
Localization in one-dimensional incommensurate lattices beyond the Aubry-André model

J. Biddle,1 B. Wang,1 D. J. Priour, Jr.,1,2 and S. Das Sarma1

1Department of Physics, Condensed Matter Theory Center, University of Maryland, College Park, Maryland 20742, USA
2Physics Department, University of Missouri, Kansas City, Missouri 64110, USA

�Received 29 June 2009; published 20 August 2009�

Localization properties of particles in one-dimensional incommensurate lattices without interaction are in-
vestigated with models beyond the tight-binding Aubry-André �AA� model. Based on a tight-binding t1-t2

model with finite next-nearest-neighbor hopping t2, we find the localization properties qualitatively different
from those of the AA model, signaled by the appearance of mobility edges. We then further go beyond the
tight-binding assumption and directly study the system based on the more fundamental single-particle
Schrödinger equation. With this approach, we also observe the presence of mobility edges and localization
properties dependent on incommensuration.
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The physics of quantum transport in random disordered
potentials has been a subject of substantial interest for
condensed-matter physicists for decades. The extended
Bloch waves in a periodic lattice could undergo a quantum
interference induced transition into localized states due to
random disorder by a mechanism commonly referred to as
Anderson localization �1�. Matter waves can also be local-
ized in deterministic potentials that exhibit some similarities
to random disorder �2–5�. Quasiperiodic potentials, such as
incommensurate lattices �the superposition of two or more
lattices with incommensurate periods�, are notable examples
and have been extensively studied with the Aubry-André
�AA� model �2�. Such potentials have been shown to exhibit
interesting quantum transport phenomena in themselves. In-
commensurate potentials, for example, are theorized to have
fractal spectra �6�. However, it remains challenging to study
these phenomena in solid-state experiments, as it is difficult
to systematically control the disorder in solid-state systems.
In contrast to the solid-state systems, ultracold atoms loaded
in optical lattices offer a remarkable controllability over the
system parameters, making it an attractive platform for the
study of the localization of matter waves. Recently, Anderson
localization of noninteracting Bose-Einstein condensates
�BECs� has been observed in a one-dimensional �1D� matter
waveguide with a random potential introduced with laser
speckles �7�. Similar experiments have also been done in
quasiperiodic optical lattices �8,9�.

Localization of noninteracting particles in one-dimen-
sional incommensurate lattices is often studied with the AA
model with nearest-neighbor �nn� hopping, where one of the
lattices is assumed to be relatively weak and can be treated
as a perturbation. Within the framework of the AA model,
there is a duality point, at which a sharp transition from all
eigenstates being extended to all being localized occurs.
However, in ultracold atom experiments, one can tune the
depth of each lattice in a controllable way and bring the
system out of the tight-binding regime. To explore the phys-
ics of localization for shallow lattices, it is of interest to go
beyond the AA model and the tight-binding assumption �10�.

In this work, we first study the tight-binding t1-t2 model,
which extends the AA model by including the next-nearest-
neighbor �nnn� hopping. The inclusion of the nnn hopping
destroys the self-duality possessed by the AA model and the

localization properties of the system become more complex
through the emergence of mobility edges. We then examine
the system directly with the single-particle Schrödinger
equation. We discretize the equation and solve it numerically
without any further assumption. Within this formalism, we
also find the existence of mobility edges, consistent with the
t1-t2 model results, and we find localization properties with
nontrivial dependence on incommensuration.

Consider diffuse noninteracting ultracold atoms in a one-
dimensional incommensurate lattice, where the atoms can
only move along the x axis. The lattice potential is given by

V�x� =
V0

2
cos�2kLx� +

V1

2
cos�2�kLx + �� , �1�

where V0 and V1 describe the depth of the primary and the
secondary lattices, respectively; kL is the wave vector of the
primary lattice along the x axis; � is an irrational number
characterizing the degree of incommensurability between
the periods of the two lattices; and � is an arbitrary phase �in
our calculations it is chosen to be zero for convenience, with-
out loss of generality�. When the depth of the primary lattice
is sufficiently large as compared with the recoil energy Er
���kL�2 /2m as well as the depth of the secondary lattice V1,
the physical properties of the system can be studied with the
well-known single-band tight-binding Aubry-André model

t�un−1 + un+1� + Vnun = Eun, �2�

in which only the coupling between nn’s is retained and the
incommensurate modulating potential Vn=V cos�2��n�. The
duality point is given by V / t=2. The nn hoping term t is
determined by the primary potential and can be approxi-
mated by the expression

t �
4

��
Er�V0

Er
	3/4

exp�− 2�V0

Er
	 . �3�

The lattice potential and its magnitude can be roughly esti-
mated by applying Gaussian approximation for the Wannier
states,

PHYSICAL REVIEW A 80, 021603�R� �2009�

RAPID COMMUNICATIONS

1050-2947/2009/80�2�/021603�4� ©2009 The American Physical Society021603-1

http://dx.doi.org/10.1103/PhysRevA.80.021603


V �
V1

2
exp�−

�2

�V0/Er
	 . �4�

We note that V depends on V1, �, and V0 /Er. As a naive
extension to the AA model, we ask what will happen if the
coupling between next-nearest neighbors is included. To an-
swer this question, we consider the model



d=1,2

td�un−d + un+d� + Vnun = Eun, �5�

where Vn=V cos�2�n�. We solve the equation by direct di-
agonalization. To quantify the localization of the wave func-
tion, we compute the inverse participation ratio �IPR� as fol-
lows:

IPR�i� =



n

�un
�i��4

�

n

�un
�i��2	2 , �6�

where the superscript i denotes the ith eigenstate �ordered
according to energy from low to high�. For spatially ex-
tended states, IPR approaches zero whereas it is finite for
localized states �11�.

Figure 1 shows the IPR values of all eigenstates as a
function of the effective strength V of the secondary lattice
based on the tight-binding t1-t2 model with �= ��5−1� /2 for
various values of t2 �t1 is chosen to be the unit of energy�.
The calculation for Fig. 1 is done for a system with 1000
sites in the primary lattice. For small values of t2 �e.g.,

t2=0.01�, the localization properties of the system have es-
sentially the same features as those determined by the AA
model. However, when t2=0.05 or higher, the AA duality is
clearly destroyed and localization transitions appear to be
energy dependent. For lower energies, the transition can ap-
pear for V�2t1 and, for higher energies, the transition can
appear for V�2t1.

In order to demonstrate the dependence of the localization
transition on t2, we show the distribution of IPR on the t2-V
plane for four different eigenfunctions with �= ��5−1� /2 in
Fig. 2. For the calculation, the size of the system is chosen to
be 40 000. At t2=0, the t1-t2 model reduces to the AA model,
and from Fig. 2 one can see the sharp transition when V is
increased across the duality point V=2. However, the local-
ization property of the system is greatly complicated when t2
is finite. Besides the appearance of mobility edges, our re-
sults also reveal that the dependence of the localization prop-
erty on t2 is not monotonic, e.g., at fixed V�2 when t2 is
increased the ground state could be tuned from extended to
localized, but further increasing of t2 could bring the ground
state into an extended state again.

We infer from the results presented in Figs. 1 and 2 that
�1� the AA duality is destroyed by having t2�0; �2� instead
of the V=2t1 dual point, the system has energy-dependent
mobility edges for t2�0; and �3� the precise localization
condition deviates up or down from the V=2t1 AA condition
depending on the energy of the eigenstate and the value of t2.
As illustrated by Figs. 1 and 2, the t1-t2 model itself could be
of interest. However, for the study of localization properties
in 1D incommensurate lattices, its validity must be dealt with
caution, especially when t2 is not sufficiently small as com-
pared with t1. The tight-binding nn and nnn hoping integrals
t1 and t2 can be estimated with the Wannier basis, which is
fully determined by the primary lattice. One can easily esti-
mate that, when V0=3Er, the ratio of t2 / t1 is on the order of
10%. To get a higher t2 / t1 ratio, one will need to tune the
lattice potential shallower and should expect the tight-
binding approximation to break down at some point. Alter-
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FIG. 1. �Color online� Inverse participation ratio of all eigen-
states for t1-t2 model with �= ��5−1� /2. The size of the system is
chosen to have 1000 sites. The four panels correspond to t2=0,
0.01, 0.05, and 0.1, respectively. �t1 is the unit for energy.� Darker
shading corresponds to more extended states while lighter shading
corresponds to more localized states.
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FIG. 2. �Color online� Inverse participation ratio on the t2-V
plane for �= ��5−1� /2 based on the t1-t2 model. The four panels
correspond to four eigenstates labeled by i, with ascending eigenen-
ergies. Darker shading corresponds to more extended states while
lighter shading corresponds to more localized states.
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natively, to study the interesting physics of localization in
this regime, we numerically solve the single-particle
Schrödinger equation without any tight-binding approxima-
tion

�−
�2

2m

d2

dx2 + V�x�	��x� = E��x� . �7�

To achieve this goal, we discretize the Schrodinger equation
in the position basis with a finite system size of length L
=Na, where a is the lattice constant of the primary lattice
associated with V0. The continuous Schrödinger equation is
now cast into the following form:

�−
�2

2m
	�n+1 − 2�n + �n−1

�2 + �V0 cos�2kLn��

+ V1 cos�2kL�n����n = E�n, �8�

where �=Na /M is the step interval for the discretization
with M denoting the total number of steps. Then we proceed
by diagonalizing the M 	M matrix of the discretized Hamil-
tonian and study the first N eigenstates with smallest energy
eigenvalues. These states would correspond to the ground
band for the case with no secondary lattice �i.e., V1=0�. In
our calculations for the following results, we have set N
=500, M =80 000, and 2kL=1.

IPR values �obtained with Eq. �6� by replacing un with �n�
of the first N eigenstates as a function of the secondary lattice
strength V1 are shown in Fig. 3 for a primary lattice strength
of V0=30Er. In Fig. 3�a� the irrational ratio � is set to be the
inverse golden mean ��5−1� /2 whereas, in Fig. 3�b�, �
=� /2. The bold-dashed line represents the AA duality point
calculated with Eqs. �3� and �4�. We can see that the local-
ization properties shown in Fig. 3 closely resemble the well-
known results from the AA model �see top panel in Fig. 1�.
We do note, however, that the IPR results of Fig. 3 indicate a
dependence on the specific value of � with �= ��5−1� /2,
providing a sharper AA duality than �=� /2.

In Fig. 4�a� we show the IPR values for the case of V0
=2Er and �= ��5−1� /2. In this case, the eigenstates no
longer appear to localize all at once, but in discrete steps

�represented by the solid lines in the figure�. This localization
behavior is similar to what we observed in the t1-t2 model
�see bottom panel in Fig. 1�. Also the transitions occur at
fairly large values for V1, where the secondary lattice can no
longer be treated as a perturbation. We have also studied the
cases where V0=2Er, �=� /2 �Fig. 4�b��, and �= ��5+1� /2
�not shown in the figure�. In these cases no localization was
observed in the eigenfunctions for any value of V1 investi-
gated �up to V1=V0�. This suggests that incommensurability
between the lattices is not a sufficient condition to observe
localization for shallow cases.

To examine the dependence of the localization transitions
on �, we set V0=V1 and calculate the IPR of the ground state
for various values of V0 and � �the values of � examined are
all proportional to ��5−1� /2�. These results are shown in
Fig. 5. We see fairly distinct regions of localized and ex-
tended states, with localization tending toward areas of larger
values for V0 and smaller magnitudes for �. The solid curve
in Fig. 5 represents the set of points �� ,V0� such that the AA
duality point �calculated from Eqs. �3� and �4�� is equal to

FIG. 3. �Color online� Inverse participation ratio obtained by
solving the Schrödinger equation and calculated AA duality point
�dashed line� at V0=30Er; �a� �= ��5−1� /2 and �b� �=� /2.

FIG. 4. �Color online� �a� Inverse participation ratio obtained by
solving the Schrödinger equation and calculated AA duality point
�dashed line� at V0=2Er; �a� �= ��5−1� /2, solid lines are the esti-
mated location of localization transitions, and �b� �=� /2.

FIG. 5. �Color online� Inverse participation ratios of the ground-
state wave function for the case V0=V1 and � equal to fractional
multiples of ��5−1� /2. The solid line represents an approximate
analytical boundary between localized and extended regions based
on the AA duality point.
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the lattice strength V0. These sets of points serve as a simple
heuristic estimation of the boundary between localized and
extended states based on the AA duality condition. Although
in principle we should not expect the AA duality point ob-
tained from Eqs. �3� and �4� to be applicable in the case of
shallow lattices, this simple analytical result is in good quali-
tative agreement with our numerical findings.

We now briefly discuss how some of these results may be
observed in cold-atom experiments. We consider a diffuse
BEC that is loaded into an incommensurate optical lattice,
confined by a harmonic trap Vtrap=
x2. We assume that the
diffuse gas is prepared in the ground state. At time T=0, the
harmonic trap is suddenly turned off and the BEC is allowed
to diffuse. Localization can be observed by monitoring the
IPR of the density wave function over time. In Fig. 6, we
present the calculated values for the IPR as a function of V1

for the wave function after a fixed period of time T0�� /Er

has passed since the trap was turned off for the cases with
V0=2Er, 
 /Er�10−7, �= ��5−1� /2, and �=� /2. In the fig-
ure, we see that the two cases are similarly delocalized for
small values of V1. But for larger values of V1, the IPR for
the �= ��5−1� /2 case begins to grow, showing an increasing
degree of localization, while in the �=� /2 case it remains
constant.

In conclusion, we have studied the localization proper-
ties of noninteracting particles in a one-dimensional incom-
mensurate optical lattice system based on a tight-binding
t1-t2 model with nearest-neighbor as well as next-nearest-
neighbor hopping. We reveal the emergence of mobility
edges when the next-nearest-neighbor hopping is finite. We
have also gone beyond the tight-binding approximation by
directly modeling the system with the fundamental single-
particle Schrödinger equation, which is expected to provide
more reliable theoretical description of the system especially
for the case with a shallow primary lattice potential. By di-
agonalizing the discretized Hamiltonian, we numerically
solve the Schrödinger equation. Our results clearly show the
existence of mobility edges. Our study also reveals that the
emergence of localization is sensitive to the magnitude of the
irrational ratio � of the incommensurate lattice potentials
when the system is well outside the tight-binding regime.
Our results also establish the fragile nature of the AA duality,
which gives way to mobility edges as soon as longer-range
hopping, even at the nnn level, is turned on. It will be inter-
esting to verify our predictions about the sensitive qualitative
dependence of 1D incommensurate localization on V0, V1,
Er, and � through experiments in cold atomic systems �7–9�.
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FIG. 6. �Color online� Inverse participation ratio of ground-state
wave function at time T0�� /Er after the trap potential Vtrap=
x2

has been turned off �
 /Er�10−7�.
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