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Quadratic solitons in degenerate quasi-phase-matched noncollinear geometry
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We investigate optical spatial solitons in a two-dimensional quasi-phase-matched geometry involving two
concurrent noncollinear quadratic processes. The model, formally equivalent to that ruling second-harmonic
generation in the presence of a one-dimensional transverse nonlinear grating, supports a class of simultons with
a large domain of stability. We also identify a regime where the general equations predict walking solitary

waves.
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Resonant interactions through dispersive wave mixing in
nonlinear media are general phenomena occurring in acous-
tics, plasma physics, optics, etc. [1,2]. Parametric optical in-
teractions in second-order media support a class of self-
localized waves which encompass the mutual phase locking
of various frequencies [3,4]. Such quadratic solitary waves or
simultons have been investigated not only for their funda-
mental relevance but also for potential applications to light
steering and signal processing in all-optical circuits, particu-
larly in the case of frequency-degenerate second-harmonic
(SH) generation (SHG) from a fundamental frequency (FF)
beam [5-7], including the occurrence of walking solitons
when walkoff is present [8—10]. Three-wave processes re-
quire energy and momentum conservation to yield efficient
frequency conversion and/or amplification; the introduction
of a periodic modulation via one-dimensional (1D) quasi-
phase-matching (QPM) has been proven effective in exploit-
ing the nonlinearity of noncentrosymmetric crystals in spite
of dispersion [11] even toward simulton formation [12].

When momentum conservation is satisfied in several di-
rections of propagation for the harmonic, degenerate quasi-
phase-matching (DQPM) is said to take place. DQPM can
occur in a variety of photonic lattices [13-15] as well as in
random-QPM structures [16—18]. Berger introduced two-
dimensional purely nonlinear lattices (NLs) [13], an exten-
sion of QPM to parametric interactions with extra in-plane
degrees of freedom [14].

Preliminary studies of spatial simultons via SHG in
2D-NL were recently carried out in a doubly resonant quasi-
phase-matched structure, namely, hexagonally poled lithium
niobate [19,20]; however, a theoretical model able to cor-
rectly predict solitary waves in a DQPM geometry is still far
to be accomplished. The simplest DQPM configuration in-
volves two noncollinear reciprocal lattice vectors G, and G_
of equal amplitude G, and at angle 2Q) (Fig. 1). When the FF
propagates with wave vector k, at a small angle 6 with re-
spect to the bisector between G, and G_, two SH wave vec-
tors k;, can satisfy momentum conservation with G.=k;
-2k, at the two angles = * G, sin({)/k,, with k,, respec-
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tively, having assumed <G, sin({})/k,, <.

In this Rapid Communication we study quadratic solitary
waves in a DQPM scheme, identifying their range of exis-
tence and addressing their stability. We consider continuous-
wave light beams propagating in the structure described
above, with a small detuning Ak,=k,,—2k,—G, cos({)) when
6=0. In the paraxial approximation, for an FF beam of waist
x, and diffraction length LR=kux3/ 2, it is straightforward to
derive the normalized equations ruling the evolution of FF
and SH waves:

iu, + % +2 cos[ y(x — 9z) Ju'w =0,

iwz+%—Aw+2005[y(x—ﬁz)]u2=0, (1)

with u and w as the FF and SH amplitudes, respectively,
v=Gx,sin(Q), O=2Lg/x,0 and A=A, —(y/2)? with
A,=2LzAk,. Clearly, the problem reduces to SHG in a
ID-NL along the transverse coordinate (x). Even though
transverse lattices have been addressed in linear and nonlin-
ear system, including second-order materials with a modu-
lated refractive index [21,22], a purely quadratic transverse
modulation was never investigated before.

Intuitively, SHG in a DQPM geometry can be described
as the interaction of the FF with two distinct SH components,
each of them combining momentum with one of the two
reciprocal vectors G, i.e., each undergoing a phase mis-
match A, ¥ U7y and walkoff *v/2. This applies to plane
waves in the no-depletion regime, as readily verified by sub-
stituting w(x,z)=w(z)iy("_’91)+w(z):i7("_’92) in the second of
Eq. (1), or when the angle 6 is large enough to decouple the
two phase-matching conditions versus wavelength. Close to
resonance for one of the two interactions, a regime of exci-
tation can be identified for which the quadratic term out of
resonance can be neglected or cast as an equivalent Kerr-like
(cubic) term due to cascading [23-25]. In this limit the sys-
tem supports standard walking simultons [3,9] and models
soliton steering, as addressed in Refs. [19,20]. Far from these
conditions, the simple superposition of two SH components
cannot be correctly adopted because it does not conserve the
energy of the interacting waves. Equation (1) possesses two
symmetries—phase invariance and translational invariance
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FIG. 1. Degenerate phase-matching configuration: in the draw-
ing SHG is phase matched with the reciprocal vector G_ and
slightly mismatched with G,.

in (x—UYz)—associated by Noether’s theorem to two con-
served quantities: the energy Q=J{|u|*+|w|*}dx and the
combination H'=H-6M of momentum M =ifIm{uu;
+wwi/2}dx and Hamiltonian H= [{|u,|>/2+|w,|*/8}dx
+AQ,,/2-2[cos[ y(x—Iz) [Re{u*w*}dx. At variance with
SHG processes with single phase matching, the Hamiltonian
and momentum are not independently conserved, as the
translational invariance is not decoupled in x and z. This
leads to invariant solutions of the form u=u,(x— 9z)e’#* and
w=w,(x—9z)e*F, with just one free parameter 3: solitary
waves are therefore expected to propagate along x—z, in
contrast with walking solitons.

These solutions reduce Eq. (1) to the variational problem
Op(H'+BQ)=0 for the eigenvalue B, with & the Fréchet
derivative [3,26]. For numerical integration, we can
reduce the number of independent parameters by applying
the transformations [3]: =8z, ¥=\Bx, y=98, =187,
a=A,/ B+2-7/4, and setting u,=Bite’™ and w,= Bive> ",
We obtain

N

XX

9
7—(1—7 i +2 cos(yx)aw =0,

XX

4

B}

—(a= )W +2 cos(3X)i* =0, (2)

where i and W can be taken real since all the involved
parameters are real. We focus on bright solitary waves,
their range of existence being determined by the conditions

I< \E and «> 9 for evanescent tails in x— = %; such con-
ditions define a cutoff B.,,=1/2 max{®>,(y/2)*+F—-A,} in
the nonlinear phase shift 3, as in the case of a single noncol-
linear interaction yielding walking solitons [9,27].

When 5=0,

— T +2 cos(¥X+ P =0,

SIE

xx

4

—aw+2 cos(¥x + @)ii> =0, (3)

with ¥ as a scaling factor for the soliton transverse size as
compared to the lattice period. System (2) can be cast as Eq.
(3) by using the previous transformations [3] and replacing 8
by (1-92/2); hence, Eq. (3) completely describes quadratic
solitons in these DQPM structures. Owing to the connection
between quadratic and nonlocal solitons [28], Eq. (3) can
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FIG. 2. Asymmetric solitary solution in the Kerr limit and
for large periods in normalized units (n.u.). In this simulation
¥=20, a=10, and ¢=7/4. The SH (thin line) follows the grating
periodicity, as visible by the gray pattern reproducing the modula-
tion cos(yX+¢) of the quadratic nonlinearity. The FF (thick line)
has a sech-type profile with a small correction due to periodicity, as
emphasized in the inset enlargement with the dashed line graphing
the (effective) nonlinear refractive index modulation cos(7%+ ¢)>.

also model a class of solitary waves in nonlocal media with
periodic boundary conditions. Let us consider the solitary
solution centered in X=0, accounting for its position rela-
tively to the NL by varying the parameter ¢ in [0, 7/2].
With reference to bright one-hump FF solutions which can
exist only for >0, some preliminary considerations can be
made in the Kerr limit > 1. Equation (3) reduces to the
periodic nonlinear Schrédinger equation (PNLSE) [3]

Uz 4
— — i+ — cos(¥+ )’ =0,
2 a

W= —cos(yX + @)ii, (4)

RN

where the nonlinearity is periodic with ¥ and SH changes
sign accordingly. The PNLSE [Eq. (4)] has been investigated
in contexts much wider than optics [29,30], but some theo-
retical results can be adapted to our case [31]. When ¥ is
small, the soliton is narrower than the period and stable so-
lutions can always be found centered at the maximum of the
nonlinear refractive index modulation cos(7x+ ¢)>. Solitary
waves centered in the minimum (¢=/2) can also be re-
trieved, but these are unstable as they tend to move toward
regions with a higher nonlinearity. In the limit > 1 the soli-
tons are wider than the period, the first of Egs. (4) can be
recast as the homogeneous NLSE for the first-order expan-
sion in 1/% of iz, with the average Kerr coefficient 2/« [31].
Stable solitary solutions can be derived from the NLSE at
any ¢ using Kerr mean nonlinear properties, the periodicity
only intervening as a second-order correction in 1/%. Con-
sistently with these results, in the limits ¥>1 and a>1
sech-type solutions are found for the FF, with the SH exhib-
iting the same zeroes of the periodicity. As previously
pointed out, even the FF undergoes a small correction due to
the grating. Figure 2 shows an example for =20 and
a=10. It is interesting to notice that the average x® nonlin-
earity is zero, nonetheless the FF experiences a Kerr equiva-
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FIG. 3. Even (two leftmost panels) and odd (two rightmost pan-
els) solitary solutions for ¢=0 and ¢=/2, respectively, for
y=1,3,5,9, and a=0.1 and a=10. Thick (thin) lines refer to the FF
(SH) wave and the gray pattern indicates the periodicity in qua-
dratic response.

lent response with a non-null mean value because the SH
modifies its sign with the nonlinear grating.

Away from large ¥ and large «, solitary waves exist for
both ¢=0 and ¢=7/2. In these cases, since the structure has
a symmetry with respect to the origin, it is convenient to
look for odd and even solutions. Two classes of solutions
adiabatically varying with « exist for every >0, with either
even or odd grating symmetries, as summarized in Fig. 3.
The SH shares its zeroes with the modulation. For y— 0,
even and odd classes collapse into the family of one-hump
nonwalking solitary waves in quadratic homogeneous media
and in the null solution, respectively. For large % solitary
solutions exist although the average x'® nonlinearity is zero.
When the parameter a> 1, both classes fall back in the limit
of Fig. 2. As « diminishes, the SH energy increases com-
pared to the FF and the number of SH zeroes decreases. For
small a the SH profile has one or two-humps for even or odd
parities, respectively, while the FF has no zeroes. Some gen-
eral features of simultons are preserved: SH energy and rela-
tive weight increase as the mismatch « reduces [Figs. 4(a)
and 4(b)].

Higher energies are required to obtain solitary waves for
larger v at given «, as the transverse grating makes the SH
diffract more than in homogeneous media.

The stability of these soliton solutions can be addressed
by letting a small perturbation evolve in Z and solving the
resulting linearized eigenvalue problem [26,27,32-35] by
adding iz (iws) to the left hand side of the first (second)
equation in system (3). These can be linearized by substitut-
ing =ug+ oue’” and W=wg+2we, with du and Sw small
with respect to the solitary solutions ug and wg, respectively.
Note that the constrain |w|<|wg| can be removed in the
nodes of wyg, as the latter function shares its zeroes with the
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FIG. 4. Simultons for ¢=0 [(a) and (b)] total energy and energy
ratio between FF and SH, respectively. (c) Stability range of even
solitary waves with ¢=0. The dashed line indicates the phase-
matching condition A,=0.

nonlinear coefficient; hence dw is a general perturbation not
necessarily zero with wg [32]. Separating real and imaginary
parts, we obtain the eigenvalue system for vg=(dug, wg)
and v;=(du;, dw)):

£+VR = )\SV] 1 0

, 8= ; (5)
E_VI = )\SVR O 2

? -1 % 2wgcos(yx+ @) 4ug cos(yxX + ¢)
ﬁi = ’
I
4ug cos(yx + o) ?—Za
(6)

with null boundary conditions at x— * for the functions
and their derivatives, being L. self-adjoint operators.

The kernel of the problem consists of independent solu-
tions equal in number to the symmetries of the original non-
linear problem (3); it possesses the only solution V§=O and
vi=(ug,wy), the latter being the kernel of the operator £_.
The operator £, has a void kernel as confirmed by numerical
analysis.

In relevant cases L£_ is defined positive in the space or-
thogonal to its kernel. The numerical analysis shows that this
happens for the class of even solutions previously illustrated
for ¢=0: when both ug and wg have no zeroes (small «), this
occurrence is stated by the oscillation theorem [26]. When
L_ has this property, the quantity N> is always real as it is
the eigenvalue of the generalized self-adjoined problem
L. Vg=—N>Mvp, with M=SL'S defined positive. As a
consequence, system (5) has either purely imaginary or
purely real eigenvalues A, the latter governing unstable solu-
tions. The stability threshold is defined by A=0 for eigenvec-
tor vp=0 and v;=(ug,ws) at some critical values a=a, and
¥=%,. The solvability condition for a slightly unstable solu-
tion (i.e., with small \) provides a threshold condition in-
volving the conserved quantities. Following Pelinovsky and
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co-workers [33] we expand the eigenvector in A, its zeroth
order being v{’=0 and V§0)=(MS,WS). For the first-order cor-
rection of Vg we find

(h _ X =
up’ =ug+ (2 - a)dug+ Zﬁxus— Y54,

1 X
Wg)= E(Ws'i'(z—a)(?aw_g'i' E(?XWS— :}7(9:)7W3) (7)
After substituting in the solvability condition
J {ugud + 2wewV}dx =0,

we get
34202 - a)d, - 795
4

f (2 + Wl = g% ~0.  ®

The latter considers the energy Q of Eq. (1) and can be easily
checked by direct expansion. Noticeably, relation (8) re-
quires dgQ=0, i.e., the Vakhitov-Kolokolov (VK) criterion
extensively applied to various classes of solitary waves
[26,32]. The stability domain obtained from Eq. (8) and nu-
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merically verified by direct integration of Eq. (5) is shown in
Fig. 4(c). Although shrinking with ¥, the stability region re-
mains remarkably large for any Y. For odd solutions and
¢=1/2, the operator L£_ is no longer defined positive and
only direct numerical integration of system (5) is available.
A positive eigenvalue \ exists for every 7y in a vast range of
a and the solutions are mostly unstable. The rate of instabil-
ity N decreases asymptotically, converging to a stable condi-
tion for growing ¥ and «. In conclusion, we presented a
general model and theoretical results on quadratic spatial
solitons in a degenerate phase-matched geometry, governed
by two reciprocal vectors G+ of equal modulus. By simple
considerations based on Lie symmetries we conclude that
two-color (FF+SH) solitary waves can rigorously occur only
with propagation along the bisector between G, and G_. The
numerical study of solitary solutions in these quadratic lat-
tices indicates the existence of simultons with a large stabil-
ity domain as analytically defined by the VK criterion.
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