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Nonclassical properties of light propagating through the turbulent atmosphere are studied. We demonstrate
by numerical simulation that the probability distribution of the transmission coefficient, which characterizes the
effects of the atmosphere on the quantum state of light, can be reconstructed by homodyne detection. Non-
classical photonstatistics and, more generally, nonclassical Glauber-Sudarshan functions appear to be more
robust against turbulence for weak light fields rather than for bright ones.

DOI: 10.1103/PhysRevA.80.021802 PACS number�s�: 42.50.Nn, 03.65.Wj, 42.68.Ay, 92.60.Ta

Nonclassical properties of quantum light have been of
great interest from the viewpoint of fundamentals of quan-
tum physics and for a variety of applications, such as quan-
tum information processing and quantum metrology. Special
knowledge on the propagation of quantum light through the
turbulent atmosphere is required in the context of implemen-
tations of quantum cryptography for communication chan-
nels between earth-based stations �1� and between satellites
and Earth-based stations �2�. The theory is well established
for the propagation of classical light through the atmosphere,
see, e.g., �3�, including phenomena such as beam wander,
beam spreading, scintillations, degradation of spatial coher-
ence, and others. However, nonclassical properties, such as
sub-Poissonian statistics of photocounts �4�, quadrature
squeezing �5�, nonpositivity of the Glauber-Sudarshan P
function �6,7�, and entanglement �8� have been little studied
in the context of the propagation of light through the turbu-
lent atmosphere.

Due to the occurrence of random fluctuations of the re-
fractive index, the quantum state of light after transmission
through the atmosphere cannot be presented by a single-
mode density operator in terms of neither monochromatic
nor nonmonochromatic modes. The photocounting statistics
of a combination of scattered modes has been studied by a
random modulation of the intensity �9,10�. This model has
been further improved �11�. The technique of the photon
wave function allows one to consider special cases of single-
photon �12� and two-photon �13� states. Another approach,
which describes single-photon states, is presented in Ref.
�14�.

In the present contribution we deal with the effects of an
atmospheric transmission channel on any quantum state of
light. General expressions for the quantum state after trans-
mission are derived. Based on balanced homodyne detection,
one may reconstruct the statistical distribution of the trans-
mission coefficient through the atmosphere. By repeated re-
construction of the statistical distribution, one can signifi-
cantly reduce the atmospheric noise effects on the quantum
state of light.

For dealing with continuous-variable quantum states, we
are considering the experimental setup in Fig. 1. The light
from a source is transmitted through the atmosphere and col-
lected by a telescope �or some other device�. Subsequently, a
balanced homodyne detection setup is used to filter out the
desired nonmonochromatic mode from other modes and
background radiation by an appropriate local oscillator, for
details see �15–17�. The remote local oscillator can be syn-
chronized with the source field by, e.g., the technique of the
optical frequency comb �18�. In the limit of a strong local
oscillator, the difference of photocurrents in the detectors is
proportional to the field quadrature of the nonmonochromatic
output mode defined by the local-oscillator pulse. Knowl-
edge of the quadrature distributions enables one to get the
complete information about the quantum state of the consid-
ered output mode. For example, the method of optical homo-
dyne tomography enables one to reconstruct the Wigner
function, the photon-number distribution, moments of the ra-
diation field, and the density operator in an arbitrary repre-
sentation, for a review see �16�.

We assume that the propagation of quantum light through
the turbulent atmosphere is a linear attenuating process. The
corresponding losses are caused by light absorption and scat-
tering as well as by the mode-mismatch due to different
shapes of the output and local-oscillator pulses. The Glauber-
Sudarshan P function �19� of an attenuated nonmonochro-
matic output mode, PT���, is related to the P function of the
input mode, Pin���, as �cf., e.g., �20��
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FIG. 1. Homodyne detection of quantum light generated by the
source, S, and propagated through the turbulent atmosphere. BS is a
50:50 beam-splitter, D1 and D2 are detectors, LO is the local
oscillator.
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PT��� =
1

�T�2
Pin��

T
� , �1�

where T is the complex transmission coefficient, with �T�2
�1. An important difference between turbulent media and
other lossy systems is that the transmission coefficient T is a
random variable with fluctuating phase and magnitude. This
means that the P function of the output mode, Pout���, is
obtained through averaging PT��� with the probability distri-
bution of the transmission coefficient �PDTC�, P�T�, as

Pout��� = �
�T�2�1

d2TP�T�
1

�T�2
Pin��

T
� . �2�

The integration is performed over the circular area, �T�2�1.
This represents the quantum-state input-output relation for
light propagated through the turbulent atmosphere.

The explicit form of the PDTC should be obtained from a
theory, which considers turbulence properties of the atmo-
sphere as well as specific conditions of the experiment. Since
this is a complex problem, we may only consider a simple
model for the case of small fluctuations. The corresponding
PDTC can be obtained similar to the probability distribution
of the intensity modulation in Ref. �9�. For this purpose, we
consider a discrete set of turbulent eddies, each of them is
characterized by a random transmission coefficient Tk. The
total transmission coefficient is T=	kTk. The central limit
theorem implies that the PDTC is a two-dimensional distri-
bution, which is log-normal with respect to the magnitude t
= �T� and normal with respect to the phase �=arg T,

P�t,�� 

1

2�t����
�1 − s2

� e−�1/2�1−s2�����ln t + �̄�/���2+��/���2+2s�ln t+�̄�/����/���.

�3�

Here, �̄ and �� are the mean value and the variance, respec-
tively, of �=−ln t; �� is the variance of �; s is the correlation
coefficient between � and �. Without loss of generality we
suppose that the mean value of � is zero. This form of the

PDTC can be used only for ����̄ and ���2�. Contrary to
the approach based on the random modulation of the inten-
sity �9–11�, we restrict the t integration to the range 0� t
�1. Accordingly, the � integration is restricted to −���
��.

Of course, the given model �Eq. �3�� will not properly
describe the turbulence properties of the atmosphere under
general conditions. Due to the lack of a general model, it is
important to develop a method for the experimental determi-
nation of the PDTC. Let the input field be prepared in a
coherent state �	�. In this case the PDTC can be expressed in
terms of the characteristic function 
out��� of the P function
of the output state as

P�Tr,Ti� =
1

4 �
n,m=−�

+�


out� �

2	�
�m + in��ei��mTi−nTr�, �4�

where Tr and Ti are the real and imaginary parts of the trans-
mission coefficient, respectively. In an optical homodyning

experiment 
out��� can be estimated from a sample of N
photocounting difference events nj, cf., �7,16�,


out��� = e���2/2 1

N
�
j=1

N

exp�i
���nj

r
� . �5�

The amplitude and the phase of the local oscillator are fixed
to be r and � �

2 −arg ��, respectively.
To demonstrate the practical usefulness of the reconstruc-

tion method of the PDTC, we have performed the following
simulation. We start with model distribution �3�. For simplic-
ity, it is approximated here by a normal distribution in the
variables Tr and Ti. In practice, observed data shall be used
so that this assumption does not restrict the applicability of
our method. We derive the P function of the output field
from Eq. �2� and calculate the photocount-difference distri-
bution by using the corresponding integral transformation,
see Ref. �21�. Now we can simulate the measured data and
reconstruct by Eqs. �4� and �5� the PDTC. The result of this
procedure is shown in Fig. 2, which is in reasonable agree-
ment with the initially chosen PDTC even for a small sample
of data. In real experiments, this method yields insight into
the true statistics of the turbulent atmosphere.

Alternatively, the PDTC can also be characterized by its
statistical moments. Consider the matrix of normal-ordered
moments of the photon annihilation �creation� operator â
�â†� for the source field,

Mnm = Tr��̂â†nâm� � �
−�

+�

d2�P�����n�m, �6�

which completely characterizes the quantum state of a light
mode, where �̂ is the density operator. The moments can be
measured by balanced homodyne detection �16�. Utilizing
the input-output relation �Eq. �2��, one gets the correspond-
ing relation between the normal-ordered moments of the in-
put and output modes,
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FIG. 2. �Color online� The PDTC is shown for a normal-

distribution approximation of Eq. �3� with �̄=0.9, ��=0.2, ��

=0.2, s=0.01, and �a� Ti=0, �b� 0.1. The solid and the dashed lines
are the initially chosen and the reconstructed �from only 5�103

sampling events� PDTC, respectively.
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Mnm
out = �T�nTm�Mnm

in , �7�

where

�T�nTm� = �
�T�2�1

d2TP�T�T�nTm �8�

are the moments of the PDTC. From Eq. �7�, the moments of
the PDTC,

�T�nTm� =
Mnm

out

Mnm
in , �9�

are obtained by measuring the moments of the input and
output fields. For example, one can use the input mode in a
coherent state �	� such that Mnm

in =	�n	m. The obtained mo-
ments of the PDTC allow one to determine the nonclassical
properties of the output mode once the corresponding prop-
erties of the input mode are known.

It is known �3� that due to the atmospheric winds narrow
light beams are randomly deflected and wide beams scintil-
late within a certain time �atm. For data accumulation times
�data��atm we expect large fluctuations of the transmission
coefficient T. Otherwise, for �data��atm the transmission co-
efficient is not significantly fluctuating during the time �data.
However, for this scenario, P�T� is randomly changed be-
tween different series of measurements separated by time
intervals ���atm. The PDTC and its moments can thus be
permanently monitored by using the method proposed above,
which works with a small sample of data that can be re-
corded within short �data intervals. In this way one can sup-
press the influence of long-term atmospheric fluctuations on
the quantum state of the transmitted light.

Let us consider the transmission of sub-Poissonian light
�4� through the turbulent atmosphere. Using Eq. �7�, the
Mandel parameter �cf., e.g., �20�� of the output field, Qout,
can be related to the Mandel parameter of the input field, Qin,
as

Qout =
��2�
���

Qin +
��2�

���
M11

in , �10�

where �=T�T is the efficiency. The first term resembles the
behavior for standard attenuation. The second term is caused
by fluctuations of the efficiency � due to the atmospheric
turbulence. It is proportional to the mean photon number of
the input field, M11

in = �n̂�in. For states of the input field whose
mean photon number fulfills

�n̂�in � −
��2�

��2�
Qin, �11�

the photocounts of the output mode are always super-
Poissonian. Hence the nonclassical photon statistics of bright
quantum light is destroyed by fluctuations of the magnitude t
of the transmission coefficient, but it is not affected by phase
noise.

In other cases, the nonclassical properties of bright light
can also become sensitive to both phase and magnitude
noise. In the most general case a given quantum state is
nonclassical if its P function is not positive definite �6�. For
weak turbulence, the PDTC has a strong maximum at T

=To. Hence the input-output relation �Eq. �2�� reads in the
first-order Laplace approximation as

Pout��� 
 �
−�

+�

d2�
1

�To�2
Pin�� − 	

To
� 1

�	�2
P�� − �

	
� ,

�12�

where 	= �â�in is the displacement parameter of the input
field and the PDTC is taken in the Gaussian approximation
�22�. If the minimum eigenvalue of the covariance matrix of
the scaled PDTC in Eq. �12� obeys �min�2, Pout��� repre-
sents the Husimi-Kano Q function �20� of the displaced input
field combined with a Gaussian noise, which is always non-
negative. Based on the above approximations, we derive that
for any input state with

�	� � 2e�̄����
2 + ��

2 − ����
2 − ��

2�2 + 4s2��
2��

2�−1, �13�

the corresponding output state is classical. For simplicity we
have considered only real 	 and �̄=0, the generalization to
complex 	 and arbitrary �̄ is straightforward.

As an example we consider the P function of displaced
single-photon-added thermal states �SPATSs� �7�,

Pin��� =
1

�n̄th
3 ��1 + n̄th��� − 	�2 − n̄th�e−�� − 	�2/n̄th, �14�

where n̄th and 	 are the mean number of thermal photons and
the coherent displacement amplitude, respectively. We com-
pare the P functions of the displaced SPATS for two cases:
�i� the standard attenuation with a fixed transmission coeffi-
cient T in Eq. �1� and �ii� transmission through the turbulent
atmosphere as described by model �3�. The mean values of
the transmission coefficient are chosen to be equal in both
cases. The standard attenuation does not destroy negativities
of the P function. For small displacements, the situations in
the cases �i� and �ii� remain similar to each other. However,
with increasing displacements 	 the atmospheric turbulence
destroys the nonclassical effects even when they survive for
standard attenuation, see Fig. 3.
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FIG. 3. �Color online� P function of the displaced SPATS, for
Im���=0, n̄th=1.11, �a� 	=1, �b� 7, �c� 20. The dashed lines show the
standard attenuation for T=e−0.3
0.7408. The solid lines represent

model �3� for �̄=0.3, ��=0.1, ��=0.14, and s=0.01.
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In conclusion, we have studied the effects of atmospheric
turbulence on the quantum properties of light. It has been
shown that the probability distribution of the transmission
coefficient can be experimentally reconstructed by homo-
dyne measurements. Based on such a method, one may pre-
dict the general turbulence effects on any quantum state of
light. By repeated short-time monitoring of the PDTC, one
can suppress the disturbing effects of long-term fluctuations
on the quantum state of light. Balanced homodyne detection
also allows one to reduce the effects of background radiation,
which is useful for quantum communications under daylight

conditions. We have shown that the nonclassical effects of
bright light fields can be more fragile against turbulence than
for the case of weak fields. A nonclassical photon statistics is
destroyed by turbulence if the mean photon number exceeds
a critical value. General nonclassicality of the P function in
the output channel is sensitive to the mean coherent ampli-
tude of the input radiation.
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