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We study the quantum kicked rotor in resonance subjected to a unitary noise defined through Kraus opera-
tors. We show that this type of decoherence does not, in general, lead to the classical diffusive behavior. We
find exact analytical expressions for the density matrix and the variance in the primary resonances. The
variance does not loose its ballistic behavior; however, the coherence decays as a power law. The secondary
resonances are treated numerically, obtaining a power-law decay for the variance and an exponential-law decay
for the coherence.
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I. INTRODUCTION

The development of experimental techniques has made
possible the trapping of samples of atoms using resonant
exchanges in momentum and energy between atoms and la-
ser light �1�. This progress has been accompanied by the
development of the interdisciplinary fields of quantum com-
putation and quantum information �2�.

The study of open quantum systems is an outstanding
topic of quantum mechanics. In particular the transition from
the quantum to the classical world has intrinsic importance.
On the other hand the advent of quantum computation makes
of decoherence a central problem in the interaction of the
quantum computer with its surroundings.

Simple theoretical and experimental models such as the
quantum kicked rotor �QKR� and the quantum walk �QW�
may play an important role in this frame. Although the exis-
tent experiments have high accuracy in both coherent storage
and manipulation of the atoms, the interaction with the sur-
roundings introduces different degrees of decoherence influ-
encing the unitary evolution of the system.

The QKR is a milestone in the study of chaos at the quan-
tum level �3�. The behavior of the QKR depends on whether
the period of the kick is a rational or irrational multiple of 2�
�in convenient units� �4�. For rational multiples the behavior
of the system is resonant with ballistic spreading and has no
classical analog; its standard deviation � has the time depen-
dence ��t�� t. For irrational multiples the average energy of
the system grows in a diffusive manner for a short time and
then dynamical localization takes place. The quantum reso-
nances and the dynamical localization of the QKR have been
experimentally observed in samples of cold atoms interacting
with a far-detuned standing wave of laser light �5�, and in
particular the secondary resonances have been recently ob-
served by Kanem et al. �6�.

The QKR as a simple toy model allows studying of the
complexity of decoherence both analytically and numeri-
cally; these studies have a 25-yr-old history �7–9�. On the
other hand the first experimental observation of environment
induced decoherence in the QKR was reported by Ammann
et al. �10�.

In this line we recently investigated the QKR in resonance
subjected to �a� decoherence with a Lévy waiting-time
distribution �11,12� and �b� an excitation that follows an
aperiodic Fibonacci prescription �13�. In both cases we find
that the secondary resonances have a subballistic behavior
���t�� tc , 1 /2�c�1� while the principal resonances main-
tain the well-known ballistic behavior. These results are very
surprising since one expects diffusive behavior when deco-
herence occurs. Other authors also investigated the QKR
subjected to noises with a Lévy distribution �14,15� and al-
most periodic Fibonacci sequence �16�, showing that this de-
coherence never fully destroys the dynamical localization of
the system but leads to a subdiffusion regime for a short time
before localization appears.

In this work we want to study the decoherence effect of a
unitary operation described by Kraus operators �17� acting
on the density matrix. Our route is similar to that followed
by Brun et al. �18� with the QW but our results in the QKR
are very different.

II. KICKED ROTOR

In this section we briefly review the dynamical equations
for the QKR �4�. Its Hamiltonian is

H =
P2

2I
+ K cos ��

n=1

�

��t − nT� , �1�

where the external kicks occur at times t=nT, with n as the
integer and T as the kick period, I is the moment of inertia of
the rotor, P is the angular-momentum operator, K is the
strength parameter, and � is the angular position. In the
angular-momentum representation, P���=�����, the matrix
element of the time-step evolution operator U is

U�j 	 
��U�	��j� = i−�j−��e−ij2
T/�Jj−��	� , �2�

where 
=�2 /2I, Jm is the mth order cylindrical Bessel func-
tion, and its argument is the dimensionless kick strength 	
	K /�. The resonance condition does not depend on 	 and
takes place when the frequency of the driving force is com-
mensurable with the frequencies of the free rotor. Inspection
of Eq. �2� shows that the resonant values of the scale param-
eter �	
T /� are the set of the rational multiples of 2�, �
=2� p /q. In what follows we assume that the resonance*alejo@fing.edu.uy
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condition is satisfied; therefore, the evolution operator de-
pends on 	, p, and q. We call a resonance primary when p /q
is an integer and secondary when it is not.

III. KICKED ROTOR DYNAMICS WITH DECOHERENCE

In order to generate the dynamics of the system we con-
sider that the decoherence is introduced through a com-
pletely positive map, which is defined by a set of Kraus
operators �An� �18�. To preserve the trace of the quantum
operation these operators satisfy

�
n=1

N

AnAn
† = I . �3�

Let us take two values of the strength parameter 	: 	1 and
	2. The corresponding time-step operators U1	U�	1� and
U2	U�	2� are used to define

A1 	 
�U1, �4�

A2 	 

U2, �5�

as a particular set of Kraus operators, where �� �0,1� and

=1−� in order to satisfy Eq. �3�. Then the following map
for the time evolution of the density matrix is proposed

��n + 1� = �U1��n�U1
† + 
U2��n�U2

†, �6�

where n indicates the time t=nT. When � �or 
� vanishes,
Eq. �6� reduces to the well-known evolution of the usual
kicked rotor in quantum resonance. In other cases � �or 
�
may be thought of as the probability per time step to apply
the operator U1 �or U2� to the density matrix.

We shall study the previous map in the case when the
operators U1 and U2 commute ��U1 ,U2�=0�, as is the case in
the primary resonances; in what follows we use the principal
resonance for simplicity. In this case it is easy to prove that,
using mathematical induction, the solution of the map �Eq.
�6�� is

��n� = �
j=0

n �n

j
��n−j
 jU1

n−jU2
j ��0�U2

j†U1
�n−j�†, �7�

where � n
j �= n!

j!�n−j�! . It is important to point out that Eq. �7� is
a generic solution of Eq. �6� for any couple of unitary opera-
tors that commute. This means that the solution of the map is
independent of the details of the model.

The probability for the angular-momentum value � at time
n is P�� ,n�	
l���n��l�. We shall calculate this probability for
the first principal resonance. The matrix elements of U1 and
U2 are expressed as 
l�U1�j�= i−�j−��Jj−��	1� and 
l�U2�j�
= i−�j−��Jj−��	2�. Then using the above equation �Eq. �7�� with
the initial condition ��0�= �0�
0�, the probability is

P��,n� = �
j=0

n �n

j
��n−j
 j
l�U�rnj��0�
0�U†�rnj��l� , �8�

where rnj = �n− j�	1+ j	2 and 
l�U�rnj��0�= i−lJl�rnj�. The mo-
ments of the angular momentum are


�m�n�� = �
�=−�

�=�

�mP��,n� . �9�

We want to study the time behavior of the variance �2

= 
�2�− 
��2. The first moment vanishes due to the symmetry
of the initial condition ��0�. Using the properties of the
Bessel functions, the following value for the variance is ob-
tained

�2�n� =
1

4
���	1 + 
	2�2n2 + �	1 − 	2�2�
n� . �10�

In the case when 	1=	2 the system reduces to the usual
kicked rotor in resonance and its variance has the well-
known ballistic behavior characteristic of this case �4�. When
	1�	2 the coherence of the system is lost, as it is shown
below, because the probabilistic map is effectively working.
Equation �10� leads us to some interesting results. It shows
that the ballistic behavior is maintained with this decoher-
ence; but additionally there appears the diffusive term �	1
−	2�2�
n. In particular if the parameters verify �	1+
	2
=0, the behavior of the variance is totally diffusive as in the
classical random walk. Then we can conclude that this deco-
herence always affects the behavior of the variance but, in
general, does not break its ballistic growth.

The degree of coherence of the system can be measured
by several means. We choose the following:

C�n� 	 Tr��2�n�� = �
l=0


l��2�n��l� . �11�

Substituting Eq. �7� in the above equation, and using the
properties of the Bessel function, the equation for the coher-
ence is obtained

C�n� = �
j=0

n

�
i=0

n �n

j
��n

i
��n−j
 j�n−i
iJ0

2��	ij� , �12�

where �	ij = �i− j��	, with �	=	1−	2. From Eq. �12� it is
easy to prove that C�0�=1 and C�n��1 for n�0 but in
general this equation will be difficult to reduce to a more
simple expression. However, we can get some additional in-
formation when �	 is very large. In this case J0

2��	ij� goes
to zero, except when i= j because J0�0�=1. Then in this limit
Eq. �12� reduces to

C�n� � �
j=0

n �n

j
�2

�2�n−j�
2j . �13�

Here we observe the interesting result that the coherence is
independent of the strength parameters of the system if �	 is
sufficiently large.

We made numerical studies of the long-time behavior for
Eq. �12� as a function of the parameter �. In Fig. 1 the
function C�n� is plotted for large �	 and different values of
�. This figure shows a power-law decay for the coherence
C�n�� 1


n
independently of the value of �. The same results

were obtained using Eq. �13�. Therefore, in Eq. �13� we may
choose a particular value of � to calculate its long-time de-
cay. Taking �=1 /2 and using the sums of the binomial co-
efficients, we obtain
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C�n� � �2n

n
��1

2
�2n

. �14�

For large n it is possible to use the Stirling formula to obtain
analytically the following expression for the coherence

C�n� �
1


�n
, �15�

confirming our numerical result.
We also studied the coherence for several smaller values

of �	. We obtained that, for each fixed value of �	, the
coherence always decays as the power law C�n��n−� with
��0 �see Fig. 2�. Additionally we observed that the expo-
nent � is always independent of � like in Fig. 1; therefore, �
only depends on �	. We observe that the exponent � grows
with �	 with its values in the interval �0.3,0.5�. We can
conclude that the qualitative behavior of Eqs. �12� and �13�
are the same for all values of �	.

Now we inquire the incidence of decoherence on the sec-
ondary resonances. In this case the commutativity between
the evolution operators U1 and U2 is lost, and the expressions
for the variance and the density matrix become very cumber-
some. Then we study the decoherence numerically using Eq.
�6� for several values of the parameters 	 and �.

In Fig. 3 the standard deviation � is presented, for fixed
values of 	1 and 	2 and for different values of �. It is seen
that � has power-law decay with an exponent c that depends
on �. This parametric dependence is very different from that
given by Eq. �10� in the primary resonances where c=1. The
values of c were adjusted for the last thousand values of n
and we found that they are near c=1. For other values of 	1,
	2, and � the exponent c varies between 0, 4, and 1.2. Con-

sidering all the cases studied we conclude that the exponent
c does not show a clear rule of dependence with the param-
eters.

The numerical study of the coherence C�n�, for the same
range of values of the parameters as for �, showed that its
time decay is better approximated by an exponential than by
a power law, i.e., C�n��exp�−�n� with ��0. Therefore, the
coherence of the system in the secondary resonances is lost
faster than in the primary ones.

FIG. 1. The coherence C�n� as a function of the dimensionless
time n in log-log scales for �	=1000. The coherence was calcu-
lated, from top to bottom, for �=0.1, �=0.2, �=0.3, and �=0.5.
The straight stretches with slopes of −0.5 show a power-law behav-
ior C�n�� 1


n
.

FIG. 2. The coherence C�n� as a function of the dimensionless
time n for �=0.1 in log-log scales. For large n the curve satisfy a
power law C�n��n−�. The parameters of the curves, from top to
bottom, are �1� �	=0.2 and �=0.36, �2� �	=0.3 and �=0.37, �3�
�	=1 and �=0.4, and �4� �	=10 and �=0.47.

FIG. 3. The standard deviation ��n� as a function of the dimen-
sionless time n. The parameters are 	1=0.1, 	2=0.2, and p /q
=1 /3 in all cases. Dashed line �=0.1 �c=1.2�, thick line �=0.2
�c=1.0�, and thin line �=0.5 �c=0.9�.
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IV. DISCUSSION AND CONCLUSION

Decoherence in quantum systems as QKR or QW has
been extensively studied. Analytical and numerical results
�18–21� on the effect of different kinds of noise have shown
that quantum properties are highly sensitive to random
events. In particular the linear increase in the standard devia-
tion ��t�� t can be eventually substituted by a diffusive be-
havior ��t�� t1/2 as in the classical random walk.

The linear increase in the standard deviation of the QKR
in resonance is usually accepted as a direct consequence of
the quantum coherence, in other words, a consequence of the
unitary evolution. This work shows explicitly that unitary
decoherence does not break the temporal linear increase in �.

The absence of diffusive behavior in presence of decoher-
ence has already been shown in our previous works �11–13�.
There we have studied the QKR subject to different types of
noise with a Lévy waiting-time distribution and we found
that the system has a subballistic wave-function spreading
and its standard deviation has a power-law tail. However, in
that opportunity the coherence had not been studied.

Here we have considered a special type of decoherence in
the QKR as a unitary map acting on the density matrix. We
obtain an analytical expression for the density matrix when
the Kraus operators commute. We prove that the decoherence
affects the variance but its ballistic growth persists in spite of
an additional linear term. Therefore, asymptotically the lin-
ear behavior of the standard deviation is not suppressed by
the noise. On the other hand the coherence C�n� has a power-

law decay for all values of the parameters. We want to un-
derline that the density matrix �Eq. �7��, solution of Eq. �6�,
only depends on the commutativity of the unitary operators
U1, U2, and it is independent of their detail. This allows
extending of the use of this expression for other quantum
models such as the QW. In previous works �11–13,22�, we
have established a parallelism between the QKR in reso-
nance with the discrete QW. Then the type of treatment pre-
sented in this paper could be applied to the QW.

When the Kraus operators do not commute we have no
usable analytical expressions, it is necessary to make numeri-
cal studies. We establish that �a� the standard deviation has
no simple dependence with the parameters of the system, �b�
the standard deviation has �in the long-time limit� a continu-
ous range of behaviors from diffusive to ballistic, and �c� the
coherence C�n� shows a exponential-law decay.

We can conclude that the effect of decoherence of the type
studied in this work does not necessarily transform our quan-
tum system into a dissipative system such as a Markov pro-
cess. In more general terms, the mere presence of noise does
not assure the passage from the quantum to the classical
world.
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