
Classical correlation and quantum discord in critical systems

M. S. Sarandy*
Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Gragoatá, Niterói 24210-346, RJ, Brazil

�Received 8 May 2009; published 12 August 2009�

We discuss the behavior of quantum and classical pairwise correlations in critical systems, with the quan-
tumness of the correlations measured by the quantum discord. We analytically derive these correlations for
general real density matrices displaying Z2 symmetry. As an illustration, we analyze both the XXZ and the
transverse field Ising models. Finite size as well as infinite chains are investigated and the quantum criticality
is discussed. Moreover, we identify the spin functions that govern the correlations. As a further example, we
also consider correlations in the Hartree-Fock ground state of the Lipkin-Meshkov-Glick model. It is then
shown that both classical correlation and quantum discord exhibit signatures of the quantum phase transitions.
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I. INTRODUCTION

The concept of correlation, i.e., information of one system
about another, is a key element in many-body physics. In-
deed, the properties of a many-body system are strongly af-
fected by changes in the correlations among its constituents.
These changes are responsible for the occurrence of remark-
able phenomena, such as a quantum phase transition �QPT�,
which is a critical change in the ground state of a quantum
system due to level crossings in its energy spectrum. QPTs
occur at low temperatures T, where the de Broglie wave-
length is greater than the correlation length of the thermal
fluctuations �effectively T=0� �1,2�. Striking examples of
QPTs include metal-insulator transitions in strongly corre-
lated electronic materials, magnetic transitions in quantum
spin-lattices, superfluid-Mott insulator transitions in atomic
gases induced by a Bose-Einstein condensation, among oth-
ers.

Correlations can be both from classical and quantum
sources. The existence of genuinely quantum correlations
can be usually inferred by the presence of entanglement
among parts of a system. Indeed, entanglement displays a
rather interesting behavior at QPTs �3�, being able to indicate
a quantum critical point �QCP� through nonanalyticities in-
herited from the ground-state energy �4,5�. Moreover, for
one-dimensional critical systems, ground-state entanglement
entropy exhibits a universal logarithmic scaling governed by
the central charge of the Virasoro algebra associated with the
underlying conformal field theory �6–8�. Remarkably, the
logarithmic scaling is robust against disorder �9–12�. In
higher dimensions, entanglement usually scales following an
area law for noncritical systems �see, e.g., Ref. �13��. For
critical models, violations of the area law have been found
�14,15�, with logarithmic-type corrections appearing. More
recently, it has been observed that an area law is generally
implied by a finite correlation length when measured in
terms of the mutual information �16�. This remarkable be-
havior of entanglement at criticality is indeed a consequence
of the correlation pattern exhibited by the ground state of the
system.

Nevertheless, although entanglement provides a route to
find out the existence of quantum correlations, it can be
shown that they can appear even when entanglement is ab-
sent �17,18�. Quantum correlations, which can be measured
by the quantum discord �17�, often arise as a consequence of
coherence in a quantum system, being present even for sepa-
rable states. Moreover, entangled states commonly involve
more than only quantum correlations, i.e., they usually carry
classical correlations among their parts. In a multiparty
mixed-state scenario, the possibility of nonseparable states
with purely quantum correlations �with no supporting back-
ground of classical correlations� have also been investigated
�19�, but genuine indicators of multiparticle classical corre-
lations are still under debate �20�. By focusing on
condensed-matter systems, the aim of this work is, starting
from an arbitrary Z2-symmetric model, to investigate pair-
wise correlations, explicitly splitting up their classical and
quantum contributions and analyzing their behavior at QPTs.
As an illustration, ground states of both XXZ and transverse
field Ising spin chains will be shown to share quantum as
well as classical correlations for nearest-neighbor spin pairs,
with both of them signaling the critical behavior of the sys-
tem. An analysis of such correlations for the thermodynamic
limit of XXZ and Ising chains has recently appeared in Ref.
�21�. Here, we generalize this analysis by providing analyti-
cal expressions for the correlations in each model and also by
discussing their finite-size behavior. As a further illustration,
we describe the correlations in the Hartree-Fock �HF� ground
state of many-body systems, taking the Lipkin-Meshkov-
Glick �LMG� model as an example.

The paper is organized as follows. In Sec. II, we review
the evaluation of correlations from the point of view of in-
formation theory, describing—in particular—the concept of
quantum discord. In Sec. III, we discuss the computation of
classical and quantum correlations for general models dis-
playing Z2 symmetry. Sections IV–VI are devoted to illus-
trating our results for the XXZ chain, the transverse field
Ising chain, and the LMG model, respectively. Conclusions
are then presented in Sec. VII.

II. CLASSICAL CORRELATIONS AND QUANTUM
DISCORD

In classical information theory, the information obtained,
on average, after knowing the value of a random variable X,*msarandy@if.uff.br
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which takes values within a set of probabilities �px�, can be
quantified by its Shannon entropy H�X�=−�xpx log px. We
use the symbol log as denoting logarithm at base 2 through-
out the text. By taking two such random variables X and Y,
we can measure the correlation between them by their mu-
tual information,

I�X:Y� = H�X� + H�Y� − H�X,Y� , �1�

where H�X ,Y�=−�x,ypxy log pxy is the joint entropy for X
and Y. By introducing the conditional entropy,

H�X�Y� = H�X,Y� − H�Y� , �2�

which quantifies the ignorance �on average� about the value
of X given Y is known, we can rewrite Eq. �1� as

I�X:Y� = H�X� − H�X�Y� . �3�

In order to generalize the above equations to the quantum
domain, we replace classical probability distributions by
density matrices. Denoting by � the density matrix of a com-
posite system AB and by �A and �B, the density matrices of
parts A and B, respectively, the quantum mutual information
can be defined as

I��A:�B� = S��A� − S��A��B� , �4�

where S��A�=−Tr �A log �A is the von Neumann entropy for
subsystem A and

S��A��B� = S��� − S��B� �5�

is a quantum generalization of the conditional entropy for A
and B. A remarkable observation realized in Ref. �17� is that
the conditional entropy can be introduced by a different ap-
proach which, although classically equivalent to Eq. �2�,
yields a result in the quantum case that differs from Eq. �5�.
Indeed, let us consider a measurement performed locally
only on part B. This measurement can be described by a set
of projectors �Bk�. The state of the quantum system condi-
tioned on the measurement of the outcome labeled by k be-
comes

�k =
1

pk
�I � Bk���I � Bk� , �6�

where pk=Tr��I � Bk���I � Bk�� denotes the probability of ob-
taining the outcome k, and I denotes the identity operator for
the subsystem A. The conditional density operator given by
Eq. �6� allows for the following alternative definition of the
quantum conditional entropy:

S����Bk�� = �
k

pkS��k� . �7�

Therefore, following Eq. �3�, the quantum mutual informa-
tion can also be alternatively defined by

J��:�Bk�� = S��A� − S����Bk�� . �8�

Equations �4� and �8� are classically equivalent but they are
different in the quantum case. The difference between them
is due to quantum effects on the correlation between parts A
and B and provides a measure for the quantumness of the
correlation, which has been called quantum discord �17�. In

fact, following Refs. �17,22�, we can define the classical cor-
relation between parts A and B as

C��� = max
�Bk�

J��:�Bk�� , �9�

with the quantum correlation accounted by the quantum dis-
cord, which is then given by

Q��� = I��A:�B� − C��� . �10�

III. PAIRWISE CORRELATIONS FOR Z2-SYMMETRIC
QUANTUM SPIN LATTICES

We will consider here an interacting pair of spins-1/2 in a
spin lattice, which is governed by a Hamiltonian H that is
both real and exhibits Z2 symmetry, i.e., invariance under �
rotation around a given spin axis. By taking this spin axis as
the z direction, this implies the commutation of H with the
parity operator � i=1

N �i
3, where N denotes the total number of

spins and �i
3 is the Pauli operator along the z axis at site i.

Note that a number of spin models are enclosed within these
requirements as, for instance, the XXZ spin chain and the
transverse field Ising model. Disregarding spontaneous sym-
metry breaking �see, e.g., Refs. �23–25�, for a treatment of
spontaneously broken ground states�, the two-spin reduced
density matrix at sites labeled by i and j in the basis
��↑↑	 , �↑↓	 , �↓↑	 , �↓↓	�, with �↑ 	 and �↓ 	 denoting the eigen-
states of �3, will be given by

� =

a 0 0 f

0 b1 z 0

0 z b2 0

f 0 0 d
� . �11�

In terms of spin-correlation functions, these elements can be
written as

a =
1

4
�1 + Gz

i + Gz
j + Gzz

ij � ,

b1 =
1

4
�1 + Gz

i − Gz
j − Gzz

ij � ,

b2 =
1

4
�1 − Gz

i + Gz
j − Gzz

ij � ,

d =
1

4
�1 − Gz

i − Gz
j + Gzz

ij � ,

z =
1

4
�Gxx

ij + Gyy
ij � ,

f =
1

4
�Gxx

ij − Gyy
ij � , �12�

where Gz
k= ��z

k	 �k= i , j� is the magnetization density at site k
and G��

ij = ���
i ��

j 	 �� ,�=x ,y ,z� denote two-point spin-spin
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functions at sites i and j, with the expectation value taken
over the quantum state of the system. Note that in case of

translation invariance, we will have that Gz
k=Gz

k��∀k ,k�� and,
therefore, b1=b2. Moreover, observe also that the density
operator given in Eq. �11� can be decomposed as

� =
1

4I � I + �
i=1

3

�ci�
i

� �i� + c4I � �3 + c5�3
� I� , �13�

with

c1 = 2z + 2f ,

c2 = 2z − 2f ,

c3 = a + d − b1 − b2,

c4 = a − d − b1 + b2,

c5 = a − d + b1 − b2. �14�

In particular, for translation invariant systems, we have that
c4=c5. In order to determine classical and quantum correla-
tions, we first evaluate the mutual information as given by
Eq. �4�. The eigenvalues of � read as

�0 =
1

4
��1 + c3� + ��c4 + c5�2 + �c1 − c2�2� ,

�1 =
1

4
��1 + c3� − ��c4 + c5�2 + �c1 − c2�2� ,

�2 =
1

4
��1 − c3� + ��c4 − c5�2 + �c1 + c2�2� ,

�3 =
1

4
��1 − c3� − ��c4 − c5�2 + �c1 + c2�2� . �15�

Therefore, the mutual information is given by

I��� = S��A� + S��B� + �
�=0

3

�� log ��, �16�

where

S��A� = − �r1
A log r1

A + r2
A log r2

A� ,

S��B� = − �r1
B log r1

B + r2
B log r2

B� , �17�

with r1
A= �1+c5� /2, r2

A= �1−c5� /2, r1
B= �1+c4� /2, and r2

B= �1
−c4� /2. Classical correlations can be obtained by following a
procedure that is similar to those of Refs. �18,21�, but apply-
ing it now for the case of the general density matrix given by
Eq. �11�. We first introduce a set of projectors for a local
measurement on part B given by �Bk=V�kV

†�, where ��k
= �k	�k� :k=0,1� is the set of projectors on the computational
basis ��0	��↑ 	 and �1	��↓ 	� and V�U�2�. Note that the
projectors Bk represent therefore an arbitrary local measure-
ment on B. We parametrize V as

V =
 cos
�

2
sin

�

2
e−i	

sin
�

2
ei	 − cos

�

2
� , �18�

where 0
�
� and 0
	�2�. Note that � and 	 can be
interpreted as the azimuthal and polar angles, respectively, of
a qubit over the Bloch sphere. By using Eq. �6� and the
equation �k�

i�k=�i3�−1�k�k, with �i3 denoting the Kro-
necker symbol, we can show that the state of the system after
measurement �Bk� will change to one of the states

�0 =
1

2
�I + �

j=1

3

q0j�
j� � �V�0V†� , �19�

�1 =
1

2
�I + �

j=1

3

q1j�
j� � �V�1V†� , �20�

where

qk1 = �− 1�kc1 w1

1 + �− 1�kc4w3
� ,

qk2 = �− 1�kc2 w2

1 + �− 1�kc4w3
� ,

qk3 = �− 1�k c3w3 + �− 1�kc5

1 + �− 1�kc4w3
� , �21�

with k=0,1 and

w1 = sin � cos 	 ,

w2 = sin � sin 	 ,

w3 = cos � . �22�

Then, by evaluating von Neumann entropy from Eqs. �19�
and �20� and using that S�V�kV

†�=0, we obtain

S��k� = −
�1 + �k�

2
log

�1 + �k�
2

−
�1 − �k�

2
log

�1 − �k�
2

, �23�

with

�k =��
j=1

3

qkj
2 . �24�

Therefore, the classical correlation for the spin pair at sites i
and j will be given by

C��� = max
�Bk�

S��A� −
�S0 + S1�

2
− c4w3

�S0 − S1�
2

� , �25�

where Sk=S��k�. For some cases, the maximization in Eq.
�25� can be worked out and an expression purely in terms of
the spin-correlation functions can be obtained �e.g., the XXZ
and Ising chains below�. In general, however, C��� has to be
numerically evaluated by optimizing over the angles � and
	. Once classical correlation is obtained, the insertion of
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Eqs. �16� and �25� into Eq. �10� can be used to determine the
quantum discord.

IV. XXZ SPIN CHAIN

Let us illustrate the discussion of classical and quantum
correlations between two spins by considering the XXZ spin
chain, whose Hamiltonian is given by

HXXZ = −
J

2�
i=1

L

��i
x�i+1

x + �i
y�i+1

y + �i
z�i+1

z � , �26�

where periodic boundary conditions are assumed, ensuring
therefore translation symmetry. We will set the energy scale
such that J=1 and will be interested in a nearest-neighbor
spin pair at sites i and i+1. Concerning its symmetries, the
XXZ chain exhibits U�1� invariance, namely, �H ,�i�z

i�=0,
which provides a stronger constraint over the elements of the
density matrix than the Z2 symmetry. Indeed, U�1� invari-
ance ensures that the element f of the reduced density matrix
given by Eq. �11� vanishes. Moreover, the ground state has
magnetization density Gz

k= ��z
k	=0 �∀k�, which implies that

a = d =
1

4
�1 + Gzz� ,

b1 = b2 =
1

4
�1 − Gzz� ,

z =
1

4
�Gxx + Gyy� ,

f = 0, �27�

where, due to translation invariance, we write G��

= ���
i ��

i+1	 �∀i�. Due to the fact that a=d, we will have that
c4=c5=0, which considerably simplifies the computation of
classical and quantum correlations. Moreover, we will have
that c1=c2=2z and c3=4a−1. Then, the maximization pro-
cedure in Eq. �25� can be analytically worked out �18�, yield-
ing

C��� =
�1 − c�

2
log�1 − c� +

�1 + c�
2

log�1 + c� , �28�

with c=max��c1� , �c2� , �c3��. For the mutual information I���,
we obtain

I��� = 2 + �
i=0

3

�i log �i, �29�

where

�0 =
1

4
�1 − c1 − c2 − c3� ,

�1 =
1

4
�1 − c1 + c2 + c3� ,

�2 =
1

4
�1 + c1 − c2 + c3� ,

�3 =
1

4
�1 + c1 + c2 − c3� . �30�

In order to compute C��� and Q���, we write c1, c2, and c3 in
terms of the ground-state energy density. By using the
Hellmann-Feynman theorem �26,27� for the XXZ Hamil-
tonian �26�, we obtain

c1 = c2 =
1

2
�Gxx + Gyy� = 

��xxz

�
− �xxz,

c3 = Gzz = − 2
��xxz

�
, �31�

where �xxz is the ground-state energy density

�xxz =
��0�HXXZ��0	

L
= −

1

2
�Gxx + Gyy + Gzz� , �32�

with ��0	 denoting the ground state of HXXZ. Equations �31�
and �32� hold for a chain with an arbitrary number of sites,
allowing the discussion of correlations either for finite or
infinite chains. Indeed, the ground-state energy as well as its
derivatives can be exactly determined by Bethe ansatz tech-
nique �28�, which allows us to obtain the correlation func-
tions c1, c2, and c3. In Fig. 1, we plot classical and quantum
correlations between nearest-neighbor pairs for an infinite
XXZ spin chain.

Note that in the classical Ising limit →�, we have a
fully polarized ferromagnet. The ground state is then a dou-
blet given by the vectors �↑↑¯↑	 and �↓↓¯↓	, yielding the
mixed state

� =
1

2
�↑↑ ¯ ↑	�↑↑ ¯ ↑� +

1

2
�↓↓ ¯ ↓	�↓↓ ¯ ↓� . �33�

Indeed, this is simply a classical probability mixing, with
C���= I���=1 and Q���=0. The same applies for the antifer-
romagnetic Ising limit →−�, where a doubly degenerate
ground state arises. Moreover, observe that the classical
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FIG. 1. �Color online� Quantum and classical correlations for
nearest-neighbor spins in the XXZ chain for L→�.
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�quantum� correlation is a minimum �maximum� at the
infinite-order QCP =−1. On the other hand, both correla-
tions are discontinuous at the first-order QCP =1. This is
indeed in agreement with the usual behavior of entanglement
both at infinite and first-order QPTs. For an infinite-order
QCP, entanglement commonly displays a maximum at the
QCP �29–31�, while for a first-order QCP, entanglement usu-
ally exhibits a jump at the QCP �32,33�. Nevertheless, we
note that in the specific case of the ferromagnetic QCP 
=1 and for pairwise entanglement measures, such as concur-
rence �34� and negativity �35�, no jump is detected, being
hidden by the operation max �36�. It is interesting to observe
the behavior of the functions �c1�= �c2� and �c3� that govern
the classical and quantum correlations. For �−1, we have
that �c1�= �c2�� �c3�, which means that the classical correla-
tion is governed by �c3�. For −1��1, we have that �c1�
= �c2�� �c3�, with the crossing occurring exactly at the
infinite-order QCP. Therefore, the correlations are governed
by different parameters in different phases. For �1, we
obtain �c1�= �c2�=0 and �c3�=1, which implies that C���=1
and Q���=0. These results are shown in Fig. 2.

V. TRANSVERSE FIELD ISING MODEL

Let us consider now the Ising chain in a transverse mag-
netic field, whose Hamiltonian is given by

HI = − J�
i=1

L

��i
x�i+1

x + g�i
z� , �34�

with periodic boundary conditions assumed, namely, �L+1
x

=�1
x. As before, we will set the energy scale such that J=1

and will be interested in a nearest-neighbor spin pair at sites
i and i+1. This Hamiltonian is Z2 symmetric and can be
exactly diagonalized by mapping it to a spinless free fermion
model with single orbitals. This is implemented through the
Jordan-Wigner transformation,

�i
z = 1 − 2ci

†ci,

�i
x = − �

j�i

�1 − 2cj
†cj��ci + ci

†� , �35�

where ci
† and ci are the creation and annihilation fermion

operators at site i, respectively. By rewriting Eq. �34� in
terms of ci

† and ci, we obtain

HI = − J�
i=1

L

�ci
†ci+1 + ci+1

† ci + ci
†ci+1

† + cici+1�

− Jg�
i=1

L

�1 − 2ci
†ci� . �36�

In order to diagonalize HI, we consider fermions in momen-
tum space,

ck =
1
�L

�
j=1

L

cje
−ikrj ,

ck
† =

1
�L

�
j=1

L

cj
†eikrj , �37�

where ck
† and ck are creation and annihilation fermion opera-

tors with momentum k, respectively, and rj is the fermion
position at site j. The wave vectors k� satisfy the relation ka
=2�q /L, where a denotes the distance between two nearest-
neighbor sites and q=−M ,−M +1, . . . ,M −1,M, with M
= �L−1� /2 and L taken, for simplicity, as an even number.
Then, by inverting Eq. �37� and inserting the result in Eq.
�36�, we obtain

HI = J�
k

�2�g − cos ka�ck
†ck + i sin ka�c−k

† ck
† + c−kck� − g� .

�38�

Diagonalization is then obtained by eliminating the terms
c−k

† ck
† and c−kck from the Hamiltonian given by Eq. �38�,

which do not conserve the particle number. This is indeed
achieved through the Bogoliubov transformation in which
new fermion operators �k and �k

† are introduced as linear
combination of ck and ck

†,

�k = ukck − ivkc−k
† ,

�k
† = ukck

† + ivkc−k, �39�

where uk and vk are real numbers parametrized by uk

=sin�k / 2 and vk=cos
�k

2 . This parametrization naturally
arises as a consequence of the fermionic algebra ��k ,�k�

† �
=�kk�, ��k

† ,�k�
† �= ��k ,�k��=0, with �kk� standing for the Kro-

necker delta symbol. Moreover, to recast the Hamiltonian in
a diagonal form we define �k by demanding that tan �k
=sin ka / �g−cos ka�. Therefore, by expressing HI in terms of
Bogoliubov fermions and by imposing the trace invariance
of the Hamiltonian, Eq. �38� becomes
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FIG. 2. �Color online� Values of the parameters �c1�= �c2� and �c3�
as a function of . The parameter �c3� governs the correlations for
�−1, while �c1�= �c2� is dominant in the gapless disordered phase
−1��1. In the ferromagnetic phase, �c1�= �c2�=0 and �c3�=1,
which implies the fixed value C���=1 and Q���=0 for any �1.
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HI = �
k

�k��k
†�k −

1

2
� , �40�

with �k=2J�1+g2−2g cos ka. Hamiltonian �40� is diagonal,
with ground state given by the �-fermion vacuum. The pro-
cedure above also applies for the evaluation of the matrix
elements of the reduced density operator given by Eq. �12�,
which amounts for the computation of the magnetization
density Gz and the two-point functions G��. This can be
achieved by using that Gzz=Gz

2−GxxGyy �37� and by express-
ing the remaining correlation functions as

Gxx =
2

L
�

q=−M

M cos�2�q

L
�vq

2 + sin�2�q

L
�uqvq� ,

Gyy =
2

L
�

q=−M

M cos�2�q

L
�vq

2 − sin�2�q

L
�uqvq� ,

Gz =
1

L
�

q=−M

M

�1 − 2vq
2� , �41�

where

uqvq =
1

2

sin�2�q

L
�

�1 + g2 − 2g cos�2�q

L
� ,

vq
2 =

1

2�1 −
g − cos�2�q

L
��

�1 + g2 − 2g cos�2�q

L
�� . �42�

Hence, we exactly determine the two-spin reduced density
matrix. Classical and quantum correlations can then be di-
rectly obtained from Eqs. �9� and �10�. By numerically com-
puting the classical correlation in Eq. �25� for nearest-
neighbor spin pairs at sites i and i+1, we can show that the
maximization is achieved for any g by the choice �=� /2 and
	=0. Then, the measurement that maximizes J�� : �Bk�� is
given by ��+	�+� , �−	�−��, with �+	 and �−	 denoting the up and
down spins in the x direction, namely, �� 	= ��↑ 	� �↑ 	� /�2.
This numerical observation implies that w1=1, w2=w3=0.
Therefore, Eq. �25� is ruled by the spin functions c1=Gxx

i,i+1

and c4=c5=Gz
i , i.e.,

C��� = Hbin�p1� − Hbin�p2� , �43�

where Hbin is the binary entropy,

Hbin�p� = − p log p − �1 − p�log�1 − p� , �44�

and

p1 =
1

2
�1 + Gz

i� ,

p2 =
1

2
�1 + ��Gxx

i,i+1�2 + �Gz
i�2� . �45�

We plot C��� and Q��� in Fig. 3 for a chain with 1024 sites.
Note that for g=0, the system is a classical Ising chain,
whose ground state is a doublet given by the vectors �++¯
+	 and �−−¯−	. Therefore, the system is in the mixed state

� =
1

2
�+ + ¯ + 	�+ + ¯ + � +

1

2
�− − ¯ − 	�− − ¯ − � ,

�46�

with C���= I���=1 and Q���=0. On the other hand, in the
limit g→� the system is a paramagnet �vanishing magneti-
zation in the x direction�, with all spins in state �↑ 	. There-
fore, the system will be described by the density operator,

� = �↑↑ ¯ ↑	�↑↑ ¯ ↑� , �47�

which is a pure separable state, containing neither classical
nor quantum correlations.

The QPT from ferromagnetic to paramagnetic state is a
second-order QPT and occurs at g=1. Signatures of this QPT
can be found out by looking at the derivatives of either clas-
sical or quantum correlations. Indeed, the QPT can be iden-
tified as a pronounced minimum of the first derivative of the
classical correlation, which is exhibited in Fig. 4. Note that
the minimum logarithmically diverges at g=1 as the thermo-
dynamic limit is approached �see inset of Fig. 4�. In the case
of quantum correlations, its first derivative shows an inflex-
ion point around g=1, as displayed in Fig. 5. Indeed, by
looking at its second derivative in Fig. 6, the QPT is identi-
fied by a pronounced maximum, which shows quadratic
logarithmic divergence at g=1 as the thermodynamic limit is
approached �see inset of Fig. 6�.

The behavior of the quantum discord is therefore rather
different from the entanglement behavior, whose first deriva-
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FIG. 3. �Color online� Classical and quantum correlations for
nearest-neighbor spins in the transverse field Ising model for a
chain with 1024 sites.
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tive is already divergent at the QCP. Remarkably, the scaling
of pairwise entanglement derivative in this case �see, e.g.,
Refs. �4,5�� is much closer to the scaling of the classical
correlation derivative �as given by Fig. 4� than that of the
quantum correlation derivative �as given by Fig. 5�. As in the
case of the XXZ model, it is interesting to observe that the
spin functions c1=Gxx

i,i+1 and c4=c5=Gz
i , which govern the

correlations in the Ising chain �see Eqs. �43�–�45��, exhibit a
crossing at the QCP. This is shown in Fig. 7 for a chain with
1024 sites.

VI. LMG MODEL

The discussion of correlations above can also be applied
in collective systems. As an illustration, we will consider
here the LMG model �38�, which describes a two-level

Fermi system ��+	 , �−	�, with each level having degeneracy
�. The Hamiltonian for LMG model is given by

H = ��
m=1

�
1

2
�c+m

† c+m − c−m
† c−m�

−
1

2N
�

m,n=1

�

�c+m
† c−mc+n

† c−n + c−n
† c+nc−m

† c+m� . �48�

The operators c+m
† and c−m

† create a particle in the upper and
lower levels, respectively. This Hamiltonian can be taken as
describing an effective model for many-body systems, with
one level just below the Fermi level and the other level just
above, with the level below being filled with � particles
�39�. Alternatively, the LMG model can be seen as a one-
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FIG. 4. �Color online� First derivative of the classical correla-
tion for nearest-neighbor spins with respect to g in the transverse
field Ising chain for different lattice sizes L. The derivative of C has
a pronounced minimum at gmin, which tends to the QCP g=1 as
L→�. Inset: dC /dg taken at gmin exhibits a logarithmic divergence
fitted by �dC /dg� �gmin

=−0.29161−0.22471 log L.
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FIG. 5. �Color online� First derivative of the quantum correla-
tion for nearest-neighbor spins with respect to g in the transverse
field Ising chain for different lattice sizes L. Inset: dQ /dg presents
an inflexion point that tends to the QCP g=1 as L→�.
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FIG. 6. �Color online� Second derivative of the quantum corre-
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field Ising chain for different lattice sizes L. Observe that the second
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quadratic logarithmic divergence fitted by �d2Q /dg2� �gmax
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dimensional ring of spin-1/2 particles with an infinite range
interaction between pairs. Indeed, the Hamiltonian can be
rewritten as

H = �Sz −
1

N
�Sx

2 − Sy
2� , �49�

where Sz=�m=1
N 1

2 �c+m
† c+m−c−m

† c−m� and Sx+ iSy =�m=1
N c+m

† c−m
�39�. The system undergoes a second-order QPT at �=1. As
�→�, the ground state, as given by the HF approach, reads
as

�HF	 = �
m=1

�

a0m
† �− 	 , �50�

where we have introduced new levels labeled by 0 and 1
governed by the operators

a0m
† = cos �c−m

† + sin �c+m
† ,

a1m
† = − sin �c−m

† + cos �c+m
† . �51�

In Eq. �51�, � is a variational parameter to be adjusted in
order to minimize energy, which is achieved according to the
choice

� � 1 ⇒ cos 2� = � ,

� � 1 ⇒ � = 0. �52�

Despite being an approximation, the HF ground state pro-
vides the exact description of the critical point �for recent
discussions of the exact spectrum of the LMG model, see
Refs. �40,41��. The pairwise density operator for general
modes i��+m� and j��−n� is given by

�i,j =

�MiMj	 0 0 0

0 �MiNj	 �ci
†cj	 0

0 �cj
†ci	 �NiMj	 0

0 0 0 �NiNj	
� , �53�

where Mk=1−Nk and Nk=ck
†ck, with k= i , j. By evaluating

the matrix elements of � for the HF ground state, we obtain

�M+mM−n	 = sin2 � cos2��1 − �mn� ,

�M+mN−n	 = cos2 ��mn + cos4 ��1 − �mn� ,

�N+mM−n	 = sin2 ��mn + sin4 ��1 − �mn� ,

�N+mN−n	 = sin2 � cos2 ��1 − �mn� ,

�c+m
† c−n	 = sin � cos ��mn,

�c−n
† c+m	 = sin � cos ��mn. �54�

Note that Eq. �53� displays Z2 symmetry and, therefore, clas-
sical and quantum correlations can be computed by using Eq.
�25�. Note also that for m�n, the density matrix is diagonal
and the state is completely pairwise uncorrelated. On the
other hand, for m=n, there is an equal amount of classical

and quantum correlations between the modes. These correla-
tions vanish for ��1, which is the fully polarized state. The
result is plotted in Fig. 8. We can then observe that the de-
rivatives of both classical correlation and quantum discord
exhibit a signature of the QPT �see the inset of Fig. 8�. These
signatures are in agreement with the characterizations in
terms of entanglement �42,43� and Fisher information �44�.

VII. CONCLUSION

In conclusion, we have investigated the behavior of pair-
wise correlations in general Z2 symmetric systems, splitting
up their classical and quantum contributions. This allowed
for the treatment of spin systems such as the XXZ model and
the transverse field Ising chain, where the maximization re-
quired for the evaluation of the correlations has been analyti-
cally worked out. Moreover, we have identified the spin
functions that govern the correlations and also discussed
their behavior for finite-size chains. As a further application,
we have used our approach to investigate the case of a col-
lective model given by the LMG Hamiltonian.

As it was shown, both classical correlation and quantum
discord display signatures of the critical behavior of the sys-
tem for the cases of first-order, second-order, and infinite-
order QPTs. For first-order QPTs, as illustrated by the ferro-
magnetic point of the XXZ spin chain, we found that both
classical correlation and quantum discord display a jump at
the critical point, which closely resembles the behavior of
entanglement. For second-order QPTs, although both kind of
correlations exhibit signatures of the QPTs, the derivatives of
the quantum discord show a scaling that is rather different
from the entanglement behavior in the transverse field Ising
model �see, e.g., Refs. �4,5��. It is remarkable that for this
model, the first derivative of pairwise entanglement with re-
spect to the parameter that drives the QPT exhibits a scaling
that is much closer to the scaling of the first derivative of the
classical correlation. For infinite-order QPTs, as given by the
antiferromagnetic point of the XXZ spin chain, classical cor-
relation is a minimum at the QCP while quantum discord is a
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FIG. 8. �Color online� Classical and quantum correlations be-
tween modes �+m� and �−m� in the HF ground state of the Lipkin
model. Inset: derivative of correlations is nonanalytic at �=1.
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maximum. Whether or not this might be a general feature of
infinite-order QPTs is still under analysis.

Further investigations including correlations between
blocks of particles and the effect of temperature may be in-
teresting to establish a precise comparison between �classical
and quantum� correlations and entanglement at QPTs. More-
over, dynamics in open quantum systems �45–47� may also
provide an interesting scenario for the discussion of the prop-

erties of the correlations and its implications for phase tran-
sitions. Such topics are left for a future research.
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