(f) = PMD(t)

t
=2 Re [ dr g0 E
0
><|1//i>ei‘”eg(”") for 1> 1/w,,, (30)

which can be considered as the rate detection probability,
evaluated in the Heinseberg picture, of a new scalar quantum
detector model, which is the “Milonni detector” (MD). In
Eq. (30), instead of the field operator ®(x,7) which appears
in Eq. (24) and thus contains also terms including positive
and negative frequency parts, such as ®'*®’~, only the com-
bination ®'~®'* is present.

We stress that the approximation used in Eq. (30) has
been applied only after calculating the fields based on full
Hamiltonian including conserving and nonconserving energy
terms. Now we will show that this way of using such an
approximation represents a nonstandard application of the
RWA as originally performed in Glauber formulation and as
a matter of fact a different one. In fact from Eq. (29) we

observe that while (I~>3’,+(') gives the retarded positive (nega-
tive) frequency part of the external source field, it does not
coincide with positive (negative) frequency part of the re-
tarded operator @/, which should be inserted according to
the standard application of the RWA. Indeed the ® function
by itself consists of positive and negative frequency parts as

O(nN=07(7)+0*7)
=1 O dwe T * dwe 7
= hm— R + . . (31)
e—02mi | J_,, w+ie 0 w+ie

Therefore the causally retarded source field CI~)X’+(_) contains
both positive and negative frequency components. The ap-
proach described here that replaces in the detection probabil-
ity rate of Eq. (30) the full retarded fields with the retarded
positive (negative) frequency part of the field is different
from the standard form of the RWA that is performed at the
beginning in the Glauber detection theory in the Hamiltonian
of the system. This gives place to the detection rate probabil-
ity of the defined MD, whose use prevents the development
of quantum correlations over spacelike distances as we now
will show.

By taking in the rate detection probability of MD, given
by Eq. (30), as the initial field state, the vacuum state |i;)
=|0), and then inserting Egs. (28) and (29) we obtain
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t
P =2l e [ ar (ofsx 075000
0

+ O = r){(Prr(x,0)F'*(x,1"))
+ O = r){(F'~(x,1)Dpp(x,1))

+ 01— O = r)(F (x,)F"*(x,1"))Je™e”" .
(32)

Under the assumption that the monopole detector atom is
only weakly perturbed, the above expression becomes, simi-
larly to the electromagnetic field case [13],

PMD(I‘)
t
= 2|meg|2®(t - r)Ref dt’(F’_(X,t)F’+(X,t’))ei‘°eg(’/_’).

(33)

The presence of the function ®(z—r) in the rate probability
expression guarantees that the influence of the source field is
not vanishing only inside the light cone centered on the ex-
ternal field source. Thus the adoption of the MD for models
of matter-field interaction being the sources quantum, like
the in Fermi model [9,31], or classical like in other models
[26-28], does not lead to quantum correlations spreading in
the whole space and is moreover causal, even if such a be-
havior appears to be “forced” by the approximation used in
rate detection probability.

IV. QUANTUM DETECTION IN A SCALAR QFT MODEL

An analysis of the measurement and the possible observ-
ability of quantum correlations must use suitable detectors
and can be strictly accomplished within exactly solvable
physical models. In this spirit a simple QFT system, consist-
ing of a quantum scalar field coupled to a classical source,
has been recently investigated with none of the limitations
related to perturbative calculations. So it appears of interest
to study for this system the response of the various detectors
to the field generated by localized sources.

A. Model

We consider a QFT model of a quantum scalar field ®(x)
linearly interacting with a classical scalar source j(x), as-
sumed to be localized in a finite space-time region and
turned for a finite time [26-28]. The Hamiltonian term de-
scribing the interaction is given by

H;, (1) =g J b Px[@*(x,1) + P (x,0]j(x,1)

=H;, (1) + H,, (1), (34)

where g is the source-field coupling constant.
Initially (r=0) the field is taken in its vacuum state |0).
The state |¢), describing the system at time ¢, will be

|ty = U(1)|0), (35)
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where U(¢) is the interaction picture time evolution operator.
Solving the equation of motion that derives from Eq. (34) we
get for U(r) a formal expression valid at all orders in g as

0

U(r) :expl— if dt'l‘fi,,,(f')}

13
Xexp{—if dt’H;:lt(t’)]e_a’)e“(t). (36)
0

In Eq. (36) the coefficients a(z) and &(r) depend explicitly on
the source as

- 2 [t t
a(t) = if dtlf dtzf d3X1f d3X2_j(X1,t1)
2 0 0

XA_(X) = Xp, 1 = 1) (X2, 12),

l-gZ t t
g(t) = 7J dtlf dt2f d3X1f d3X2
0 0

XA(X) =X, 1) = 1) j(X),1))j(X0,1)O(t; = 1),
(37)

where A is the two-point function, given by the field com-
mutator as [P(x),P(y)]=iA(x—y), and A_ is its negative fre-
quency part [32,33].

It has been previously shown that the dynamics of any
local observable é[q)(x),ﬁ ®(x)], satisfying the microcau-
sality principle and represented by an analytical function of
the field operator and its space and time derivatives, depends
causally on the source[28,29]. With this model the presence
of nonlocality has also been investigated by analyzing the
localization properties of average values of local operators in
connection to Hegerfeldt’s theorem [3-5], which seems to
imply causality violation for the time evolution of the wave
functions, and one-point positive localization observables. In
the same spirit and in the connection to the relevance of the
detection theory for relating the results of measurements
with the form of quantum correlation functions, here we will
evaluate the expectation values, on the quantum state [) de-
scribing the system, of the Glauber and Newton-Wigner op-
erators, which have recently been used in QFT models both
of free fields and of matter-field interaction [8,9].

The Glauber operator for the scalar field is defined as
p(x)=®~(x)P*(x) and its expectation value on the state |¢)
is

(tlpe(0|D) = A (x - »)A_(x-y), (38)

where the function A +(&_), defined as

t
Et(x—y)EJ dt’f Px'A(x-x',1—1")j(x",t"),
0

(39)

is not zero outside the light cone containing the source.
Therefore the expectation value of pg; given by Eq. (38) does
not show a causal behavior.
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The Newton-Wigner operator for scalar field has instead
the form [9,34,35]

Pw(x) = afy(X)ayw(x), (40)

where a},;,(x) and ayy(x) may be expressed in terms of the
negative (positive) frequency part of the field operator ®(x)
as

apw(x) = Rx)D(x),

ayw(x) = R(x)®*(x), (41)
where
_ 9 \2 |4
R(x) = \'Z{m2 - (—) ] . (42)
Ix

R(x) is a nonlocal operator that may be shown to correspond
to a nonlocal integral transformation[35]. The expectation
value of pyy/(x) on [f) is

(tloxw() D) = @REOA(x = RX)A_(x—y).  (43)

The expectation value of the Newton-Wigner operator pyy
on |f) immediately shows a local behavior. In fact it contains
the action of the nonlocal operator R(x) on the functions

A,(x—y) and A_(x—y), which already present contributions
outside the light cone centered on the source. Nonlocal ef-
fects shown by both the Glauber and Newton-Wigner opera-
tors are, however, attributable to the fact that these operators
do not satisfy the microcausality principle [28]. This implies
that the measurement on one space-time point has influence
another point at a spacelike distance.

B. Response of UD detector

The appearance in the scalar model of nonlocal effects
seems to be at variance with the results found in previous
works that use local operator functions of the field and of its
time and space derivatives [28,29]. However they are con-
nected to the use of localization operators that do not satisfy
the microcausality principle. All of this stresses once more
the key role played by a proper detection theory in the ques-
tion concerning nonlocality and measurement of quantum
correlations due to a genuine entanglement and of causal
effects. Here we will calculate explicitly the response of the
pointlike UD detector to the field in our QFT scalar model.

In order to keep the problem simple we will assume the
detector at rest at space point X, so that the function describ-
ing its world line becomes x(7)=x=(x,?). Therefore the ef-
fects that depend from the motion of the detector, as the
Unruh ones, will not appear in the detection probability.
Moreover we shall assume that the source coupled to the
quantum field is classical and localized within a sufficiently
small space-time region around the space-time point y
=(y,yg). This source is thus effectively pointlike and we
shall assume that it is turned on and off for an infinitesimal
time interval. In this case from Eq. (36), the quantum-field
state describing the evolving system at time ¢ takes the form

1) = expl— ig®(1 — y)) D™ (y)][0)e " (44)

with
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)
ay(f) = %@20 - yo)limA_(x). (45)
The above expression for «(r) is formally divergent. There-
fore one should regularize the space-time integrals by using a
cutoff N, which makes the source localized in a small, but not
exactly pointlike, space-time region and we shall consider
the limit A — 0 in those matrix elements where N appears.
However we will see that in our case the matrix elements we
are interested in do not depend from the regularization of the
integrals.

Using Eqgs. (44) and (45) in Eq. (8) the detection prob-
abilities to the field generated by the source can then be
evaluated with no kind of approximation and becomes

PUDD Cl|meg|2J f dt'dt’e lw"g(l,,_l,)<[i|q)(x,t,)(I)(X,t”)|tl'>,

(46)

where we have assumed that the UDD-field interaction oc-
curs in the interval time [7;,7;]. Three different physical situ-
ations can occur for: yo<t;, 1;<yo<ts, and 1,<y,.

(i) yo<t;. The classical pointlike source is turned on at
vo<t;. In this case the response of the UDD takes the form

Pupp = Py (t5.1;) + 8% Palsss)|?
= cilme,|* f f dt’ di"e"e"~1(0|d(x,1")D(x,1")|0)

+8 C1|m9g| @ t _yO)
2

X (47)

t
[V et sy
t;

1

where A is the propagator function coming from the field
commutator [P (x),P(y)]=iA(x—y) and is vanishing when
its argument is spacelike. Therefore to the last time integral
of Eq. (47) contribute only the values of A(x) such that x is
inside the light cone centered on the space-time point y,
where the classical source is localized. The detection prob-
ability for UDD can be seen to be made of two terms. The
first, representing the vacuum contribution to the detector
response function, is source independent and presents non-
zero contributions outside the light cone centered on the
source. The second is source dependent and, as shown in
Appendix A, P,(s;,s;) can be put in the form

Py(sps;) = 2C1|meg|®(fi _YO)(’B(S;){@(— 51'2)<F1(0,S,2r)

e eg(r"'yO) 2
_W +®(s VF, (sl,sf) s (48)

Where F,(u?,v?) is defined in Eq (A3) and sf(l)_(tf(z) -v0)?
—r? with r=|x-y|. Because @(sf) appears in expression (48),
the source dependent contribution of the UDD detector re-
sponse turns out to be automatically causally retarded

(i) t;<yo<t; The field-classical source coupling is
turned in the time interval [#;,;,]. We can analyze this situa-
tion assuming that the coupling of the detector with the field
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is turned on from #; to yo—€ and from y,+e€ to 7, while the
source-field interaction is effective in the interval time from
yo—€ to yg+€. Then we will take the limit e—0 in the ex-
pressions obtained. Following the same procedure used to
calculate the response of detector in the previous situation,
we obtain for the UDD probability detection

Pypp = Py(t.1) + 82|P2(Sﬁ0)|2- (49)

Again P(t/,;) represents the vacuum response contribution
and coincides with the one of Eq. (47), while Py(s;,0) is
linked to the variation in the source and is given in this case
by

5 5 eiweg(r+y0)
Py(55,0) =2¢1m, O(sp)| F,(0,s7) - Rar ) (50)

where we have assumed lim, ., ©(x)=1. Also in this case
we observe that the source dependent part of the UDD re-
sponse is vanishing outside the light cone centered on the
source.

(iii) ty<<y,. The classical pointlike source is turned on at
Yo 1. Such a physical situation is not of interest for evalu-
ating the detector response of the field generated by the
source. In fact in this case the quantum-field state describing
our system in the time interval [7;,#,] is the vacuum state |0),
and therefore the response of the UDD is simply given by
vacuum contribution with Pypp=P;(t7,1;).

The results presented in this section show that the use
UDD to detect field generated by a classical pointlike source
does not give rise to the instantaneous appearance of quan-
tum correlation over the whole space, and therefore the UDD
response is causally retarded. This causal behavior comes out
naturally from the detector models and is not put in a sense
by “hand.”

C. Response of Glauber detector

In relation to the causal response of the UDD to the field
generated by the classical source, localized in space and
time, in our scalar QFT model it appears also of interest to
evaluate here the response of the GD model in order to see
how realistic its use in determining the structures of quantum
correlations function. As seen in Sec. 1, its use for free fields
leads by its very nature to the development of effects devel-
oping over spacelike distances and at variance with Ein-
stein’s causality.

In a manner analogous to the calculation of UDD re-
sponse, here we again consider a source localized in an in-
finitesimal space-time region around the space-time point y.
The detection probability for the Glauber detector Pgp, as-
sumed to be at rest and located in X, may thus be obtained by
inserting Egs. (44) and (45) in Eq. (11),

Pap = cilmyg|? f f dt'dr" e (1| (x,1 ) D*(x,1")|1;).

(51)

Again three different configurations may be considered.
(i) yo<t;. In this case the response of the GD, as shown in
the explicit calculation of Appendix, may be expressed as
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1 2
Pep=g’ Epz(sf»si) +P3(Sfasi) (52)

with P(sf,s;) and P;(ss,s;) given with respect by Eq. (48)
and

P3(sps;) = ¢1|m,|O(t; - YO){@)(S?)[@(S?)Fz(S?,S,%) +0(-s7)
XIFy(0,53) + Fy(s2.0) ]} + O ) F5(s%,59)], (53)

where F,(u?,v?) and F5(u?,v?) are defined in the Eqgs. (A9)
and (A10). We observe in Eq. (52) that all terms are source
dependent. In particular from expression (53) we also note
the Heaviside function ®(-s?) appears in P;(s;,s;). This im-
plies that GD may instantaneously respond to the variation in
the source, giving rise to nonlocality in our model in agree-
ment with what seen in Sec II.
(ii) t;<yo <t The GD detection probability is

1 2
PGD = g2 EPz(Sf,O) + P3(sf,r) N (54)

where P,(s7,0) is given in Eq. (50) and Ps(s;,r) is defined as
P3(sp.r) = cyme {O(sIF5(0,57) + F5(= r,0)]
+0O(- s]%)F3(— rz,s}%)}.

We note that again in the detection probability of Eq. (54),
consisting of all source dependent contributions, noncausal
terms appear.

(iii) t;<<yy. In this case the response of the GD vanishes,
because this detector model is not sensitive to the vacuum
fluctuations.

Finally we point that the appearance of noncausal terms in
the response function of GD, given in Egs. (52) and (54),
cannot be related to the zero-point vacuum fluctuations, dif-
ferent from what happens for UDD detector. Thus noncausal
behavior must be ascribed to the fact that the quantity ®~d*
which does not satisfy the microcausality principle, appears
in the probability of detection for GD, given by Eq. (11), as
a consequence of the standard application of the RWA. This
is again in agreement with the previous results showing that
the use of the RWA leads to the development, over spacelike
distances, of quantum correlations not describing genuine
entanglement and at variance with causal propagation of the
signals [23,25,36].

V. CONCLUSIONS

The evaluation of nonlocal quantum correlations, such as
the entanglement between two or more systems consisting of
separated quanta field, can be obtained by interpreting mea-
surements performed with suitable quantum detector models
not inducing by themselves nonlocally. In fact nonlocal ef-
fects due to the use of inappropriate model detectors could
lead to the development of correlations over the whole space
mimicking a not physical entanglement and even violating
Einstein’s causality. Thus the theory of detection is of impor-
tance in the interpretation of measurement and observability
of quantum nonlocal effects.

Mainly two detector models are commonly used, that is,
GD and UDD models [17,19-22]. The difference relevant,
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for our purpose, between these kinds of detector models is
that in the Hamiltonian describing the GD model the RWA is
adopted and it thus responds only to the positive frequency
of the field it detects, while in the UDD model the Hamil-
tonian maintains the counter-rotating terms in field-detector
interaction and thus responds both to positive and negative
field frequencies.

Because a rigorous analysis of the measurement and ob-
servability of correlations through quantum detection pro-
cesses in QFT requires the use of suitable models that can be
solved exactly [31], we have used a QFT system, formed by
a quantum scalar field coupled linearly to a classical scalar
source localized in a finite space-time region, which when
presented by these characteristics, can be considered a good
model [29].

The use of the GD to interpret the appearance of quantum
correlations in QFT models has been questioned [13,15,16].
In the first part of this paper we have shown that by taking a
coherent state of a quantum scalar field, whose expectation
value of the field operator given by a wave plane with a
sharp front, the scalar quanta counting probability, evaluated
according to the GD model, comes out different from zero
before the signal reaches the detector. Such a result, which is
in agreement with what already obtained in the case of free
electromagnetic field [15,16], raises also the question relative
to the role played by RWA in the models of quantum detec-
tion theory and its relation with the development of spurious
quantum correlations at spacelike distances. In the same
spirit here we have extended our analysis by also examining
the detection process in the case of a quantum scalar field
generated by the sources. We have then adopted a procedure,
previously used for the electromagnetic fields case [13], that
makes use of the Heinseberg picture and then applies RWA
to the formal solution of the detector-field interaction. The
fields are thus obtained from the complete Hamiltonian,
which describes the quantum field interacting both with the
source and the detector, where also the nonconserving energy
terms are kept. In such models it is possible to calculate the
detection probability rate. We have shown that by first ob-
taining the fields with the complete Hamiltonian, including
both conserving and nonconserving energy terms, then sepa-
rating the full retarded field in a retarded positive and nega-
tive frequency parts, and finally applying the RWA on the
field themselves, a causal rate of detection probability is ob-
tained. This approach, due originally to Milonni, is really
different from the standard application of the RWA in the
Hamiltonian. It does not in fact give rise to the appearance of
nonlocal effects in the evolution of the positive and negative
frequency parts of the field. This deep difference in the final
results must be associated to the fact that the spectral decom-
position of the retarded positive (negative) frequency part of
the field does contain both positive and negative frequencies
coming from the ©-like retarded terms. This is therefore dif-
ferent from the standard procedure adopted in the Glauber
theory of detection where only positive or negative frequen-
cies of the complete field are kept. Thus such an application
of the RWA leads to an effective new detector model, which
differs from the GD one and does not give rise to quantum
correlations at spacelike distances, but the causal behavior
results to be put by “hand” in the solution of complete
detector-field interaction.
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We have shown that in our scalar model local operator
function of the field develop causally from the source, nev-
ertheless, nonlocal effects appear in the expectation values of
one-point positive localization observables, such as the
Glauber and Newton-Wigner operators. The reason of this
result is however that these operators do not satisfy the mi-
crocausality principle and therefore induce, by their very
definition, effects over spacelike distances [28]. Thus they
must not be used, for example by calculating their correla-
tions, to furnish indications of the presence of nonlocal ef-
fects.

A valid interpretation of the appearance of quantum cor-
relations in our model requires analyzing realistic models
that describe the detection of the scalar field generated by the
source. To this end we have explicitly evaluated the response
function of two detector models, that is, the UDD and GD
models, at rest in our reference frame in order to avoid the
appearance of Unruh-like effects. We have then shown that
the UDD detection probability causally responds to the field
generated by the source and is not characterized by nonlocal
effects, apart from the source-independent vacuum contribu-
tion related to the UDD sensitiveness to zero-point fluctua-
tions. Anyway this term must not be considered to describe
the appearance of nonlocality due to the variations in the
source and can in principle be taken into account to interpret
the results [23,24,36]. On the other hand the response func-
tion of the GD model gives source dependent terms in the
detection probability rate that corresponds to an instanta-
neous spreading of source effects over the whole space. If
taken at face value this would seem to imply a violation of
causal propagation of signals in our QFT system, and there-
fore our results confirm previous ones, indicating that the

tf " . ! . "
f dt"e!@eg! A(X _ y,t” _ yO) — 2ezwegy0f dt//ezweg(r —y0)|: 5( //2)
1

i Yo

with s">=(t"—y,)?>—r? and J, indicating the Bessel function of first order [37]. Performing the change ¢’ — s”
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standard use of RWA does lead to development of nonlocal
effects with time [23,25,36].

In conclusion to measure either the quantum correlations
or those causal effects linked to the time varying sources in
our QFT model, the adoption of the GD model, with the
RWA in the Hamiltonian turns out to be inappropriate induc-
ing by its very definition nonlocality. Another detector
model, the MD, obtained by a nonstandard application of the
RWA in the Heisenberg picture field solution, although it
guarantees causality, presents the characteristic that its be-
havior is somehow imposed in the detection theory from the
outside, and one may then not be sure whether source rel-
evant terms may also be thrown out. Instead the UDD model
must be preferred to describe quantum correlation for quan-
tized fields because the appearance of nonlocal effects in its
response to field quanta is only due the zero-point vacuum
fluctuations and does not depend from the source. Moreover
this behavior comes out naturally from the detection model
itself. It would then be also of interest to analyze the behav-
ior of such a quantum detector model when it or the source is
in arbitrary motion in order to study the relation between the
appearance of Unruh effects and nonlocal quantum effects.

APPENDIX A: PHOTODETECTION PROBABILITIES

Here we shall give the explicit calculation of the detection
probability of the UDD and GD in our QFT system when
Vo<t

For the UDD the source dependent contribution of re-
sponse to the field is given by the second term of the right
side of expression (47). The integral appearing in it, after
inserting the explicit form of A function, can be expressed as

mo (SI/Z)

= m W)] (A1)
7T\S

2 in integration

variable [s*(¢) is monotone in the integration variable for #'] Eq. (A1) may be put in the form

f I ”"cg A(X y’[ —y0)=®(sjzc) (_Siz)|:_

i
2 dsr/2

"2 2 STz, a¢

+®(s2) 22
Vs +r

eiweg(r+y0)

I
lweg\‘s +r

SJZ‘ d "2 [ 2 m )

iw, = + 2

+ ela)(gyo ”2 2elwcg\ N T ”2J1 (mVS" )
o 2Vs 8m\s

12, .2

By using the last equation and defining the function F,(u?,v?) as

. . 1
F(u?,0?) = 2¢/®es¥ e’“’fé"(— —) +f
87r

; th(m\W ) (A2)
Vs
ds" iz om —
elweg\“s +r FJ (mvysrfz) , (A3)
2 25"+ 12 grs" !

we obtain expression (48), whose square modulus gives the source dependent term of UDD detection probability in our QFT

model.

Now we evaluate explicitly the response function of the GD when y,<t,. To this purpose we insert Eq. (44) in Eq. (51) and

we obtain
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Pe(tpt) = cilm, 8?0t - g )U e A (x = y,1" = yy)
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2
(Ad)

The square modulus in the above expression can be written after decomposing A, in its real and imaginary parts as

2

l
j d[” zu) +(X _ y,t” _ )’0)
t;

i

i

Because Re A,

l Zf ) .
f dt'e“e” Re A, (x—y,1" — yo) = f di"e' " A(x —y, 1" — yp)
I t

Instead using the explicit forms of Im A, (x) for x,>0 [37]

Im A, (x) = {’Z@(x )
ey

. " . I
di"e's" Re A, + iJ di"e'e" Tm A,

J‘lf
t:

Ny (myx 2)

t 2

(A5)

I

= %A it can be easily shown that the first term in Eq. (A5) gives a contribution proportional to expression (A1),

(A6)

2mO(-x?) 2)} (A7)

K (mv\-
8772\,_)6 :

with N,(z) and K,(z), respectively, the first-order Neumann and Mac Donald functions and performing the change in the

integration variable ¢’ — 5"

2
K
iw. .y !
X elwegyof e eg
( 0 2Vs" + 1? 8

0 ”2
+ ei“’egyof ds—e
P 8\ —

—
S,-z 2\!’8"2 +

2 "2
s ds
+0O(- Z)E’wegyof fz— ——— e
Vs

ds "2 [, 2 m

, we can evaluate the second integral in the right side of Eq. (A5),

1y 2 "2
" ds " m
ij dt"ees” Im A, (x —y,t" —yo) = .(sf)[.(s2)e‘“’ g>0J R E— ) oS 52 AL (m\s"?) + O(=s; 2)
1

—
2 28" + r? s

iw, \Y +7r

WN 1(m's "2)

. |2, .2 2
[ S +r ”2 1(m\ //2))]

Kl(m\/_”)

[ 2, 2 2m

87T2 772 (AS)

Now inserting the Eqs. (A6) and (A8) in Eq. (A4) and defining the functions F,(u?,v?) and F;(u?,v?) as

Fy(u?,0?) = ei“’egyof

2
u ds//Z

F53(u*,v%) = ei‘”fg)'of

with respect, we obtain for the GD response expression (52).

2
u ds/lZ

e
2 2\/S”2+1‘2 8’77\ [

iw, \A +r

e 71,2/_uK1

/=
02 2Vs" + 12

iw, \5"2+r2 m

=N, (m\5"), (A9)

2 2m

(my\—s"), (A10)
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