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Recently, Wildfeuer et al. �Phys. Rev. A 76, 052101 �2007�� studied possible experiments demonstrating
nonlocal correlation effects through the violation of various Bell-type inequalities by maximally path-entangled
number states of the form ��N��0�+ei��0��N�� /�2, the so-called N00N states, and some strong violations were
found. In this paper, we re-examine the same Bell-type inequalities with respect to maximally path-entangled
coherent states of the form N����a�0�b+ei��0�a�� ei��b�. We find in many cases even stronger violations of the
Bell-type inequalities than appear to be possible with the N00N states.
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I. INTRODUCTION

As is well known by now, no local realistic theory is
capable of making predictions that are in complete agree-
ment with those of standard quantum mechanics whenever
entangled states are involved as was shown by Bell �1� for a
spin-singlet state for two particles, a bipartite entangled state.
The spin-singlet state is, in fact, an example of a maximally
entangled state, and Bell showed that such a state would,
according to quantum mechanics, give rise to nonlocal ef-
fects as exhibited by the statistical violations of a certain
inequality. Observations of such violations falsify all hidden-
variable theories featuring local realism. A particularly inter-
esting example of a bipartite maximally entangled state of
many particles consists of a superposition of the extremal
states where all the particles in one mode or the other. In a
collection of two-level atoms, the extremal states are those
with all atoms in their excited states and those with all atoms
in their ground states. Superpositions of such states are
known to be useful for the purpose of obtaining quantum-
enhanced frequency standards and for improved accuracy of
atomic clocks �2�. In the realm of optics, there has recently
been much interest in the use of two-mode maximally en-
tangled number states, sometimes called N00N states, given
by

��N� =
1
�2

��N�a�0�b + ei��0�a�N�b� , �1�

where a and b represent two spatially separated modes, for
applications in quantum metrology and quantum sensing �3�
at the Heisenberg limit and for quantum interferometric pho-
tolithography beyond the Rayleigh diffraction limit �4�. In
the case of Heisenberg-limited interferometry, the uncer-
tainty in the measurements of phase shifts is given by
��HL=1 /N, an improvement by a factor of 1 /�N over the
standard quantum limit ��SQL=1 /�N. Quite recently, Wild-
feuer et al. �5� studied possible nonlocal correlation experi-
ments that could be performed with the states of Eq. �1� for
the specific choice of relative phase �=� and showed that
violations of a Clauser-Horne �CH� �6� form of Bell’s in-
equality �7�, and various other Bell-type inequalities, espe-
cially those obtained by Janssens et al. �8�, can be strong. In
some cases, the violation is independent of the total number
of photons N, while in others, such as the Clauser-Horne

inequality, the violation does depend on N but rapidly dimin-
ishes with increasing N. In fact, in the context of the Clauser,
Horne, Shimony, and Holt �CHSH� �9� form of Bell’s theo-
rem, there have already been studies—theoretical and experi-
mental �10�—for the special case of the N00N states for N
=1. As far as we are aware, the work by Wildfeuer et al. �5�
is the first theoretical discussion on violations of such in-
equalities for the N00N states for N	1.

In the present paper we re-examine the Bell-type inequali-
ties studied in �5� but instead of N00N states we consider
maximally entangled coherent states �MECSs� of the form

���� = N����a�0�b + ei��0�a�� ei��b� , �2�

where the normalization factor is given by

N =
1
�2

�1 + e−���2 cos ��−1/2. �3�

In the number state basis, the MECS is decomposed accord-
ing to

���� = Ne−���2/2�
n=0



�n

�n!
��n�a�0�b + ei�n�+���0�a�n�b� , �4�

from which we see that MECSs are superpositions of N00N
states. We are motivated to consider the nonlocality proper-
ties if MECS by the fact that elsewhere �11� we have shown
these MECS can be used, in place of the N00N states, to
perform Heisenberg-limited interferometry yielding phase-
shift uncertainties which are Heisenberg limited in terms of
the average number of photons in the coherent state, i.e.,
��=1 / n̄, where n̄= ���2. That is, in the context of interfer-
ometry they have the capacity to produce results that closely
parallel those obtained by from N00N states and, thus, it
seemed worthwhile to study the possible use of these states
for tests of quantum mechanics versus local realistic theories.
Furthermore, they may have the advantage of being easier to
produce than the N00N states as one does not first have to
generate number states, a daunting proposition for the nec-
essary states of high N, whereas coherent states of more or
less arbitrary amplitude are available from phase-stabilized
lasers. However, the generation of the MECS and the N00N
states from an initial coherent state ��� or number state �N�,
respectively, generally requires large cross-Kerr nonlineari-
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ties �12�, or large self-Kerr interactions �13�, a challenge due
to the nonavailability of the required large third order non-
linear susceptibilities, though there is some hope that large
cross-Kerr interactions may eventually become available
through the techniques of electromagnetically induced trans-
parency �14�. One first should generate a single-mode coher-
ent superposition state ���+ei��−��, for example, and then
mix it with the coherent state �−i�� on a 50:50 beam splitter
to generate the MECS, in this case, the MECS ��2���0�
+ei��0��−�2��. There was a recent work by Lee �15� on the
prospect of using linear optics to implement measurement-
induced large cross-Kerr nonlinearities along the lines first
discussed by Knill et al. �16�. Another possibility is to use
weak cross-Kerr nonlinearities and large amplitude coherent
states to generate the MECS based on a proposal by Gerry
�17� and as modified by Jeong �18�a�� and, more recently, by
He et al. �18�b��. Recently, Glancy and de Vasconcelos �19�
reviewed various methods that have been proposed for gen-
erating the optical coherent-state superpositions. For the pur-
poses of this paper, we shall just assume the availability of
MECS in the form of Eq. �2�.

In demonstrating nonlocal correlations of entangled co-
herent states, we shall follow Ref. �5� in using their proposed
measurement schemes to examine the same forms of Bell’s
theorem as they studied, namely, the form given by CH �6�,
that of CHSH �7�, and forms discussed by Janssens et al. �9�.
The measurements are assumed to be performed with the
unbalanced homodyne detection scheme of Banaszek and
Wόdkiewicz �10� in which the required correlation functions
are obtained through the operational definitions of the two-
mode Q function and the two-mode Wigner function. A
sketch of the proposed experimental scheme is given in Fig.
1. The spatially separated beams labeled a and b of the pre-
pared entangled state ��� are directed toward beam splitters
operating in the limit of transmissivity T→1 �for unbalanced
homodyning�, which have strong coherent fields �the local
fields� in their other input ports, i.e., states of the form �
�
where �
�→
. Under these conditions, the beam splitters act
as displacement operators on the a and b input beams where

the displacement operator has the form D̂�
�1−T�, where

D̂���=exp��â†−��â� �20� and where �=
�1−T, such that

the displacement operators for the a and b beams are D̂a���
and D̂b���, respectively, where �=
a

�1−T and �=
b
�1−T.

The parameters � and � will play the roles of the angle
settings of the Stern-Gerlach magnets in experiments with
entangled spins states, such as the spin-singlet state
��↑ �a�↓ �b− �↓ �a�↑ �b� /�2, or of the polarizer settings for an
experiment performed with two-photon polarization en-
tangled states of the form ��H�a�V�b− �V�a�H�b� /�2. That is,
the correlation functions we shall obtain will depend on the
complex parameters � and �. These parameter settings can
be adjusted by changing the strengths of the strong coherent-
state field amplitudes and phases in order to facilitate the
measurements required to obtain the quantum-mechanical
averages of the correlation functions. Overall, for the MECS
we find greater degree of violation of the various Bell-type
inequalities considered than is possible for the N00N states.

The paper is organized as follows. In Sec. II, we consider
the on-off detection scheme, which leads to the CH form of
Bell’s theorem, while in Sec. III we consider the CHSH form
of Bell’s theorem using displaced parity operators. In Sec. IV
we study the various Bell-type inequalities given by Janssens
et al. �8�, and Sec. V contains some brief remarks. Lastly, for
the purpose of comparison to the results of the present paper,
in the Appendix we summarize some of the N00N state re-
sults of Ref. �5� and extend them to the case for �=0. In
redoing the calculations of Ref. �5�, we found a couple of
discrepancies with the results in that paper. These are minor
and do not change the conclusions of that work. We also
include some useful N00N state results that were not pre-
sented graphically in Ref. �5�, namely, the N00N state results
for the CHSH form of Bell’s inequality. Again, this is for the
purpose of comparison with our MECS results.

II. BELL EXPERIMENT WITH A DISPLACED
ON-OFF DETECTION SCHEME

As in Ref. �5�, we begin with the homodyne detection
scheme depicted in Fig. 1. Each beam is to be subjected to
homodyne detection performed using a strong local oscillator
on a beam splitter as described above. On-off photon detec-
tion is described by the positive operator valued measure
�POVM�,

�̂0 = �0�	0�, �̂1 = Î − �0�	0� = �
k=1




�k�	k� . �5�

The POVM for the homodyne on-off measurement, which
explicitly takes into account the displacement operator that
occurs just before the photon detector is given by the opera-
tors,

Q̂��� = D̂����̂0D̂†��� = ���	�� , �6�

P̂��� = D̂����̂1D̂†��� , �7�

where Q̂���+ P̂���= Î, and where � is a complex number
and ��� is a coherent state. The photon detectors pictured in
Fig. 1 are assumed to be lossless. The expectation value of

������
�

������

�� �

��� �

��� �

�

FIG. 1. Unbalanced homodyne detection scheme for a Bell-type
experiment with MECS of Eq. �2�.
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the operator Q̂��� is just the Q function phase-space qua-
siprobability distribution. The expectation value Q���
= 	Q̂���� represents the probability of detecting no photons
after the displacement of the beam by the amount � as de-
termined by the amplitude and phase of the strong local co-
herent field. This corresponds to an “off” detection. The ex-

pectation value 	P̂���� represents the probability of detecting
one or more photons in the displaced beam but is otherwise
insensitive to the actual number of photons detected. This
corresponds to an “on” detection. We obtain a binary result
by assigning a “1” to a detector click and a “0” otherwise.
The operators corresponding to a correlated measurement of

the displaced vacua of modes a and b is given by Q̂a���
� Q̂b���, which have the expectation value

Qa,b��,�� = 	���Q̂a��� � Q̂b������� = �a	��b	������2.

�8�

The probabilities for individual measurements on modes a
and b are given by

Qa��� = 	���Q̂a��� � Îb���� , �9�

Qb��� = 	���Îa � Q̂b������� . �10�

We find that

Qab��,�� = �N�2exp�− ����2 + ���2 + ���2���exp�����

+ ei� exp���� ei���2, �11�

Qa��� = �N�2e−���2
1 + e−���2+��*+�*� + 2 Re�ei�e−���2+��*�� ,

�12�

Qb��� = �N�2e−�v�2
1 + e−���2+��*e−i�+�*�ei�

+ 2 Re�ei�e−���2+�*�ei�
�� . �13�

From the completeness relation Q̂���+ P̂���= Î, we can ob-
tain the probabilities for the correlated and single detector
counts in terms of the Q functions according to

Pa��� = 1 − Qa��� , �14�

Pb��� = 1 − Qb��� , �15�

Pab��,�� = 1 − Qa��� − Qb��� + Qab��,�� . �16�

From these, one can construct the Clauser-Horne function
�6�,

FCH = Pab��,�� − Pab��,��� + Pab���,�� + Pab���,���

− Pa���� − Pb��� , �17�

which, for a local hidden-variable theory, satisfies the in-
equality −1�FCH�0.

Our results for the numerical maximization or minimiza-
tion of FCH obtained with the MECS, which are shown in
Fig. 2, where we plot FCH versus n̄= ���2. For the case �
=0, we find violations of the inequality only via maximiza-
tion, for FCH	0, and these violations are small. For �=�,
we find much stronger violations of the inequality but this
time in the regime FCH�−1. In both cases, the violations are
for average photon numbers in the range 0� n̄�6. In both

� � � � � ��

�����

�����

�����

�����

�����

�����

���	�

���	�



�

F

��(a)

� � � � � � � �

	�
��

	�
��

	�
��

	�
��

	�
��

	�
��

	�
��

	�
��

	�
��

	�
��

	�
��

��(b)



�

F

FIG. 2. The CH quantity versus the average photon number n̄
for �a� �=0 and �b� �=�. The former results are obtained via
maximization �there are no violations for the minimum in this case�,
whereas the latter is obtained via minimization.
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cases, FCH goes to the respective boundaries, for the former
and −1 for the latter as n̄ goes to 0 and as it becomes very
large. We find no dependence on the angle �. The N00N
states for both �=0, � yield identical results for FCH and
strong violations of the inequality are obtained only for N
=1 as can be seen in Fig. 10. In contrast, the violations of the
inequality obtained with the MECS occur over a somewhat
wider range of average photon numbers.

Following �5�, we examine the corresponding marginal
distributions of the function Qab�� ,��. Setting �=x+ iy, �
=u+ iw, where x, y, u, and w are real variables, the marginal
distribution is given by

Qm�y,w� = �
−



 �
−





Qab�x,y,u,w�dxdu ,

= �N�2�e−y2−w2−���2
eRe��2�e2y Im���

+ eRe��2e2i��e2w Im��ei��

+ 2 Re�ei�e��*2+�2e2i��/4ei�y�*−w�ei���� . �18�

In Fig. 3 we have plotted the marginal distributions for the
cases, where �=� and �=�n̄ei�/4 and for the choices n̄=1,
5, and 10. We see that the distribution consists of two peaks

�

�

(a)

�

�(b)

�

�(c)

FIG. 3. �Color online� Density plots of the marginal Q function Qm�y ,w� for �a� n̄=1, �b� n̄=5, and �c� n̄=10.
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located in the y-w plane on opposite sides for the line y=w
for all values of n̄, though the peaks become more separated
for increasing n̄. In contrasts, the corresponding distributions
for the N00N states have this double peak form only for the
case N=1, the case for which the CH inequality is most
strongly violated; whereas for N	1, there are additional
peaks such that the distribution becomes more symmetric
and the violations of the inequality are quite small. These
more symmetric distributions seem to be correlated with re-
duced violations of the CH inequality for N	1. The inter-
esting point is that the distributions for the MECS for differ-
ent n̄ are like that of the N00N for N=1, and this may be
reflected in the fact that violations for the CH inequality are
large over a fairly wide range of n̄.

We also calculate the linear correlation coefficient r
=cov�y ,w� / ��y�w�, where

cov�y,w� = �
−



 �
−





�y − ȳ��w − w̄�Qm�y,w�dydw , �19�

which yields r=−0.3, −0.55, and −0.71, respectively, for the
above choices of average photon number. The correlations
according to this measure, actually anticorrelations, appear to
increase with increasing n̄ even though the violations of the
CH inequality decrease. This suggests that linear correlations
are not the whole story in connection with the violations of
the CH inequality. On the other hand, as we show in the next
section, increasing correlations �anticorrelations� do seem to
be strongly connected with the increasing violation with n̄ of
another form of Bell’s theorem, that of Clauser, Horne, Shi-
mony, and Holt �7�.

III. PARITY MEASUREMENTS AND THE CLAUSER,
HORNE, SHIMONY, AND HOLT INEQUALITY

The parity operator of a single-mode quantized field is

�̂�0� = exp�in̂�� = �
k=0




�2k�	2k� − �
k=0




�2k + 1�	2k + 1� .

�20�

The POVM for our measurements is given as the displaced
parity operator

�̂��� = D̂����̂�0�D̂†��� , �21�

which, up to a factor of 2 /�, is the Wigner operator Ŵ���
= �2 /��
̂���, whose expectation value is just the Wigner

function W���= 	Ŵ����. For the two-mode case, we have

�̂ab��,�� = �D̂a����̂a�0�D̂a
†���� � �D̂b����̂b�0�D̂b

†���� .

�22�

The corresponding Wigner operator is Ŵab�� ,��
= �4 /�2�
̂ab�� ,��. Setting 
ab�� ,��= 	���
̂�� ,������, we
can construct the CHSH inequality �7� as −2�B�2, where

B = �̂ab��,�� + �̂ab���,�� + �̂ab��,��� − �ab���,��� ,

�23�

and where

�̂ab��,�� = �N�2�e−2���2−2�� − ��2 + e−2�� − �ei��2−2���2

+ 2 Re�ei�e−���2e−2���2+2��*e−2���2+2�*�ei�
�� .

�24�

We numerically search for the extrema of B for the cases
�=0, �, and find—apart from sign—identical results for a
given n̄ �though the parameters that achieve these extrema
may be different�. For �=0 B is positive and for �=� it is
negative. We again find no dependence of the angle �. In Fig.
4 we plot �B� against n̄ and we see that the CHSH inequality
is violated for the entire range of n̄, and for increasing larger
values asymptotically approaches the so-called Tsirelson
bound �21�: the maximally allowed value of the CHSH func-
tion �B�max=2�2. This behavior is in sharp contrast to what
happens for the N00N states, which violates the CHSH in-
equality only for the case N=1 �see the Appendix�, the case
studied some years ago by Banaszek and Wόdkiewicz �10�.

We next examine the marginal Wigner function defined as

Wm�y,w� = �
−



 �
−





Wab�x,y,u,w�dxdu ,

=
2

�
�N�2
e−2y2−2w2−2���2−2iy��−�*�+2 Re��2�

+ e−2y2−2w2−2���2−2iw��ei�−�*e−i��+2 Re��2e2i��

+ 2 Re�ei�e−���2−2y2+2iy�*−2w2−2iw�ei�
e��*2+�2e2i��/2�� ,

�25�

where, as before we have set �=x+ iy, �=u+ iw. In Fig. 5 we
picture this distribution for the case �=� and the same val-

� �� �� �� �� ��

���

���

���

���

���

���

���

��	

��


��

�

FIG. 4. �Color online� A plot of the CHSH quantity �B� versus n̄.
The CHSH inequality is violated for 2� �B��2�2; the boundaries
are given by the upper and lower horizontal lines.
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ues of n̄ chosen above. Again we find sharp contrast with the
results reported in Ref. �5� for the N00N state. As in the case
of the marginal Q function, we see two peaks located along
the line y=w for all values of n̄, becoming increasingly sepa-
rated for increasing n̄. In contrast, the distribution for the
N00N states is similar to that of the corresponding marginal
Q function, becoming more symmetric with increasing N
�see Ref. �5��, resembling our results only for the case with
N=1, that being the only N00N state that violates the CHSH
inequality. Given the increasing violation of the CHSH in-
equality with increasing n̄, it appears that correlation be-
tween the shape of the marginal Wigner function and the
violation of the inequality is much stronger than the correla-
tion between the shape of the marginal Q function and the

violation of the CH inequality, which diminishes for increas-
ing n̄. Finally, we used the marginal Wigner function to cal-
culate the linear correlation coefficient and found r=−0.5,
−0.71, and −0.83 for the above photon numbers, respec-
tively.

IV. INEQUALITIES OF JANSSENS ET. AL

The CH Bell inequality is a specific form of an inequality
involving four correlated events, where at most two are in-
tersected at the same time. As pointed out in �5�, Pitwosky
�20� derived the set of all possible Bell-type inequalities for
three or four correlated events, these being

0 � pi − pij − pik + pjk, �26�

�

�

(a)

�

�(b)

�

�(c)

FIG. 5. �Color online� Density plots of the marginal Wigner function Wm�y ,w� for �a� n̄=1, �b� n̄=5, and �c� n̄=10.
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pi + pj + pk − pij − pik − pjk � 1, �27�

− 1 � pik − pjl + pil + pjk − pi − pk � 0, �28�

for i, j, k, and l all different. The last is just the CH inequal-
ity while the previous two are inequalities associated with
the so-called Bell-Wigner polytope for three correlated
events. For six correlated events, where two are intersected,
Janssens et al. �8� constructed the inequalities,

pi + pj + pk + pl − pij − pik − pil − pjk − pjl − pkl � 1,

�29�

2pi + 2pj + 2pk + 2pl − pij − pik − pil − pjk − pjl − pkl � 3,

�30�

0 � pi − pij − pik − pil + pjk + pjl + pkl, �31�

pi + pj + pk − 2pl − pij − pik + pil − pjk + pjl + pkl � 1.

�32�

For the on-off detection scheme, the probabilities in Eqs.
�29�–�32� are replaced by the probabilities of Eqs. �14�–�16�
to obtain the functions

J1 = Q��� + Q��� + Q�
� + Q��� − Q��,�� − Q��,
�

− Q��,�� − Q��,
� − Q��,�� − Q�
,�� , �33�

J2 = 2Q��� + 2Q��� + 2Q�
� + 2Q��� − Q��,�� − Q��,
�

− Q��,�� − Q��,
� − Q��,�� − Q�
,�� , �34�

J3 = Q��� − Q��,�� − Q��,
� − Q��,�� + Q��,
� + Q��,��

+ Q�
,�� , �35�

J4 = Q��� + Q��� + Q�
� − 2Q��� − Q��,�� − Q��,
�

+ Q��,�� − Q��,
� + Q��,�� + Q�
,�� , �36�

where the correspondences between the indices in Eqs. �29�
and �33� are i→�, j→�, k→
, and l→�. For local realistic
theories, these functions satisfy the inequalities J1�1, J2
�3, 0�J3, and J4�1.

In Figs. 6–9, we plot, respectively, the quantities J1 to J4
against n̄. For some of them we find considerable differences
as compared with the N00N state results. For J1, Wildfeuer et
al. �5� found a constant violation of the corresponding in-
equality J1�1 at the value J1=2 independent of N and we
found identical results for the cases �=0 and � �Fig. 12�. For
the MECS, we find that for �=0 there is a dependence on
the angle �, which we take to be 0 or �, and that for n̄
�1.5, and for �=0 a larger violation of the inequality is
obtained than seems to be possible with the N00N states. On
the other hand, for �=� we find no dependence on � and
find a constant violation at the value J1=2 except for small
values of n̄ for which J1→1.

For J2, the N00N states violate the corresponding inequal-
ity J2�3 at the constant value J2=4 independent of N and
again identical results for �=0 and � �Fig. 12�. For the

MECS with �=0, we find a dependence on � and results that
asymptotically approach J2=4 for large n̄, as shown in Fig.
7�a�. We note, though, a large violation of this inequality for
the �=0 case in the vicinity of n̄=1. For �=�, the MECS
maintain the value J2=4 for all but the lowest n̄, for which
J2→3, and is independent of � as given in Fig. 7�b�. This
behavior is quite similar to what we found for J1.

With regard to J3, the authors of Ref. �5� found relatively
small violations of the Bell inequality 0�J3, finding the
greatest violation of J3=−0.25 for N=1 �Fig. 14�. For the
MECS, as seen in Fig. 8 we find large violations of the
inequality, where J3→−1 asymptotically for all choices of �
and �.

Finally, for the inequality J4�1, the N00N states viola-
tion is at about J4=1.6 as seen in Fig. 15 for all N�4. For
the MECS with �=0, we find much larger violations for
both �=0 and �, the former giving violations up to about
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FIG. 6. �Color online� Extremal values of J1 for �a� �=0 and
�b� �=�. The dashed line in �a�, and in the remaining figures, is for
�=0 and the solid line is for �=�.
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J4=3.7 for n̄=1 and at the constant value J4=3 for n̄�3, and
for the latter J4 rises up to the value J4=2 for n̄�3. For �
=� both cases, though different for low n̄, J4 goes asymp-
totically to J4=2 for increasing n̄. Thus, in all cases for large
enough n̄, we obtain violations of the inequality to a greater
degree than seems possible with the N00N states.

V. CONCLUSIONS

In this paper, we have studied the violations of various
Bell-type inequalities that can occur with maximally en-
tangled coherent states and we have compared our results
with those obtained by Wildfeuer et al. �5� for the so-called
N00N states. We have found that, in many instances, the
MECSs yield stronger violations of the various inequalities
than is possible with the N00N states. The most dramatic
example is with respect to the CHSH inequality which for

the N00N states is violated only for case N=1, whereas for
the MECS we obtain increasing violations approaching the
Tsirelson bound with increasing average photon number n̄.
Interestingly, this result combines two aspects of the ap-
proach to quantum-optical interferometric metrology we
have been advocating for some years: the use of MECS as
opposed to N00N states, and the use of parity measurements
on one of the output beams instead of coincidence counting
as the latter becomes difficult if not impossible for large
photon numbers. So far, N00N state experiments have been
performed with two �22–26�, three �27�, four �28,29�, and six
�30� photons; but, as said in the introduction, the generation
of a large N single-mode number state �N�, which must then
be transformed into a N00N state by a nonlinear interaction,
would be very difficult. There is an inherent difficulty in
generating on demand number states, especially for higher N.
In contrast, coherent states of more or less arbitrary ampli-
tudes are relatively easy to generate, though one would still
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FIG. 7. �Color online� Extremal values of J2 for �a� �=0 and
�b� �=�.
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FIG. 8. �Color online� Extremal values of J3 for �a� �=0 and
�b� �=�.
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need nonlinear interactions, as described in Refs.
�11–13,17–19�, to generate out of them the MECS, as de-
scribed. Evidently, the results displayed in the present paper
suggest that MECS would be of considerable advantage over
the N00N states for performing nonlocality tests on quantum
mechanics versus local hidden-variable theories, particularly,
for the violation of the parity-based CHSH inequality as dis-
cussed in Sec. III as these are violated to the highest degree
possible, approaching the Tsirelson bound for large n̄. Ex-
perimentally, it would be necessary to perform parity mea-
surements on the field modes. Ideally, one could measure the
photon number and raise −1 to that power; but that assumes
the availability of photon detectors able to resolve counts at
the level of a single photon. Progress has been made in that
direction �31� though there is still the question of how high
the photon numbers can be for those techniques to work.
There is the possibility of performing quantum nondemoli-
tion �QND� measurements of parity directly without first

measuring the photon number �32�, but this requires a large
cross-Kerr nonlinearity. However, a QND approach to mea-
suring photon numbers using weak cross-Kerr nonlinearities
has recently been discussed �33�. But some time ago, Wu
�34� discussed the violation of the parity-based CHSH in-
equality for different types of two-mode states considered
here and, in doing so, discussed the prospect of using homo-
dyne detection which has high efficiency. Actually, he dis-
cussed two possibilities: optical homodyne tomographic de-
tection and cascaded optical homodyne detection. In the
former, the idea is to extend the procedure used to experi-
mentally reconstruct the Wigner function of a single-mode
field state �35� to a two-mode state. In the latter, one could
extend the proposal of Kis et al. �36� to reconstruct a two-
mode Wigner function by local sampling of the phase-space
distribution. The proposal of �36� is based on any earlier
work by Munroe et al. �37�, which describes a method to
resolve photon number distributions using balanced homo-
dyne measurements. Detector inefficiencies in these schemes
can be modeled via beam splitting �see Leonhardt in Ref.
�35��. Finally, we note that the required displacement opera-
tion as performed with an unbalanced beam splitter was al-
ready been implemented experimentally by Lvovsky and
Babichev �38�.
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APPENDIX

In this appendix, for the purpose of making comparison
with our MECS results, we summarize and extend the Bell-
type inequality results of Ref. �5� based on the N00N states,

��N� =
1
�2

��N�a�0�b + ei��0�a�N�b� . �37�

The authors of �5� considered only the case �=� throughout.
We have considered also the case where �=0. For the former
case, we find some discrepancies with the results reported in
�5�.

In Fig. 10 we present the results for the CH inequality,
where it is evident that identical results are obtained for both
�=0 and �=�. The same is true for the CHSH inequality as
can be seen in Fig. 11. Note that only for N=1 do we get a
violation of the inequality, in agreement with Ref. �5�. For
the quantities J1 and J2, we find total agreement with the
results of �5� and can be seen in Figs. 12 and 13, though we
add that the results are identical for both phases �=0 and
�=�. For the quantities J3 and J4, given in Figs. 14 and 15,
we have found some discrepancies. Our results for J3 for �
=0 are identical to the results reported in �5� for the case �
=�, and our results for �=� are identical to those of �5�,
except for the case N=1, for which we obtain a much stron-
ger violation of the inequality. Finally, for J4 we are in agree-
ment with Ref. �5� for all N except for the lowest cases
where we find some small discrepancies.
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FIG. 9. �Color online� Extremal values of J4 for �a� �=0 and
�b� �=�.
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FIG. 10. �Color online� FCH versus N for the N00N states with
�=0 on the right and �=� on the left.
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FIG. 11. �Color online� �B� versus N.
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FIG. 12. �Color online� J1 versus N.
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FIG. 13. �Color online� J2 versus N.
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FIG. 14. �Color online� J3 versus N. Note that our calculations
for the case N=1 and �=� differ from those of Ref. �5� in that we
obtain a much larger violation of the inequality, whereas their re-
sults for the same phase are identical to the ones we obtain for �
=0.
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FIG. 15. �Color online� J4 versus N. We obtain slightly different
results than are reported in �5�.
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