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We construct a generalized phase-space representation �GPSR� based on the idea of Einstein-Podolsky-
Rosen quantum entanglement, i.e., we generalize the Torres-Vega-Frederick phase-space representation to the
entangled case, which is characteristic of the features when two particles’ relative coordinate, total momentum
operators, and their conjugative variables, respectively, operate on the GPSR. This representation is complete
and nonorthogonal. The Weyl-ordered form of the density operator of GPSR is derived, and its identification
with the generalized Husimi operator is recognized, which clearly exhibit its statistical behavior. The minimum
uncertainty relation obeyed by the GPSR is also demonstrated.
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I. INTRODUCTION

Phase-space formalism of quantum mechanics began with
Wigner’s celebrated paper �1� in 1932, since then the �gen-
eralized� phase-space techniques have found useful applica-
tions in various branches of physics �2–5�. The main idea of
this formalism is to represent the density operator as a qua-
sidistribution function over the classical phase-space �q , p�.
Phase-space formalism implies that there is no a unique way
to represent a quantum state as a wave function �in the stan-
dard approach one usually uses the coordinate ��q� or the
momentum ��p� representations�. By observing this, Torres-
Vega and Frederick �TF� constructed a quantum mechanical
phase-space representation in 1993 �6�, �=����, where �
denotes a point in the �q , p� space characteristic of param-
eters �� ,� ,� ,��, using it the standard Schrödinger equation

i
�

�t
��q,t� = �−

1

2m

�2

�q2 + V�q����q,t�,� = 1 �1�

changes to the following quantum Liouville equation in
phase-space

i
�

�t
���,t� = �−

1

2m

�2

�q2 + V�q + i
�

�p
�����,t� , �2�

where ���� obtained from ��q� via ����=	−	
	 dq
� �q���q�,

i.e., Torres-Vega and Frederick employed Dirac symbol to
associate Eq. �2� with the state vector ���. The bra 
�� exhib-
its the remarkable features when coordinate operator Q and
momentum operator P, respectively, operates on it, i.e.,


��Q = ��q + i�
�

�p
�
�� , �3�


��P = ��p + i�
�

�q
�
�� , �4�

so 
�� is a state of phase-space variables �q , p�; �, �, �, and
� are all real number parameters specifying a whole family
of 
�� states, satisfying

�� − �� = 1. �5�

It has been demonstrated that this representation best fits the
correspondence between the classical and quantum Liouville
equations and have wide applications �6–12�.

To make the TF theory complete, in Ref. �13�, we have
found the explicit form of ��� in Fock space,

���  �2�− �����1/2


exp��q2

2�
−

�p2

2�
+ �2��q + i�p�a1

† +
�� + ��

2
a1

†2��0�1,

�6�

where �0�1 is the single-mode vacuum state, a1 and a1
† are the

Bose annihilation and creation operators, respectively, obey-
ing �a1 ,a1

†�=1. By using the technique of integration within
an ordered product �IWOP� of operators �14,15�, we have
shown that ��� is a special coherent squeezed state which
makes up a quantum mechanical representation. ��� contains
elements of both the momentum eigenstate and the coordi-
nate eigenstate. Remarkably, ���
�� reduces to the Husimi
operator for some special values of �� ,� ,� ,��.

When we move to tackling quantum entanglement in two
degree of freedom �DOF� case, enlightened by the paper of
Einstein-Podolsky-Rosen �EPR� in 1935 �16�, who noticed
that two particles’ relative coordinate Q1−Q2 and total mo-
mentum P1+ P2 are commutative and can be simultaneously
measured, we are naturally led to consider first the common
eigenvector 
�� of the relative coordinate operator Q1−Q2
and the momentum sum operator P1+ P2, as well as the com-
mon eigenvector 
�� of their conjugative variables P1− P2
and Q1+Q2, since �Q1+Q2 , P1+ P2�=2i and �Q1−Q2 , P1
− P2�=2i. Correspondingly, because in the entangled case
only those states simultaneously describing two entangled
particles can be endowed with physical meaning, phase-
space should be understood with regard to 
�� and 
��. Be-
sides, ��=rei� also obeys the eigenequations
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Q1 − Q2

��Q1 − Q2�2 + �P1 + P2�2
�� = rei� = cos �� = rei� ,

and

P1 + P2

��Q1 − Q2�2 + �P1 + P2�2
�� = rei� = sin �� = rei� ,

by noticing ��Q1−Q2�2+ �P1+ P2�2���=rei�=2r2��=rei�,
we can define a phase operator. Therefore we should con-
struct generalized phase-space representation based on two
mutually conjugative EPR variables �sum and difference
variables�. As one can see shortly later, this generalization
would result in the development of both the Wigner function
and the Husimi function theory for entangled states. It is
expected that states that are entangled or partly entangled
would form a compact “blob” in the sum and difference
phase-space, as opposed to the strongly oscillating Wigner
function that they would have in the “old” �Q , P� represen-
tation. This would have two useful consequences: �1� it
would become much easier to “eyeball” what is going on
physically when, for example, some sort of complicated dy-
namics is going on; and �2� compact distributions are much
better for Monte Carlo sampling if one were to make calcu-
lations this way.

Recalling the form of 
�� in two-mode Fock space �17�

��� = exp�−
1

2
���2 + �a1

† − ��a2
† + a1

†a2
†��00�, � = �1 + i�2,

�7�

where ai, ai
† �i=1,2� are the two-mode Bose annihilation and

creation operators obeying �ai ,aj
†�=�ij, we see that ��� satis-

fies the eigenequations:

�Q1 − Q2���� = �2�1���, �P1 + P2���� = �2�2��� , �8�

and possesses the orthogonal-complete relation

� d2�

�
���
�� = 1, 
������ = ����� − ������� − ��� . �9�

EPR entanglement involved in ��� can be clearly seen from
its Schmidt decompositions, i.e., ���=e−i�1�2	−	

	 dq�q�1 � �q
−�2�1�2ei�2�2q, where �q�i �i=1,2� is the eigenvector of co-
ordinate Qi. Based on 
�� and 
�� we generalize Eq. �6� to an
enlarged phase-space representation e
��, where the subscript
�e� implies entanglement. Then how to construct this repre-
sentation? Similar in spirit to Eqs. �3� and �4� we start with
considering what are the four self-consistent and reasonable
equations �involving �, �, �, and �� in two DOF case. After
doing tries, we find that ���e is characteristic of the features
when Q1−Q2 and P1+ P2, respectively, operates on it,

e
��
Q1 − Q2

�2
= ���1 + i�

�

��2
�e
�� ,

e
��
P1 + P2

�2
= ���2 − i�

�

��1
�e
�� , �10�

where �1+ i�2=� and �1+ i�2=� are complex variables indi-
cating the phase-space representation e
��. Simultaneously,
under the action of the center-of-mass operator Q1+Q2 and
the relative momentum operator P1− P2, the state e
�� should
exhibit

e
��
Q1 + Q2

�2
= ���1 − i�

�

��2
�e
�� ,

e
��
P1 − P2

�2
= ���2 + i�

�

��1
�e
�� . �11�

Equations �10� and �11� are the nontrivial extension of Eqs.
�3� and �4�, so e
�� corresponds to a generalized phase-space
representation �GPSR�.

The work of extending 
�� to the entangled case e
�� is
somehow like the extension from the single-mode squeezed
state to the two-mode squeezed state �an entangled state too�
�18�. In the following we shall derive the explicit form of
���e and further analyze its properties, in so doing, the
Torres-Vega-Frederick theory can be developed and en-
riched.

Our paper is arranged as follows. In Sec. II using the ���
representation we shall derive the explicit form of ���e in
two-mode Fock space and then analyze its properties. In Sec.
III, the completeness relation and nonorthogonality of ���e
are demonstrated. In Sec. IV the minimum uncertainty rela-
tion of two pairs of quadrature operators in ���e is shown. In
Secs. V and VI we derive the Weyl-ordered form of ���ee
��,
which yields its classical correspondence, and then examine
its marginal distributions in “��� direction” and “��� direc-
tion.” Sections VII and VIII are devoted to the identification
of the density operator ���ee
�� with the generalized Husimi
operator, and to the derivation of Wigner function of ���e,
respectively.

II. STATE ��‹e IN TWO-MODE FOCK SPACE

We find that the explicit form of the state ���e in two-
mode Fock space is �see the Appendix�,

���e  2�− ���� exp�����2

2�
−

����2

2�
+ ��� + ���a1

†

+ ���� − ����a2
† − ��� + ���a1

†a2
†��00� , �12�

where �, �, �, and � satisfy the relation Eq. �5�; to satisfy the
square integrable condition for wave function in the phase-
space of ���e,

�
� �0, and �

� �0 are demanded. From Eq. �12�
we see that the representation ���e involves elements of both
��� and ��� representations, which are both entangled states:
i.e., the set of values ��=−1, �=0 gives the standard EPR
entangled state ���e→ ��=��� �comparing with Eq. �7��;
while the set ��=1, �=0 yields ���e→ ��=��� �comparing
with Eq. �39� below�. To certify that Eq. �12� really obeys
Eqs. �10� and �11� we operate ai on ���e,
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a1���e = ���� + ��� − ��� + ���a2
†����e,

a2���e = ����� − ���� − ��� + ���a1
†����e. �13�

Then noting the relation Qi= �ai+ai
†� /�2, Pi= �ai−ai

†� / ��2i�,
and Eq. �5� as well as

�

�� e
�� = e
������

2�
− �a2�,

�

��� e
�� = e
�����

2�
+ �a1� ,

�

�� e
�� = e
���−
���

2�
+ �a2�,

�

��� e
�� = e
���−
��

2�
+ �a1� ,

�14�

we see, for example,

e
��
Q1 + Q2

�2
= e
���− ���a1 + �a2� − i��2 + ��1�

= ���1 + �� �

��
−

�

�����e
��

= ���1 − i�
�

��2
�e
�� , �15�

which is the first equation in Eq. �11�. In a similar way, we

can check that e
�� satisfies the other relations in Eqs. �10�
and �11�. Using Eqs. �10� and �11� and noticing the commu-
tator �

Q1�Q2
�2

,
P1�P2

�2
�= i, we have

e
���Q1 � Q2

�2
,
P1 � P2

�2
� = i��� − ���e
�� , �16�

which results in the condition ��−��=1 as shown in Eq.
�5�.

III. PROPERTIES OF ��‹e

A. Completeness relation of ��‹e

Next we prove the completeness relation of ���e in Eq.
�12�. Using the normally ordered form of the vacuum pro-
jector

�00�
00� ¬ exp�− a1
†a1 − a2

†a2�: , �17�

where the symbol : : denotes the normal product, which
means all the bosonic creation operators are standing on the
left of annihilation operators in a monomial of a† and a �19�,
and remembering that a normally ordered product of opera-
tors can be integrated with respect to c numbers provided the
integration is convergent, we can use Eq. �12� and the IWOP
technique to perform the following integration

1

�2�2� d2�d2�

4�2 ���ee
��

= −
��

��
� d2�d2�

�2 :exp�����2

�
+ ���a1

† − a2� + ����a1 − a2
†� − a1

†a1

−
����2

�
+ ���a1

† + a2� + ����a2
† + a1� − ��� + ����a1

†a2
† + a1a2� − a2

†a2�ª −
��

��
� d2�d2�

�2 :exp��

�
�� + ��a1 − a2

†�����

+ ��a1
† − a2�� −

�

�
�� − ��a2

† + a1����� − ��a1
† + a2���ª :exp�− �a1

†a1 + a2
†a2���� − �� + 1�� ª 1, �18�

where we have used the integral formula �20�

� d2�

�
e����2+��+���

= −
1

�
e− ��

� , Re � � 0. �19�

Thus ���e is capable of making up a quantum mechanical
representation.

B. Nonorthogonality of ��‹e

Noticing the overlap

e
��z1,z2� = 2�− ���� exp�−
�z1�2

2
+

����2

2�
−

����2

2�

+ ���� + ����z1�exp�−
�z2�2

2
+ ��� − ���z2

− ��� + ���z1z2� , �20�

where �z�=exp�−�z�2 /2+za†��0� is the coherent state �21,22�
and using the overcompleteness relation of coherent states

	
d2z1d2z2

�2 �z1 ,z2�
z1 ,z2�=1, we can derive the inner product

e
� ����e, �����e has the same �, �, �, and � as in ���e�,
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e
�����e =� d2z1d2z2

�2 e
��z1,z2�
z1,z2����e

= − 4����� d2z1d2z2

�2 exp�− �z1�2 + ���� + ����z1

+ ���� + ����z1
�� − �z2�2 + ��� − ���z2 + �����

− �����z2
� − ��� + ���z1z2 + � �

2�
����2 + ����2�

−
�

2�
����2 + ����2� − ��� + ���z1

�z2
�� . �21�

With the aid of the integral formula in Eq. �19�, we perform
the integral over d2z1d2z2 in Eq. �21� and finally obtain

e
�����e = exp� �

4���
�� − ���2

−
1

4��
����� − ���� + ���� − ����� +

�

4���
��

− ���2 −
�� + ��

4��
������ − ����� + ��� − ����� .

�22�

From Eq. �22� one can see that e
� ����e is nonorthogonal,
only when �=�� and �=�� Eq. �22� reduces to e
� ���e=1.

IV. MINIMUM UNCERTAINTY RELATION FOR ��‹e

Due to Heisenberg’s uncertainty principle, it is impossible
that ���e is the simultaneous eigenvectors of both �Q1
−Q2 , P1+ P2� and �Q1+Q2 , P1− P2�. Note that ��� and ��� are
related to each other by


���� =
1

2
exp� ��� − ���

2
� , �23�

we see


����e =� d2�

�

����
����e =� d2�

2�
e����−����/2
����e,


����e =� d2�

�

����
����e =� d2�

2�
e����−����/2
����e,

�24�

which are conjugated each other. It then follows from Eq.
�24� that once the value of �Q1−Q2 , P1+ P2� has been mea-
sured, one can find the system with any value for �Q1
+Q2 , P1− P2�, and vice versa.

In order to see clearly how the state ���e obeys uncertainty
relation, we introduce two pairs of quadrature phase ampli-
tudes for two-mode field

Q� =
Q1 � Q2

�2
, P� =

P1 � P2

�2
, �Q�,P�� = i . �25�

In similar to deriving Eq. �22�, using Eqs. �7�, �12�, and �39�
�see below�, we calculate the overlap between 
�� and ���e,


����e =�−
��

��
exp� ��

2��
��

�
+ ��2

+
1

2�
����� − ���� − ���� − ����� , �26�

and the overlap between 
�� and ���e


����e =�−
��

��
exp� ��

2��
� �

�
− ��2

−
1

2�
����� − ���� − ���� − ����� . �27�

Then employing the completeness relation of ��� and Eq.
�26�, we have


Q−� =� d2�

�
�1�
����e�2 = −

�1

�
,


Q−
2� =� d2�

�
�1

2�
����e�2 =
�1

2

�2 −
��

2��
, �28�

which leads to


P−� =
�2

�
, 
P−

2� =
�2

2

�2 −
��

2��
. �29�

It then follows


�Q−
2� = 
Q−

2� − 
Q−�2 = −
��

2��
,


�P−
2� = 
P−

2� − 
P−�2 = −
��

2��
, �30�

which yields

�
�Q−
2�
�P−

2� =
1

2
. �31�

Similarly, using Eq. �27� we can derive


Q+� =
�2

�
, 
Q+

2� =
�2

2

�2 −
��

2��
,


P+� =
�1

�
, 
P+

2� =
�1

2

�2 −
��

2��
, �32�

and

�
�Q+
2�
�P+

2� =
1

2
. �33�

Equations �30�–�33� show that ���e is a minimum uncertainty
state for the two pairs of quadrature operators.

V. WEYL-ORDERED FORM OF ��‹eeŠ��

For a bipartite operator Â, we can convert it into its Weyl
ordering form by using the formula �23–25�
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Â = 4� d2z1d2z2

�2

:

:

− z1,− z2�Â�z1,z2�exp�2�a1

†a1 + a1z1
�

− z1a1
†� + 2�a2

†a2 + a2z2
� − z2a2

†��
:

:
, �34�

where the symbol :
:

:
: denotes the Weyl ordering, �zi� is the

coherent state, 
−zi �zi�=exp�−2�zi�2�. Note that the order of
Bose operators ai and ai

† within a Weyl-ordered product can
be permuted. That is to say, even though �a ,a†�=1, we can
have :

:aa† :
: = :

:a
†a :

: . Substituting Eq. �12� into Eq. �34� and
performing the integration by virtue of the technique of in-
tegration within a Weyl ordered product �IWWOP� of opera-
tors �26�, we finally obtain

���ee
�� = − 16����� d2z1d2z2

�2

:

:
exp�− �z1�2 + ���� + ��� − 2a1

†�z1 + �2a1 − �� − ���z1
� − �z2�2 + ��� − �� − 2a2

†�z2

+ �2a2 − ��� + ����z2
� − ��� + ����z1

�z2
� + z1z2� +

����2

�
−

����2

�
+ 2a1

†a1 + 2a2
†a2� :

:

= 4
:

:
exp���

��
��

�
+ �a1 − a2

†�����

�
+ �a1

† − a2�� +
��

��
� �

�
− �a1 + a2

†��� ��

�
− �a2 + a1

†��� :

:
, �35�

or

���ee
�� = 4
:

:
exp���

��
���1

�
+

Q1 − Q2

�2
�2

+ ��2

�
+

P1 + P2

�2
�2� +

��

���� �1

�
−

Q1 + Q2

�2
�2

+ � �2

�
−

P1 − P2

�2
�2�� :

:
, �36�

which is the Weyl ordering form of ���ee
��. We should no-
tice the difference between Eq. �35� and Eq. �18�, since they
are in different operator ordering.

VI. MARGINAL DISTRIBUTIONS OF ��‹eeŠ��

The merit of Weyl ordering lies in the Weyl ordering in-
variance under similar transformations �27�, which brings
convenience for us to obtain the marginal distributions of
���ee
��. From the Weyl-ordered form Eq. �36� we obtain the
marginal distributions of ���ee
��,

� d2�

�
���ee
�� = −

4���

�

:

:
exp���

���� �1

�
−

Q1 + Q2

�2
�2

+ � �2

�
−

P1 − P2

�2
�2�� :

:
. �37�

Noting �Q1+Q2 , P1− P2�=0, there is no operator ordering
problem involved in Eq. �37�, so the symbol :

:
:
: in Eq. �37�

can be neglected, i.e.,

� d2�

�
���ee
�� = −

4���

�
exp���

���� �1

�
−

Q1 + Q2

�2
�2

+ � �2

�
−

P1 − P2

�2
�2�� . �38�

By using the simultaneous eigenstate ��� of the commutative
operators �Q1+Q2 , P1− P2� in two-mode Fock space �17�

��� = exp�−
1

2
���2 + �a1

† + ��a2
† − a1

†a2
†��00�, � = �1 + i�2,

�39�

which satisfies the eigenequations �Q1+Q2����=�2�1���,
�P1− P2����=�2�2���, and the complete-orthogonal relation,

� d2�

�
���
�� = 1, d2� = d�1d�2, �40�


����� = ����� − ������� − ��� , �41�

we see that the marginal distribution of function �e
� ����2 in
“� direction” is given by


��� d2�

�
���ee
���� = 
��� d2�

�
���



��� d2�

�
���ee
��� d2��

�
����
�����

= −
4���

�
� d2�

�
������2exp���

��
� �

�
− ��2� , �42�

which is a GAUSSIAN-broadened version of quantal distribu-
tion ������2 �measuring two particles’ relative momentum
and center-of-mass coordinate�. Similarly, we can obtain an-
other marginal distribution by performing the integration d2�
over ���ee
��,
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� d2�

�
���ee
�� = −

4���

�
exp���

��
���1

�
+

Q1 − Q2

�2
�2

+ ��2

�
+

P1 + P2

�2
�2�� . �43�

By using Eqs. �7�, �8�, and �43� we see that the other mar-
ginal distribution of �e
� ����2 in “� direction” is


��� d2�

�
���ee
����

= −
4���

�
� d2�

�
������2exp���

��
��

�
+ ��2� , �44�

a GAUSSIAN-broadened version of the distribution ������2
�measuring two particles’ relative coordinate and total mo-
mentum�. Equations �42� and �44� describe the relationship
between wave functions in the e
�� representation and those
in EPR entangled state ��� ����� representation, respectively.

VII. ��‹eeŠ�� AS A GENERALIZED HUSIMI
OPERATOR

In Ref. �28�, we have derived the Weyl-ordered form of
the two-mode Wigner operator �w�� ,�� �in its entangled
form�

�w��,�� =
:

:
��a1 − a2

† − ����a1
† − a2 − �����a1 + a2

† − ��


��a1
† + a2 − ���

:

:
, �45�

where �� . . . � denotes delta-function, �w�� ,��=�1�q1 , p1�
� �2�q2 , p2�, �= �̄− �̄�, �= �̄+ �̄�, �̄= �q1+ ip1� /�2, and �̄
= �q2+ ip2� /�2. Equation �45� indicates that the Weyl quanti-
zation scheme, for bipartite entangled system, is to take the
following correspondence,

� → �a1 − a2
†�, � → �a1 + a2

†� , �46�

then from the form of Eq. �35� we see that the classical Weyl
function corresponding to ���ee
�� is

4 exp���

��
��

�
+ ��2

+
��

��
� �

�
− ��2�  h��,�� . �47�

Thus the Weyl quantization in this case is expressed as

���ee
�� = 4� d2�d2�
:

:
��a1 − a2

† − ����a1
† − a2 − ���


��a1 + a2
† − ����a1

† + a2 − ���

:

:
exp���

��
��

�
+ ��2

+
��

��
� �

�
− ��2�

= 4� d2�d2��w��,��exp���

��
��

�
+ ��2

+
��

��
� �

�
− ��2� . �48�

In particular, when �=−�=1, and �= �
1+� , �= 1

1+� , Eq. �48�
becomes

���ee
�� → 4� d2�d2��w��,��exp�−
1

�
�� − ��2 − ��� − ��2� ,

�49�

which is the generalization of single-mode Husimi operator
�29,30�, so Eq. �48� is a generalized two-mode Husimi op-
erator, the result after averaging over a “coarse graining”
function exp� ��

�� � �
� +��2+ ��

�� � �
� −��2� for the Wigner operator

�w�� ,��. On the other hand, Eq. �48� can be considered as a
Weyl correspondence formula, in this sense the course grain-
ing function can be considered as the Weyl classical corre-
spondence of the density operator ���ee
��.

We can further check the validity of Eq. �48�, recalling the
normally ordered form of �w�� ,�� �31�,

�w��,�� =
1

�2 :exp�− �a1 − a2
† − ���a1

† − a2 − ���

− �a1 + a2
† − ���a1

† + a2 − ����: , �50�

then substituting Eq. �50� into Eq. �48� to perform the inte-
gration yields the normal ordered form of ���ee
��,

���ee
�� = 4� d2�d2�

�2 :exp�− �a1 − a2
† − ���a1

† − a2 − ���

+
��

��
��

�
+ ��2

− �a1 + a2
† − ���a1

† + a2 − ���

+
��

��
� �

�
− ��2� :

= − 4����:exp��

�
�� + ��a1 − a2

†����� + ��a1
† − a2��

−
�

�
�� − ��a2

† + a1����� − ��a1
† + a2���: , �51�

which confirms Eq. �18�.

VIII. WIGNER FUNCTION OF ��‹e

The Wigner function �32–35� plays an important role in
studying quantum optics �18,36,37� and quantum statistics
�38�. It gives the most analogous description of quantum
mechanics in the phase-space to classical statistical mechan-
ics of Hamilton systems and is also a useful measure for
studying the nonclassical features of quantum states. For a
bipartite system, the two-mode Wigner operator in the en-
tangled state ��� representation is expressed as �31�

�w��,�� =� d2�

�3 �� − ��
� + ��e���−���
. �52�

Then the Wigner function W�� ,�� of ���e is
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W��,�� = Tr����ee
���w��,���

=� d2�

�3 e
���� − ��
� + ����ee
���−���

. �53�

Substituting Eq. �26� into Eq. �53� and using the formula in
Eq. �19�, we obtain

W��,�� =� d2�

�3 e
��� − ��
� + ����ee
���−���

= −
��

��
� d2�

�3 exp���

��
���2 + ��� −

��

�
��

+ � �

�
− ���� +

�

2���
�2���2

+ 2�2���2 + 2����� + ������
=

1

�2exp���

��
��

�
+ ��2

+
��

��
� �

�
− ��2� . �54�

Comparing Eq. �54� with Eq. �48�, we see that Wigner func-
tion of ���e is just the coarse graining function �up to a con-
stant �2��2�, this is another understanding of ���ee
��. Thus
the state ���e can be such introduced as its Wigner function is
just 1

�2 exp� ��
�� � �

� +��2+ ��
�� � �

� −��2�. From Eq. �54� we see that
the Wigner function’s marginal distribution in “� direction”
is a general GAUSSIAN form exp� ��

�� � �
� +��2�, while its mar-

ginal distribution in “�-direction” is exp� ��
�� � �

� −��2�. When
��+��=0 and �=−�=1, Eq. �54� reduces to W�� ,��
= 1

�2 e−�� + ��2−�� − ��2, which is just the Wigner function of two-
mode canonical coherent state.

In summary, based on the concept of quantum entangle-
ment of Einstein-Podolsky-Rosen, we have introduced the
entangled state ���e for constructing generalized phase-space
representation, which possesses well-behaved properties.
The set of ���e make up a complete and nonorthogonal rep-
resentation, so it may have some applications, for examples:
�1� It can be chosen as a good representation for solving
dynamic problems for some Hamiltonians which include ex-
plicitly the function of quadrature operators Q�, and/or P�;
�2� ���ee
�� may be considered as a generalized Husimi op-
erator, since from Eq. �48� we see that it is expressed as
smoothing out the usual Wigner operator by averaging over a
coarse graining function exp� ��

�� � �
� +��2+ ��

�� � �
� −��2�, and the

corresponding generalized distribution function is positive
definite. �3� The representation ���e may be used to analyze
entanglement degree for some entangled states. �4� The ���e
state may be taken as a quantum channel for quantum tele-
portation, such channel may make the teleportation fidelity
flexible, since it involves adjustable parameters �, �, �, and
�. We expect these applications would work in the near fu-
ture.
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APPENDIX: DERIVATION OF EQ. (12)

In this Appendix, we show how to derive Eq. �12�. In ���
representation we have

Q1 + Q2

�2
��� = − i

�

��2
��� = � �

��
−

�

������� , �A1�

P1 − P2

�2
��� = i

�

��1
��� = i� �

��
+

�

������� . �A2�

Therefore, as required by Eqs. �10� and �11�, we see

��

2
�� + ��� + �� �

��
−

�

�����e
���� = � �

��
−

�

����e
���� ,

�A3�

� �

2i
�� − ��� − i�� �

��
+

�

�����e
���� =
� − ��

2i e
���� ,

�A4�

and

��

2
�� + ��� − �� �

��
−

�

�����e
���� =
� + ��

2 e
���� ,

�A5�

� �

2i
�� − ��� + i�� �

��
+

�

�����e
���� = i� �

��
+

�

����e
���� ,

�A6�

Combining Eqs. �A3�–�A6� yields

��� + 2�
�

����e
���� = �e
���� , �A7�

���� − 2�
�

��
�e
���� = ��

e
���� , �A8�

���� + 2�
�

��
�e
���� = 2

�

�� e
���� �A9�

��� − 2�
�

����e
���� = − 2
�

��� e
���� . �A10�

The solution to Eqs. �A7�–�A10� is

e
���� = C exp� ��

2��
��

�
+ ��2

+
1

2�
����� − ��� − ���� − ������ , �A11�

where C is the normalization constant determined by

e
� ���e=1.
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Using the completeness relation of EPR entangled state Eq. �9� and the integral formula in Eq. �19�, we obtain

e
�� =� d2�

� e
����
��

= C
00�� d2�

�
exp�−

1

2
���2 + ��a1 − �a2 + a1a2�


exp� �

2���
�� + ���2 +

1

2�
����� − ��� − ���� − ������

= 
00�C exp�����2

2�
−

����2

2�
+ ���� + ����a1 + ��� − ���a2 − ��� + ���a1a2� , �A12�

which is Eq. �12� while C=2�−����.
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