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By modeling the interaction of a system with an environment through a renewal approach, we demonstrate
that completely positive non-Markovian dynamics may develop some unexplored nonstandard statistical prop-
erties. The renewal approach is defined by a set of disruptive events, consisting in the action of a completely
positive superoperator over the system density matrix. The random time intervals between events are described
by an arbitrary waiting-time distribution. We show that, in contrast to the Markovian case, if one performs a
system preparation �measurement� at an arbitrary time, the subsequent evolution of the density-matrix evolu-
tion is modified. The nonstationary character refers to the absence of an asymptotic master equation even when
the preparation is performed at arbitrary long times. In spite this property, we demonstrate that operator
expectation values and operators correlations have the same dynamical structure, establishing the validity of a
nonstationary quantum regression hypothesis. The nonstationary property of the dynamics is also analyzed
through the response of the system to an external weak perturbation.
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I. INTRODUCTION

The theory of Markovian open-quantum systems �1� is
well established from both mathematical and physical points
of view. The theory of quantum dynamical semigroups, cast-
ing the structure of completely positive �CP� trace-preserving
maps, establishes that the Kossakowski-Lindblad equations
are the most general admissible forms of evolution of the
system density matrix. The application of these equations
ranges from quantum optics �2� to quantum information
theory �3�.

As far as the quantum non-Markovian case is concerned,
there exist different physical situations and as a consequence
a large variety of formalisms, from which a solid proposal
for an approach to non-Markovian quantum dynamics �1,4�
may emerge. A promising direction is afforded by the
non-Markovian generalization of the Kossakowski-Lindblad
equations. In a recent contribution �5�, Barnett and Stenholm
showed that the adoption of a time convolution between a
memory kernel and a Kossakowski-Lindblad operator, al-
though appealing, may lead to unphysical results. However,
their attempt attracted the attention of many researchers to
the search of the proper memory kernel for the time convo-
luted Kossakowski-Lindblad equations �6–17�. The main fo-
cus of most of these papers has been devoted to the search of
memory kernels that guarantees the CP condition of the so-
lution map �6–14�. On the other hand, different microscopic
interactions that lead to the convolution structure were estab-
lished �15–17� and applied in the characterization of spin
environments �18�, quantum Boltzmann equations with inter-
nal degrees of freedom �19�, mesoscopic systems �20�, as
well as to fluorescent systems coupled to complex self-
fluctuating environments �21�.

It is worth pointing out that the adoption of a renewal
approach based on the extension to quantum mechanics of

the celebrated continuous-time random walk �22� leads natu-
rally to the time convoluted structure that has been originally
hypothesized by the authors of Ref. �5�, with no risk of vio-
lating the CP condition �7�. In fact, the result is obtained
through an average over infinitely many trajectories, each of
which consists in a series of sporadic and consecutive trans-
formations �system-environment collisions� of the system
density matrix. The CP condition is trivially satisfied when
each collision is written in terms of a CP transformation.

The continuous-time random walk formalism has become
a fundamental tool when describing classical �non-
Markovian� complex systems. In particular, the existence of
processes without a characteristic time scale �i.e., character-
ized by power-law behaviors� has lead to an intensive review
of the formalism and of its possible extensions. One of the
recent motivations for studying that regime comes from the
emergence of nonstationary phenomena in the fluorescence
intensity produced by �blinking� nanocrystal quantum dots
under laser radiation �23–26�. These experiments have led
many researchers to revisit some basic tenets and tools of
equilibrium and nonequilibrium statistical mechanics, which
are closely related to one another: the Onsager principle
�27–29�, the nonstationary master equations �29�, the linear-
response theory �30–38�, the Wiener-Khinchin theorem �39�,
and the ergodic hypothesis �40�. The extension of these prin-
ciples and theoretical tools for dealing with nonstationary
phenomena would be an outstanding breakthrough in statis-
tical mechanics. Besides the theoretical interest, there is an
increasing number of experimental situations �41� that can
draw benefits from that theoretical progress. While there ex-
ist different issues that remain open, we are naturally chal-
lenged to find a proper generalization to open-quantum-
system dynamics.

The main goal of this paper is to show that non-
Markovian CP master equations may fit nonstandard nonsta-
tionary statistical phenomena and then to analyze the validity
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or the extension of two cornerstones of the theory of open-
quantum systems, i.e., the quantum regression hypothesis
�2,42� and the linear-response theory �30,31�. The underlying
dynamics of the system are defined by the renewal approach
introduced in Ref. �7�.

To address the definition �in the context of an open-
quantum-system theory� of a nonstationary decay �or a non-
stationary quantum master equation�, we introduce a system
preparation at an arbitrary time posterior to the initial cou-
pling between the system and the bath. With preparation, we
mean an instantaneous CP operation �like a measurement or
any sudden CP transformation� that leaves the system in an
arbitrary state. Then, two times are introduced. One of them
�t� �43� measures the time at which the preparation occurs
and the second one ��� measures the time since the prepara-
tion. We shall use the term stationary decay �stationary mas-
ter equation� to denote a relaxation after the preparation done
at time t that is independent of t, i.e., it only depends on �.
On the same token, we shall use the term nonstationary de-
cay �nonstationary master equation� to denote relaxation pro-
cesses whose form depends on t, i.e., its functional depen-
dence on � is parametrized by t. In the Markovian case, the
preparation always leads to the same stationary master equa-
tion. In the non-Markovian case, we show that, even when
the preparation is performed at arbitrary long times, the en-
suing relaxation may or may not reach a stationary regime.

We also show that, even in the presence of nonstationary
effects, operator expectation values and correlations have the
same dynamical structure, providing a generalization of the
standard quantum regression theorem �1,2� to a class of non-
stationary quantum dynamics. The response of the system to
an external weak perturbation, while it can be defined in
terms of operator correlations �30,31�, generates strong de-
viations with respect to the Markovian case.

The outline of this paper is as follows. In Sec. II, we
review the renewal approach and show how the nonstation-
ary effects arise. In Sec. III we obtain the evolution of both
operator expectation values and correlations, which allows
us to establish a quantum regression theorem. In Sec. IV, the
response to external perturbations is studied. In Sec. V we
provide the conclusions.

II. NONSTATIONARY DENSITY-MATRIX EVOLUTION

In the quantum application of the renewal approach �7�,
the density matrix �S��� of an open-quantum system S is
determined by means of an average over an ensemble of
infinitely many stochastic realizations, �S���= ��st����, where
�¯ � denotes the average over realizations and �st��� is the
stochastic state associated with each trajectory. They consist
of a sequence of disruptive �collisional� events occurring at
random times. The times elapsed between two consecutive
events are randomly drawn from a waiting-time distribution
density w�t�, satisfying w�t��0 and �0

�w�t�dt=1. Each event
is associated with an arbitrary CP transformation E of the
system state. It is defined by the Krauss form �3�

E��� = �
i

Ci�Ci
†, �1�

where � is the system state prior to a given event. The op-
erators Ci satisfy the condition �iCi

†Ci=I. Furthermore, here

we assume that between consecutive events, the evolution of
the system is defined by the propagator exp�tLS�. The super-
operator LS is the Liouville superoperator and corresponds to
a unitary transformation. Nevertheless, we remark that most
of the results hereby developed also apply when LS is a
standard Lindblad superoperator, i.e., when the evolution be-
tween events corresponds to a Markovian �CP� dissipative
evolution.

By construction, each realization, and as a consequence
the average over the realizations, guarantees the CP condi-
tion of the solution map. The system’s dynamics begin at
time t=0 �system-environment coupling�. As stressed in the
Introduction, we let the system evolve up to the time t�0
that we set to be the new origin of time. The earlier work of
Ref. �7� is confined to the condition t=0 and the main aim of
this paper is to solve the nonstationary issues raised by the
condition t�0. The main idea of the method that we use is
as follows. First of all, we study the time evolution of �S
from �S�0� to �S�t+��, and we interpret the exact expression
of �S�t+�� as the density matrix �S��� that will be expressed
in terms of the initial condition ��t�. It is straightforward to
get the exact expression of �S���, which reads

�S��� = �
n=0

� 	
0

�+t

dt� P0�� + t − t��W�n��t���S�0� . �2�

The superoperator W�n���� is defined in the Laplace domain
��→u , t→z� as

W�n��u� 
 �Ew�u − LS��n, �3�

while the superoperator P0��� reads

P0�u� 
 P0�u − LS� , �4�

where P0�u� is the survival probability associated with w�u�,
i.e.,

P0�u� 

1 − w�u�

u
. �5�

The expression given by Eq. �2� is a sum over all possible
realizations, each of them corresponding to a stochastic pro-
cess with n collisions. We have now to express it in terms of
the initial condition

�S�t� = �
n=0

� 	
0

t

dt� P0�t − t��W�n��t���S�0� . �6�

By using recursively the relation

W�n��� + t� = 	
0

�

d�� W�� − ���W�n−1���� + t�

+ 	
0

t

dt� W�� + t − t��W�n−1��t�� , �7�

we rewrite Eq. �2� as
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�S��� = �0��,t� + �
n=1

� 	
0

�

d��	
0

��
d�� P0�� − ���

�W�n−1���� − ����w���,t� , �8�

where we have defined

�0��,t� = �
n=0

� 	
0

t

dt� P0�� + t − t��W�n��t���S�0� , �9�

�w��,t� = �
n=0

� 	
0

t

dt� W�� + t − t��W�n��t���S�0� . �10�

The Laplace transform of �S��� of Eq. �8� then reads

�S�u� = �0�u,z� + �
n=1

�

P0�u�W�n−1��u��w�u,z� . �11�

By using the relation

	
0

�

d�	
0

�

dt e−u�e−ztg�� + t� =
g�u� − g�z�

z − u
, �12�

which is valid for any arbitrary function g�t�, with the nota-
tions g�u�
�0

�d� e−u�g��� and g�z�
�0
�dt e−ztg�t�, the

Laplace transforms of �0�� , t� and �w�� , t� are written as

�0�u,z� =
P0�u� − P0�z�

z − u

1

P0�z�
�S�z� , �13�

�w�u,z� =
W�u� − W�z�

z − u

1

P0�z�
�S�z� . �14�

Here, �S�z� is the Laplace transform of �S�t� given by Eq. �6�.
By plugging these expressions into Eq. �11�, after some al-
gebra we get

�S�u� = G�u���S�z� + I��u,z�� , �15�

where the propagator G�u� is defined by

G�u� =
1

u − �LS + LK�u − LS��
, �16�

and the inhomogeneous term is defined by

I��u,z� = L	�u − LS,z − LS��z − LS��S�z� . �17�

In the time domain, Eq. �15� becomes

d�S���
d�

= LS�S��� + 	
0

�

d�� K�� − ���Le��−���LS�S����

+ I���,t� . �18�

This equation is one of the central results of this section. It
defines the evolution of the average density matrix of the
system in the interval �t , t+��, with the initial condition �6�.
The superoperator L is defined by

L = E − 1, �19�

which in turn can be written with the Lindblad structure

L� • � =
1

2�
i

��Ci, • Ci
†� + �Ci • ,Ci

†�� . �20�

The memory kernel function K��� is defined in the Laplace
domain by

K�u� =
uw�u�

1 − w�u�
. �21�

The inhomogeneous contribution I��u ,z� �Eq. �17�� is pro-
portional to the function

	�u,z� =
w̃�u,z�

1 − w�u�
−

w�u�/z
1 − w�u�

, �22�

where the function w̃�u ,z� reads

w̃�u,z� =
w�u� − w�z�

z − u

1

1 − w�z�
. �23�

By using the relation of Eq. �12�, w̃�u ,z� can be written in
the time domain as

w̃��,t� = w�� + t� + �
n=1

� 	
0

t

dt� w�� + t − t��w�n��t�� , �24�

where w�n��z�
�w�z��n. This expression allows us to inter-
pret w̃�� , t� as a conditional waiting-time distribution density
and more precisely as the probability distribution density of
meeting the first event at time �, given that the observation
time �of events� begins at time t. The second term on the
right-hand side of Eq. �24� takes into account all possible
events at times earlier than t. Consistently, notice that, for t
=0, w̃�� ,0�=w���.

In the time domain, the function 	�u ,z� reads

	��,t� = f��,t� − f��,0� , �25�

where we have introduced the �sprinkling� distribution

f�u,z� =
w̃�u,z�

1 − w�u�
. �26�

By writing this expression in the time domain,

f��,t� = w̃��,t� + �
n=1

� 	
0

�

d�� w�n��� − ���w̃���,t� , �27�

it follows that f�� , t�d� is the probability of an event occur-
rence in the time interval �� ,�+d��, given that the observa-
tion time begins at time t, regardless of whether or not any
event occurred at earlier times. It satisfies the relation
f�� ,0�= w̃�0,��. On the other hand, notice that the function

�u ,z�
z	�u ,z� �appearing in Eq. �17�� can be written in
the time domain as 
�� , t�= �d /dt�f�� , t�.

Both the kernel K��� and the inhomogeneous contribution
I��� , t� are clear signatures of the non-Markovian property of
the evolution equation �18�. Using Eq. �15�, it is easy to
realize that the evolution of �S��� can always be rewritten as
a homogeneous evolution �see, for example, Eq. �31��. Nev-
ertheless, the inhomogeneous structure allows us to under-
stand what is the effect of shifting the initial time condition
from �S�0� to �S�t�. In fact, Eq. �17� tells us that in the
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interval �t , t+�� the departure of the system time evolution
from its time evolution in �0, t� is measured by Eq. �25�.
Consistently, for t=0, the inhomogeneous contribution van-
ishes, i.e., I��� ,0�=0.

No departure of the system evolution in �t , t+�� from the
time evolution in �0, t� must occur in the Markovian case.
This case is recovered by assuming an exponential waiting-
time distribution �Poisson case�, w���=� exp�−���. From
Eqs. �23� and �26�, it follows that w̃�� , t�=w��� and f�� , t�
=�, thereby implying the vanishing of the inhomogeneous
term, and the relation K���=�����, which turns Eq. �18� into
a standard Lindblad equation

d�S���
d�

= �LS + �L��S��� . �28�

On the other hand, we remark that, in Eq. �18�, and in Eq.
�17� as well, the superoperator L may taken as an arbitrary
Lindblad form. In fact, when L�E−I �see Eq. �19�� the
superoperator E �Eq. �1�� can be defined as E���= �I+ �e
L

−I���, where 
 must be interpreted as a control parameter.
Then, we recover Eq. �18� with an arbitrary L in the limiting
condition, in which simultaneously 
→0 and the number of
events per unit of time goes to infinity, with the last limit
being controlled by the distribution f�� ,0� of Eq. �27�.

A. Initial preparation at time t

The initial condition associated with Eq. �18� is given by
�S�t�, Eq. �6�, which in turn carries information about the
system dynamics in the interval �0, t�. Therefore, Eq. �18�
does not give more information than a master equation de-
scribing the evolution in the interval �0, t+��. Nevertheless,
the master equation �18� may acquire a different status if the
initial condition at time t can be chosen as any nonequilib-
rium form of the density matrix �S. This is done by introduc-
ing the main ingredient of our formalism, i.e., by adopting

the concept of preparation, namely, a change �S�t�→
�

��,
compatible with a CP transformation �. The role of the
preparation is to erase the dependence of the evolution on the
previous history of the system without erasing the memory
of the universe, i.e., the system-environment arrangement.

In the Laplace domain the preparation is defined by

�z − LS��S�z� → ��, �29�

which in the time domain yields �S�t�→�� exp�LSt�. The
extra unitary contribution is introduced to take into account
that the Hamiltonian evolution defined by LS begins at time
t=0. Similarly, one can interpret Eq. �29� as a preparation in
an interaction representation with respect to LS.

Under the preparation condition of Eq. �29�, the time evo-
lution structure of Eq. �18� is still valid provided that the
initial condition is fixed to be �� exp�LSt�, with the inhomo-
geneous term now reading

I���,t� = L	��,t�exp��� + t�LS���. �30�

We remark that the time evolution of Eq. �18� with the con-
tribution of Eq. �30� remains a CP structure. In fact, also its

solution admits an interpretation in terms of trajectories that
preserve the CP condition.

The time evolution of the density matrix generated by Eq.
�18�, with the inhomogeneous contribution of Eq. �30�, in
principle depends on the preparation time t. What is the form
of the dependence of the density time evolution in �t , t+�� on
t? Of particular interest is to assess under what conditions
this dependence is lost, so as to generate in the long-time
limit the stationary behavior defined in Sec. I. In the case
where the solution becomes asymptotically stationary, it is of
interest to assess if this stationary time evolution �t→�� is
characterized by non-Markovian effects stronger or weaker
than the time evolution with the preparation stage coinciding
with the initialization stage, i.e., with t=0. These important
questions will be answered with the help of the simple ex-
amples discussed in Sec. II B.

As the last but not the least remark of this section, let us
notice that the time evolution of Eq. �18�, with the prepara-
tion condition of Eq. �29�, can be easily written in an equiva-
lent form, as a homogeneous time evolution, as follows:

d�S���
d�

= LS�S��� + 	
0

�

d��	
0

��
d��

�Mt�� − ���Kt��� − ���Le���−���LS�S���� ,

�31�

where Mz�u�= �1+L	�u−LS ,z−LS��−1 and Kt�u�
=uw̃�u , t� / �1−w�u��. While this expression avoids the com-
plication arising from the presence of an inhomogeneous
term, the kernel structure is more complicated, involving all
powers of the Lindblad superoperator L. Equation �31� re-
covers and generalizes the classical master equation obtained
in Ref. �29�.

B. Examples

To make the spirit of the renewal approach of this paper
more transparent, here, we illustrate it in action on two ex-
emplary cases of the same simple model. While the micro-
scopic origin the superoperator E and the waiting-time dis-
tribution w�t� are not completely understood �7,15�, from Eq.
�18� it becomes clear that the former object defines the un-
derlying Lindblad-like structure �20�. Then, it establishes the
coupling between the density-matrix elements. On the other
hand, w�t� can be settled in a phenomenological way as a
function of the characteristic system decay behavior �see
next examples�. Its leading property is the average waiting
time �0

�tw�t�dt, which may be finite or divergent, with the
last case giving rise to strong nonstationary effects.

As a simple model, we consider a degenerate two-level
system �LS→0� and the superoperator

E� • � = �z • �z. �32�

The time evolution of the expectation values of the Pauli
matrixes �i, Si���
TrS��S����i�, with i=x ,y ,z, is given by
Eqs. �18� and �30� �or equivalently by Eq. �31��, and it reads

ADRIÁN A. BUDINI AND PAOLO GRIGOLINI PHYSICAL REVIEW A 80, 022103 �2009�

022103-4



dSX,Y���
d�

= − 	
0

�

d�� K̃t�� − ���SX,Y���� , �33�

while SZ���=SZ�0�. With Si�0�, we denote the expectation
values after the preparation. The kernel is defined by its

Laplace transform K̃t�u�=uw̃�u , t� / �1− w̃�u , t��. The solution
of Eq. �33� is

SX,Y��� = SX,Y�0�P̃0��,t� , �34�

where P̃0�� , t� is the survival probability associated with

w̃�� , t�, i.e., P̃0�� , t�=1−�0
�d�� w̃��� , t�. It can be rewritten as

P̃0��,t� = P0�� + t� + 	
0

t

dt� P0�� + t − t��f�t�,0� . �35�

Here, P0��� is defined by its Laplace transform �5�, while
f�t ,0� follows from Eq. �27�, i.e., f�z ,0�=w�z� / �1−w�z��.

The decay of the expectation values of Eq. �34� depends
on both � and t. Its explicit analytical form depends on the
choice done for the waiting-time distribution w�t�. As first
case, we select the biexponential case

w�t� = Pa�ae−�at + Pb�be−�bt, �36�

with Pa+ Pb=1. Distribution �27� �t=0� reads

f��,0� = ������� − ���� − ���−1��1 − e−��� , �37�

where ���� is the step function and we have introduced the
parameters ���
 Pa�a+ Pb�b, ���
 Pa�a

−1+ Pb�b
−1

=�0
��w���d���, and �
 Pa�b+ Pb�a. Notice that after a

transient of order 1 /�, the sprinkling distribution, as in the
Markovian case, is constant, i.e., f�� ,0�
1 / ����0.

The coherence decay, independent of the time t, can be
written as

P̃0��,t� = Pa�t�e−�a� + Pb�t�e−�b�. �38�

All the dependence on the preparation time is carried out by
the weights Pa�t� and Pb�t�. Their explicit form follows
straightforwardly from Eq. �35� as a superposition of expo-
nential functions. They satisfy the boundary conditions
Pa�0�= Pa and Pb�0�= Pb. In the limit t→�, the asymptotic
stationary decay reads

P̃0��,�� =
Pa

����a
e−�a� +

Pb

����b
e−�b�. �39�

In Fig. 1, we show the decay defined by P̃0�� , t� for different
preparation times t and for two different sets of characteristic
parameter values. After a transient of order �, both cases
reach a stationary decay regime. By comparing these figures
with the other, we realize that the asymptotic decay may
yield arbitrary departures from the dynamics generated by
setting t=0. In fact, in Fig. 1�a�, the asymptotic decay is
almost exponential while the initial one is biexponential. In
Fig. 1�b� the inverse situation is observed. This simple ex-
ample demonstrates that no general conclusion can be drawn
about the properties of the stationary time evolution.

As a second exemplary case, we consider the waiting-
time distribution

w�u� =
A�

A� + u� . �40�

where the units of A� are 1 /s�, and 0���1. Note that for
�=1 this expression reduces to the Laplace transform of an
exponential function. Kernel �21� reads K�u�=A�u1−�. As is
well known �44�, this kind of kernel is related to a fractional
derivative operator. In contrast to Eq. �37�, here we get

f��,0� =
A�

����
1

��1−�� , �41�

where ��x� is the gamma function. Then, in this case,
lim�→� f�� ,0�=0. This property is directly related to the di-
vergence of the average period between events, i.e.,
�0

��w���d�=� �44�.
By using Eq. �35� and the fact that P0��� is, in this case, a

Mittag-Leffler function �7,44�, we can write P̃0�� , t� �45� un-
der the form of a series expansion. By using the property
that, for A����1, P0����A� / �����1−���, when �� t we
get the following asymptotic expression:

P̃0��,t� �
1

��1 − ��� A�
−1

�� + t�� +
1

�����
t�

�� + t��� . �42�

Therefore, in this case there not exists an asymptotic station-
ary decay. In fact, this expression shows that at any time the
decay dynamics depends on the preparation time t. In Fig. 2

we plot the function P̃0�� , t�, Eq. �35�, for different values of
t. Equation �42� correctly fits their asymptotic decay behav-

FIG. 1. Coherence decay P̃0�� , t� �Eq. �34��, for different times
t, for the waiting-time distribution �36�. In �a� the parameters are
Pa=0.8 and Pb=0.2. In �b� the parameters are Pa=0.99 and Pb

=10−3. In both cases the rates are �a=1 and �b=0.05. Both � and t
are measured in arbitrary units.
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ior. Consistently, we found that there not exists a stationary
decay behavior.

III. REGRESSION HYPOTHESIS

The generalization of the classical regression hypothesis
�27� to a quantum context is called quantum regression theo-
rem �2,42�. It states that operator expectation values and op-
erator correlations have the same dynamical behavior. Here,
we explore the possibility of generalizing this theorem to the
renewal case.

A. Operator dual evolution

In order to define operator correlations, we have to move
from the Schrödinger to the dual or Heisenberg representa-
tion. In the renewal case here under study, this corresponds
to converting the stochastic time evolution of the density
matrix �st�t� into the stochastic time evolution of operators.
All of these rest on the fundamental relation

A�t� = TrS�A�0��S�t�� = TrS��S�0�A�t�� , �43�

where the mean value A�t� of a system operator A can be
written in terms of the initial density matrix �S�0� and of the
evolved operator A�t�.

Let us define the dual superoperators LS
# and E# by the

relations

TrS�AetLS�� = TrS��etLS
#
A� , �44a�

TrS�AE�� = TrS��E#A� . �44b�

Equation �2� yields the �averaged over realizations� operator
time evolution

A�t + �� = �
n=0

� 	
0

�+t

dt� W#�n��t��P0
#�� + t − t��A�0� . �45�

Here, W#�n��z�= �w�z−LS
#�E#�n arises from Eq. �3� and

P0
#�z�= P0�z−LS

#� arises from Eq. �5�. Note that, as a conse-
quence of the prescription of Eq. �43�, the W# superoperator
applies after the P0

# one rather than before it as in Eq. �2�.
In conclusion the dynamics of the stochastic operator Ast

resembles that of the stochastic density matrix �st. It consists,

too, of time intervals with the time evolution driven by
exp�tLS

#�, and of others, corresponding to the action of the
superoperator E#, where it is driven by disruptive events.
Nevertheless, notice that, when �LS

# ,E#��0, the time order-
ing of the superoperators is reversed as a consequence of
turning the Schrödinger’s into the Heisenberg’s representa-
tion.

B. Operator expectation values and correlations

For the main purpose of working with simplified expres-
sions, in this section we make all calculations in the interac-
tion representation with respect to LS

#, and we assume that

�LS
#,E#� = 0, �46�

which in turn in the Schrödinger representation yields
�LS ,E�=0 or, equivalently, the commutation condition
�LS ,L�=0. As a consequence of this condition, Eq. �45� �Eq.
�2��, it follows that the operator �density-matrix� stochastic
dynamics, in the interaction representation with respect to LS

#

�LS�, only consists in the application of the superoperator E#

�E� at random times. Notice that all the expressions obtained
in the previous section, in the interaction representation, re-
main valid by setting LS→0.

The operator expectation values, in the interval �t , t+��,
are written as �A��+ t�→A����,

A��� = TrS��S�0�A�� + t�� , �47a�

=TrS��S�0�CIA��,t�� . �47b�

With A= �A1 ,A2 , . . .�T, we denote a vector of system opera-
tors defining a complete basis in the dual �operators� space. I
denotes the system identity operator. The operator correla-
tions are written as

O�t�A�t + �� = TrS��S�0�O�t�A�t + ��� , �48a�

=TrS��S�0�COA��,t�� . �48b�

Here, O denotes an arbitrary system operator. The auxiliary
operator functions CUV�� , t�, acting on arbitrary system op-
erators U and V, are defined by the expression

CUV��,t� 
 �
m=0

�

�
n=0

�

P��,m;t,n��E#�n
†U�E#�m�V�‡ . �49�

P�� ,m ; t ,n� is the probability that n events occur in the in-
terval �0, t� and that m events occur in the interval �t , t+��.
Under condition �46�, in the interaction representation with
respect to LS

#, Eq. �49� follows straightforwardly from the
stochastic dynamics associated with Eq. �45�.

The set of probabilities P�� ,m ; t ,n� can be written as

P��,0;t,n� = 	
0

t

dt� P0�� + t − t��w�n��t�� , �50�

when m=0, and as

FIG. 2. Coherence decay P̃0�� , t� �Eq. �34��, for different times
t, for the fractional waiting-time distribution �40�. The parameters
are A�=1 and �=1 /2. Both � and t are measured in arbitrary units.
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P��,m;t,n� = 	
0

�

d�� P0�� − ���

�	
0

��
d�� w�m−1���� − ���

�	
0

t

dt� w��� + t − t��w�n��t�� , �51�

for m�1. As before, the function w�n���� is defined by its
Laplace transform w�n��u�= �w�u��n. In the Laplace domain
��→u , t→z�, after using Eq. �12�, we get

P�u,0;z,n� =
1 − zw̃�u,z�

u
P0�z��w�z��n,

and for m�1,

P�u,m;z,n� = P0�u��w�u��m−1zw̃�u,z�P0�z��w�z��n,

where w̃�u ,z� is defined by Eq. �23�.
After some algebra based on Eq. �49� we write

CUV�u,z� = G#�z�UG#�u��1 + z	�u,z�L#�V . �52�

The function 	�u ,z� is defined by Eq. �22� and G#�u� denotes
the propagator

G#�u� =
1

u − K�u�L# , �53�

where L#
E#−1 is the dual superoperator associated with L
�Eq. �19��. The kernel K�u� follows from Eq. �21�. Therefore,
taking into account that these expressions were derived in an
interaction representation with respect to LS, we obtain that
G#�u� is the dual propagator associated with G�u� �Eq. �16��.

From Eq. �52�, after introducing the density matrix

�S�z� = G�z��S�0� , �54�

the mean values �47� and correlations �48� read

A��� � TrS��S�z�G#�u��1 + z	�u,z�L#�A� ,

O�t�A�t + �� � TrS��S�z�OG#�u��1 + z	�u,z�L#�A� .

Here, for the sake of shortening the notation, we use the
symbol � to indicate that the left- and the right-hand sides of
the equality are written in the time and the Laplace domains,
respectively. These equations yield the desired expressions
for operator expectation values and correlations. They can be
straightforwardly written in terms of density-matrix propaga-
tors as

A��� � TrS�AG�u��1 + L	�u,z�z��S�z�� , �55�

O�t�A�t + �� � TrS�AG�u��1 + L	�u,z�z��S�z�O� . �56�

In the Markov case, i.e., when K�u�=�, these results recover
the expressions that follows from a microscopic derivation
based on a Born-Markovian approximation �2�. Furthermore,
by using the same calculations steps, it is possible to dem-
onstrate that

O�t�A�t + ��Õ�t� � TrS�AG�u��1 + z	�u,z�L�Õ�S�z�O� .

�57�

From Eqs. �55� and �56�, it is immediate to realize that
expectation values and correlations have the same dynamical
structure, showing that the classical Onsager regression hy-
pothesis can be extended to this context. We make this fact
even clearer by introducing a preparation at time t �Eq. �29��,
thereby implying the transformation z�S�z�→��. Then, the
preparation can be interpreted as a sudden fluctuation at time
t. The earlier expressions indicate that the operator correla-
tion dynamics depend on the dynamical decay of this fluc-
tuation.

C. Evolutions

We can explicitly show that operator expectation values
and correlations have the same dynamical behavior. Here, we
obtain the inhomogeneous equations of motion. Neverthe-
less, as in Eq. �31�, they can be rewritten as homogeneous
ones. By defining a matrix M by the relation

TrS�ALO� = M TrS�AO� , �58�

which acts on the indices of vector A, from Eq. �55� it is
possible to get the evolution

d

d�
A��� = 	

0

�

dt� K�� − ���MA���� + �IA��,t� , �59�

while from Eq. �56�, for the correlations it follows that

d

d�
O�t�A�t + �� = 	

0

�

d�� K�� − ���MO�t�A�t + ���

+ �OA��,t� . �60�

The inhomogeneous terms �IA�� , t� and �OA�� , t�, taking into
account the preparation �Eq. �29��, follow from

�OA��,t� = 	��,t�M TrS�OA��� . �61�

These expressions show that even in the presence of strong
non-Markovian nonstationary effects, the regression hypoth-
esis is still valid �28,29�.

D. Discussion

The previous analysis demonstrates that condition �46�
guarantees the fulfillment of the quantum regression hypoth-
esis. This constraint is satisfied, for example, by a two-level
system with Liouvillian LS� • �=−i�A��z , •� /2, where �z is
the z-Pauli matrix, �A its transition frequency, and E �or
equivalently L� • �� defines a dispersive or a thermal reservoir
�see, respectively, Eqs. �71� and �74� in Ref. �7��. When the
two-level system is subjected to an external field, the regres-
sion hypothesis may be broken. In fact, when condition �46�
is not fulfilled, the regression hypothesis does not hold true
in any case. Nevertheless, by writing

LS = L0 + �L1, �62�

where �L0 ,E�=0 and �L1 ,E��0, it is possible to prove
that—to first order in the parameter �—the regression hy-
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pothesis, independent of the specific structure of L1, is still
valid. In the Schrödinger representation, the operator expec-
tation values �Eq. �55�� and the operator correlations �Eq.
�56��, to first order in �, read

A����̇TrS�AG�u���S�z� + I��u,z��� , �63�

O�t�A�t + ���̇TrS�AG�u���S�z� + I��u,z��O� . �64�

Note that G�u� and I��u ,z� are defined by Eqs. �16� and �17�,
respectively. After performing the preparation at time t, the
inhomogeneous term follows from Eq. �30�.

The work of Ref. �16� discussed the validity of the regres-
sion hypothesis in the context of non-Markovian dynamics
based on the Lindblad rate equations �15�. It was also found
�see Sec. 6� that an external �noncommuting� field breaks its
applicability. Nevertheless, in contrast with the present for-
malism, the non-Markovian effects admit an underlying Mar-
kovian description. Furthermore, the regression theorem was
studied by analyzing the dynamics at the initial and at the
asymptotic times. In that case, the vanishing of the inhomo-
geneous term is a necessary condition for the validity of the
regression hypothesis. In spite these differences, both for-
malisms lead to consistent and noncontradictory results.

We remark that similar conditions but not equivalent to
Eq. �46� were found in different contexts. In Refs. �46–48�
the validity of the quantum regression hypothesis beyond a
weak-coupling regime was discussed �16�. In Ref. �49�, a
commutation property between the system-bath interaction
and the system operators was derived by using a stochastic
wave-vector formalism and taking into account a bosonic
bath described in a rotating wave approximation. All these
results suggest that, beyond a Markovian regime, the validity
of the quantum regression hypothesis strongly may depend
on the underlying microscopic dynamics. Nevertheless, the
search for general applicable criteria should not be discarded
�16�.

IV. LINEAR-RESPONSE THEORY

Here we analyze the response of the system, whose
density-matrix evolution is given by Eq. �18�, to an external
time-dependent perturbation. In the stationary case �30,31�,
the system response to weak external perturbations is ex-
pressed in terms of response functions that are proportional
to the cross correlation function between the variable of in-
terest and a system variable coupled to the external field.
Here, we show that a similar result can be established but
that, nevertheless, strong departures from the predictions of
the stationary theory may arise.

To simplify the analysis, in the following calculations we
assume that t=0, i.e., that the system-environment coupling
�initialization of the renewal dynamics� coincides with the
preparation time and that the coupling with the external field
is switched on at the same time. In this case the absolute time
coincides with the distance � from the system-environment
coupling. The average system state �S��� is written as a se-
ries in the external perturbation

�S��� 
 �S
�0���� + ��S

�1���� + ¯ . �65�

The parameter � measures the strength of the external per-
turbation. �S

�0���� corresponds to the dynamics in the absence
of the perturbation. The contribution �S

�1���� can be obtained
from an average of the perturbed realizations or from the
�perturbed� master equation defining the density-matrix evo-
lution �Eq. �18��. In general, one may assume that the exter-
nal perturbation affects either the unitary or the dissipative
dynamics. Hereby, we analyze both cases.

A. Perturbing the dissipative dynamics

Here, we consider the case when the external perturbation
affects �or is coupled to� the dissipative dynamics. The two
contributions in Eq. �65� are evaluated by averaging the per-
turbed stochastic realizations. The zeroth-order contribution
reads

�S
�0���� = �

n=0

� 	
0

�

d�� P0�� − ���W�n������S�0� . �66�

Notice that this expression follows straightforwardly from
Eq. �2�. The first-order contribution is determined by an av-
erage over all possible trajectories, in each of which the ex-
ternal perturbation acts only once to fit the request of a linear
response. Then, �S

�1���� becomes the double sum

�S
�1���� = �

n=0

�

�
m=0

� 	
0

�

d�1	
0

�1

d�2	
0

�2

d�3 P0�� − �1�

�W�n���1 − �2�O��2,�3�W�m���3��S�0� . �67�

Each sum takes into account all possible events, preceding
and ensuing the action of the external perturbation. In this
expression, P0��� and W�n���� are defined by Eqs. �3� and
�4�, respectively. The influence of the external perturbation is
described by the superoperator O��2 ,�3�. This is done either
by making the superoperator E change with time, without
affecting the times of event occurrence, or by allowing the
external stimulus to slightly change the times of event occur-
rence, namely, a little bit earlier or later, according to the
system’s state.

1. Perturbing the event superoperator

In Ref. �36� the linear-response theory was analyzed on
the basis of a classical two-level system where the perturba-
tion does not affect the time of occurrence of an event, but
that the coin tossing selecting the fluctuations sign has a
time-dependent bias. In Sec. II we have seen that the Krauss
operators E��� signal the occurrence of renewal events. To
realize a perturbation on the system of the same nature, we
have to assume that the time of occurrence of collisional
events is not affected by the external perturbation, but that
the specific form of E��� is. Then, the Krauss operator is
written as

E������ = E��� + �O������ , �68�

where the superoperator O��� satisfies TrS�O�t�����=0. For
simplicity, we assume
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O��� = ����O . �69�

���� is a scalar function that defines the temporal dependence
of the external perturbation. The superoperator O��2 ,�3� ap-
pearing in Eq. �67� can then be written as

O��2,�3� = O��2�exp���2 − �3�LS�w��2 − �3� . �70�

By working in the Laplace domain on the contributions to
each sum of Eq. �67�, after some algebra, we get

�S��� 
 G����S�0� + �	
0

�

d�� G�� − ���O����

�	
0

��
d�� K��� − ���e���−���LSG�����S�0� . �71�

The propagator G��� is defined in the Laplace domain by Eq.
�16�, while the kernel K��� is defined by Eq. �21�.

Equation �71� generates the system’s response to first or-
der in the perturbation strength � and consequently the sys-
tem’s linear response. For the operator expectation values,
after introducing assumption �69�, we get

A��� = A0��� + �	
0

�

d�� �AO��,�������� , �72�

where the zeroth-order contribution reads A0���
=TrS�AG����S�0��, and the response function is given by

�AO��,��� = TrS�AG�� − ���O� f����� . �73�

With � f����, we denote

� f���� = 	
0

��
d�� K��� − ���e���−���LSG�����S�0� . �74�

Evidently, the response function �AO�� ,��� has the structure
of an operator correlation �see Eq. �57��. This fact becomes
more evident when the initial density matrix corresponds to
the stationary state �S

� of the unperturbed evolution, i.e.,

�S
� 
 lim

�→�
G����S�0� , �75�

and the condition

LS��S
�� = �S

� �76�

is satisfied. Then, the expectation values are written as

A��� = A� + �	
0

�

d�� �AO
� ��,�������� , �77�

where A�=TrS�A�S
��. The response function becomes

�AO
� ��,��� = TrS�AG�� − ���O�S

��f���,0� . �78�

Here, the function f�� ,0� is defined by Eq. �27�. The
quantum-statistical average over �S

� can be read as a correla-
tion between the operator A and the superoperator O �see
Eq. �57� with z�S�z�→�S

� and 	�u ,z�→0�.
For the Markovian dynamics �Eq. �28��, where f��� ,0�

→�, the response �AO
� �� ,��� depends only on ��−���. This

stationary condition �30,31� is broken in the non-Markovian

case. In fact, the presence of the factor f��� ,0� implies that
�AO

� �� ,��� depends separately on both � and ��. Depending
on the behavior of f��� ,0� �see Eqs. �37� and �41�� in the
long-time regime, the system may become insensitive to the
external perturbation. This effect, which is sometimes called
death of linear response �38�, was found in classical systems
in Refs. �32,37�. The present analysis leads us to conclude
that the same amazing phenomenon may be observed in
quantum systems.

The previous results also follows from calculations based
on the density-matrix evolution �Eq. �18��. On the other
hand, we assumed that the external perturbation is switched
on at the initial time. The general case, i.e., when the renewal
dynamics start at time t=0 and the external perturbation is
switched on at time t�0, can be discussed following the
same calculations steps. The final expressions involve some
extra contributions. Nevertheless, under assumption �62�, to
first order in �, Eq. �71� remains valid under the replace-
ments �S�0�→�S�t� and K���→Kt���, where Kt�u�
=uw̃�u , t� / �1−w�u��. Similarly, Eq. �78� remains valid under
the replacement f��� ,0�→ f��� , t�.

As an example we consider a two-level system, with
states ��� ��, whose unitary evolution is defined by LS���=
−i���x ,�� /2, where �x is the x-Pauli matrix in the basis
��� ��. The perturbed superoperator reads

E������ =
1

2�
a,b

�ab��ab
† �1 − a������ , �79�

where �ab
�a��b�, �a ,b�=�, and ��������1. It can be re-
written as E������= �I+������z� /2. Then, both the unper-
turbed and the perturbed terms turn out to be independent of
the initial state �. The unperturbed dynamics corresponds to
a depolarizing channel �3�, with stationary state �S

�=I /2. The
perturbed dynamics modulates the probability of transitions
between the two states �36�.

From Eq. �77�, the difference between the upper and the
lower populations, i.e., the mean value of the z-Pauli matrix
�z, SZ���=TrS��S����z�, reads

SZ��� = �	
0

�

d�� P0�� − ���cos���� − ����f���,0������ .

�80�

As the transformation E������ does not depend on �, it is
simple to prove that Eq. �80� also corresponds to the exact
solution to all orders in �. On the other hand, notice that the
results obtained in Ref. �36� are recovered in the limit �
→0. Using Eq. �79�, it is easy to establish the nature of the
stochastic dynamics associated with Eq. �80�, i.e., SZ���
= �Sst����, where �¯ � denotes the average over the single
realizations. Between two consecutive events �action of
E����, occurring at times �i−1 and �i, the stochastic evolution
is given by Sst���=cos����−�i−1��Sst��i−1�, where �
� ��i ,�i−1�, while at �=�i, we apply the disruptive transfor-
mation Sst���→����i�. The statistics of the time intervals
��i−�i−1� is given by the distribution w���. In the result illus-
trated by the following figures, we use Eq. �40�.

NON-MARKOVIAN NONSTATIONARY COMPLETELY … PHYSICAL REVIEW A 80, 022103 �2009�

022103-9



In Fig. 3 we show both the solution of Eq. �80� and the
average on the realizations of the stochastic simulation. The
function f�� ,0� is given by Eq. �41�. The external perturba-
tion is ����=cos����. We note that, in general, in the long-
time regime the system becomes insensitive to the external
perturbation �Fig. 3�a��. In fact, in the Markovian case, or
when lim�→� f�� ,0��0, the asymptotic behavior of the
mean value lim�→� SZ��� is given by an oscillatory function.
In contrast, here, lim�→� SZ���=0. The decay to this
asymptotic value is given by a power-law function. The os-
cillation amplitude is proportional to the survival probability
�Eq. �5��, which can be written here as P0���
=exp�A1/2

2 t�erfc�A1/2t1/2�. In the time asymptotic regime, it
behaves as P0����1 / �A1/2�t� �44�. Only when �=� the
asymptotic behavior is given by an undamped oscillatory
function �Fig. 3�b��. The presence of an undamped
asymptotic contribution follows straightforwardly from Eq.
�80� after expanding the involved trigonometric functions
and using P0�u�f�u ,0�=1 /u− P0�u�. The nonvanishing con-
tribution is �1− P0����cos���� /2. Thus, the convergence to
the maximal amplitude oscillation �one half� also follows a
power-law behavior. This effect is seen in Fig. 3�b�.

2. Perturbing the times of event occurrences

In Refs. �33,32�, the response of a classical two-level sys-
tem was analyzed by assuming that the external perturbation
affects the times of event occurrence. The prediction gener-

ated by this assumption has been recently confirmed by ex-
perimental results on liquid crystals �41�. Here, that assump-
tion corresponds to assuming that the times of the
superoperator E’s action are slightly changed by the external
perturbation. Below, we discuss a system-bath modeling
where this condition applies.

We consider a system, which may also have its own �Mar-
kovian� dissipative dynamics, and whose interaction with a
complex bath only occurs when the environment undergoes a
structural change, implying the application of E over the sys-
tem density matrix. The changes between the different struc-
tures of the bath are described by a complex landscape. The
escape over a single well is described by the standard Kram-
ers theory. By turning on an external perturbation, the height
V of a given well is written as V�t�=V0+�0��t�. By assuming
an adiabatic regime, the survival probability associated with
each well evolves as

d

d�
P0���t� 
 − �0�� + t�P0���t� . �81�

Here, P0�� � t� defines the conditional probability that no
event �structural change� occurs in the time interval �t , t+��
given that the last event occurred at time t. The time-
dependent rate is written as �0�t�=�0 exp�−V�t� /D�. The co-
efficient D involves the temperature and extra parameters
describing the well shape. The solution of Eq. �81� reads
P0�� � t�
exp�−�0

��0���+ t�d���. To first order in �0, it fol-
lows that

P0���t� 
 exp�− ��� + �	
t

t+�

��t��dt��� , �82�

where �=�0 exp�−V0 /D� is the Kramers rate and the dimen-
sionless strength parameter reads �=−�0 /D. If one assumes
a statistical distribution of rate � �due to a random �0 or V0�,
the survival probability P0�� � t� must be written as a statisti-
cal superposition of exponential functions, from which arbi-
trary decay behaviors can be recovered. Therefore, Eq. �82�
can be extended to nonexponential survival probabilities.

In conclusion, the external perturbation shifts the time of
event occurrence, and this property, on the basis of the earlier
arguments corresponds to the assumption

P0���t� = P0�� + �O	
t

t+�

dt� ��t��� . �83�

The function ��t�� defines the time dependence of the pertur-
bation. The superoperator O takes into account a dependence
of the time shift on the system state.

To first order in �, the survival probability reads

P0���t� � P0��� − �Ow���	
t

t+�

dt� ��t�� . �84�

Although, in principle, the external perturbation breaks the
renewal character of the process, under the assumption
of weak perturbation �small ��, it is legitimate to define
the conditional waiting-time distribution density w�� � t�
=−�� /���P0�� � t�, thereby getting

FIG. 3. Mean value of the z-Pauli matrix �full line�, Eq. �80�,
driven by a periodic external perturbation, Eq. �79�, with ����
=cos����. The parameters of the waiting-time distribution, Eq. �40�,
are �=1 /2 and A�=1 /2. The strength of the perturbation is �
=0.1. The circles correspond to an average over 103 realizations
�see text�. In �a� the parameters are �=3 and �=1. The dotted lines
are proportional to �P0���. In �b�, �=�=1. The time � and the
parameters are measured in arbitrary units.
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w���t� � w��� + �O �

��
�w���	

t

t+�

dt� ��t��� . �85�

Notice that under this approximation, independent of the
O structure, the normalization condition �0

�d� w�� � t�=1 is
preserved.

The earlier assumptions do not affect Eq. �67�, which is
made to remain valid by defining O��2 ,�3� as

O��2,�3� = O� exp���2 − �3�LS��w��2��3� , �86�

where O�=EO and

�w��2��3� =
�

��2
�w��2 − �3�	

�3

�2

dt� ��t��� . �87�

Nevertheless, in this case, the operator P0��−�1� appearing
in Eq. �67� also gives a contribution to first order in �, as
clearly shown by Eq. �84�.

By assuming the initial condition �75�, the condition of
Eq. �76�, doing the same calculus for the derivation of Eq.
�71�, and after rearranging the time integrals and some alge-
bra, the operator expectation values read

A��� = A� + �	
0

�

d�� �AO
� ��,�������� , �88�

with A�=TrS�A�S
�� and the response function being

�AO
� ��,��� = w̃�� − ��,���TrS�A�E,O��S

��

− 	
��

�

d�� w̃��� − ��,���
�

���

��TrS�AG�� − ���O��S
��� , �89�

where w̃��−�� ,��� is defined by Eq. �24�. Thus, in this case
the response function is also proportional to the correlation
between the operator A and the external perturbation O.

When O��S
�=�S

�, or O��S
�=0, the integral contribution to

Eq. �89� vanishes. Then Eq. �88� yields

A��� = A� + �A��	
0

�

d�� w̃�� − ��,�������� , �90�

where A�� , =TrS�A�E ,O��S
��. With the earlier arguments in

mind, we state that this kind of response function is gener-
ated whenever the underlying dynamics can be modeled as
an escape process from a well through time-dependent bar-
rier, or in general when prescription �83� applies. This makes
it possible to use for w��� any form and, not necessarily,
the inverse power-law form of Refs. �32,33�. The example
discussed in these papers is a symmetrical two-level
system, with E���=�a,b=��ab��ab

† /2=I /2, �S
�=I /2, O���

=−�a=�a�aa��aa
† , LS=0, and A→�z. In this case, �AO

� �� ,���
follows straightforwardly from the first-order contribution
associated with Eq. �84�. On the other hand, while Eqs. �78�
and �89� define the system response in terms of operator
correlations, they do not involve in general the derivative of
an operator correlation �34�.

B. Perturbing the unitary dynamics

Now we consider the case where the external perturbation
affects the unitary dynamics acting in the time interval be-
tween the occurrences of two consecutive events. Then, we
write

LS��� = LS + �Lext��� . �91�

In contrast to the previous case, here, we show that when the
dynamics strongly departs from the Markovian case, it is not
possible to generate a linear-response theory.

The perturbed dynamics �Eq. �65�� are derived from the
master equation defining the density-matrix evolution �Eq.
�18�� with t=0. To first order in �, we get

d�S���
d�


 LS����S��� + 	
0

�

d�� K�� − ���LU��,����S���� .

Here, U��� ,��� is a propagator associated with the time-
dependent Liouvillian superoperator �91�, i.e., U��� ,���
=exp�LS���−����+�U�1���� ,���+¯, where U�1���� ,��� is the
first-order contribution.

The first-order contribution in Eq. �65�, by assuming the
stationary initial condition �75�, reads

�S
�1���� = 	

0

�

d�� G�� − ����Lext�����S
�

+ 	
0

��
d�� K��� − ���LU�1����,����S

�� .

When calculating the operator expectation values, the first
line recovers the standard Kubo response theory �31�. On the
other hand, the second line shows that it is impossible to
generate a first-order perturbation. In fact, the validity of this
contribution relies on approximating the difference between
the perturbed and the unperturbed propagators, U��� ,���
−exp�LS���−����, by the first-order contribution
�U�1���� ,���. Nevertheless, if the kernel K���−��� correlates
distant times ��� and ���, evidently U��� ,��� cannot be ap-
proximated to first order in �. Only when the non-Markovian
dynamics slightly depart from the Markovian condition
�K���−���=�����−���� the perturbed dynamics can be ap-
proximated to first order in the perturbation. The same con-
clusion follows by analyzing the perturbed stochastic trajec-
tories.

V. SUMMARY AND CONCLUSIONS

In this paper we have shown that nonstandard nonstation-
ary statistical effects can arise in the context of CP open-
quantum-system dynamics. The results rely on modeling the
system dynamics through a renewal approach, where the
density matrix follows after averaging a set of realizations
that mimic the interaction with a non-Markovian environ-
ment. The realizations are characterized by disruptive abrupt
events, producing changes described by the application of a
CP superoperator. The time distance between the occurrences
of two consecutive collisional events is drawn from a non-
Poissonian waiting-time distribution density w���. In the
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time intervals between two consecutive collisional events,
the system’s time evolution is described by a unitary pre-
scription. Both the CP superoperator and the waiting-time
distribution density take into account the interaction of the
system with the environment.

As a significant advancement compared to the earlier
work, here, we analyzed the non-Markovian system dynam-
ics by introducing a system preparation at an arbitrary time
and studied the ensuing evolution. The preparation erases the
dependence of the evolution on the previous history of the
system. Nevertheless, it does not erase the memory of the
universe, i.e., the system-environment arrangement. In fact,
the master evolution after preparation depends explicitly on
the time preparation �Eqs. �18� and �30� or Eq. �31��. When
the preparation time is done at arbitrary long times, the en-
suing density-matrix evolution may or may not converge to
an asymptotic structure, with the last situation defining the
nonstationary case. It arises when the average time between
events is divergent. When there exists an asymptotic station-
ary evolution, we showed that it may significantly depart
from the evolution ensuing preparation at the initial time,
i.e., in general the stationary evolution may develop stronger
or weaker non-Markovian effects than the evolution ensuing
the preparation at the initial time.

The possibility of extending the regression hypothesis to
the evolutions arising from the renewal approach was also
explored. We showed that, when the unitary dynamics com-
mutes with the event superoperator, the non-Markovian evo-
lutions of the expectation and the correlation operators are
exactly the same �Eqs. �55� and �56��. This result is valid
even in the presence of nonstationary effects. When the com-
mutation condition is not satisfied, the regression hypothesis
remains valid �Eqs. �63� and �64�� up to first order in the
perturbation �Eq. �62��.

The nonstationary character of the evolution was also ana-
lyzed through the response of the system to an external weak
perturbation. When the external field modifies the dissipative
dynamics, the response function associated with the mean
value of a given operator can be written as a function of the
correlation between the operator and the external perturba-

tion. Different response functions �Eqs. �78� and �89�� are
generated depending on whether we make the perturbation
modifies the superoperator structure �Eq. �68�� without af-
fecting the occurrence time of the collisional events or we
make the perturbation affects the time occurrence of the dis-
ruptive events �Eq. �83��. As in the classical counterparts, we
have shown that, in the presence of nonstationary dynamics,
the response of the system may die out in the time
asymptotic regime. We also concluded that when the external
perturbation modifies the unitary dynamics between events,
the linear-response theory is incompatible with the presence
of strong memory effects.

The equations that express the previous results are also
valid for classical systems. In fact, all quantum properties
disappear if one disregards the unitary contributions, consid-
ers diagonal density matrices, and takes superoperators that
do not break that condition. With respect to previous analy-
ses �28,29,32–35�, the present results do not rely on a spe-
cific form of the waiting-time distribution �such as the in-
verse power-law forms� neither rely on a classical two-level
system modeling. Thus, the formalism applies even when the
events are defined by differential �Fokker-Planck� operators.

The results found in this paper may have direct experi-
mental implications. In fact, the renewal dynamics arises
trivially in the context of �non-Markovian� quantum kicked
systems �50�. The main conclusions arrived at with our
analysis may also apply to quantum systems coupled to com-
plex reservoirs generating decay behaviors without a charac-
teristic time scale �15,21�. While a full quantum microscopic
derivation of the present results is an open problem, our
analysis demonstrates that a rich kind of behaviors may arise
when dealing with non-Markovian nonstationary quantum
evolutions. Our contribution is a consistent attempt to model
those issues in the context of CP open-quantum-system dy-
namics.
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