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We have investigated the Goos-Hänchen �GH� shifts in frustrated total internal reflection �FTIR� studied
with wave-packet propagation. In the first-order approximation of the transmission coefficient, the GH shift is
exactly the expression given by a stationary phase method, thus saturating an asymptotic constant in two
different ways depending on the angle of incidence. Taking the second-order approximation into account, the
GH shift does not saturate with increasing gap width when the small beam size is used. The GH shift increases
by decreasing the beamwidth at the small incidence angles, while for the large incidence angles it reveals a
strong decrease by decreasing the beamwidth. These phenomena offer the better understanding of the GH shift
and tunneling delay time in FTIR.
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It is well known that a light beam totally reflected from an
interface between two dielectric media undergoes lateral
shift from the position predicted by geometrical optics �1�.
This phenomenon was referred to as Goos-Hänchen �GH�
effect �2� and was theoretically explained by Artmann’s sta-
tionary phase method �3� and Renard’s energy flux method
�4�. Because of the potentials applications in integrated op-
tics �2�, optical waveguide switch �5�, and optical sensors
�6,7�, the GH shifts including other three nonspecular effects
such as angular deflection, focal shift, and waist-width modi-
fication have been extensively investigated in partial reflec-
tion �8–13�, attenuated total reflection �14,15�, and frustrated
total internal reflection �FTIR� �16–20�.

From a somewhat different perspective, the optical tun-
neling phenomenon in FTIR has attracted much attention in
the last two decades �21–25� because of the analogy between
FITR and quantum tunneling. Theoretical �21,23� and ex-
perimental �22,24� investigations have demonstrated that the
GH shifts in FTIR play an important role in the superluminal
tunneling time and the well-known “Hartman effect” �26�,
which describes that the group delay for quantum particles
tunneling though a potential barrier saturates to a constant
for an opaque barrier. Recently, Martinez and Polatdemir
�27� studied the effect of width of the beam on the GH shift
�which is proportional to tunneling time� to offer the comple-
mentary insights into the origin of Hartman effect in FTIR.
In addition, Haibel et al. �19� once carried out a comprehen-
sive study of the GH shift in FTIR as a function of the
polarization, beamwidth, and incidence angle in the micro-
wave experiment, which challenges its theoretical descrip-
tions. In fact, the expressions of the GH shifts given by sta-
tionary phase method and energy flux method are
independent of the beamwidth. Thus, an exact theory for GH
shift is still not available �28�.

The main purpose of this Brief Report is to investigate
that the GH shifts in FTIR by wave-packet propagation. It is

shown that the GH shift in the first-order approximation of
the transmission coefficient is exactly the expression of the
GH shift given by stationary phase method. The GH shift in
this case approaches the saturation value in two different
ways depending on the incidence angle. Considering the
second-order approximation, the GH shift does not saturate
with increasing gap width when the beam size is very small.
The GH shift will become strongly dependent on the beam-
width.

For simplicity, we consider TE polarized beam incident
into the double-prism structure with the angular frequency �
and incidence angle �0, as shown in Fig. 1, where a is the
width of air gap. The permittivity, permeability, and refrac-
tive index of the prism are denoted by �, �, and n, respec-
tively. For a well-collimated beam, the electric field of the
incident beam can be expressed by

�in�x� =
1

�2�
�

−�

�

A�ky�exp�i�kxx + kyy��dky , �1�

where kx=nk cos �, ky =nk sin �, k=� /c, n=���, c is the
speed of light in vacuum, � is the incident angle of the plane-
wave component under consideration, and time dependence
exp�−i�t� is implied and suppressed. For a Gaussian-shaped
incident beam whose peak is assumed to be located at x=0,

�i�x = 0,y� = exp�−
y2

2wy
2�exp�iky0y� , �2�

its angular spectral distribution is also a Gaussian function,
A�ky�=wy exp�−�wy

2 /2��ky −ky0�2�, around its central ky0
=k sin �0, wy =w0 /cos �0, w0 is the width of the beam at
waist. According to Maxwell equations and boundary condi-
tions, the field of the transmitted beam is found to be

�t�x� =
1

�2�
�

−�

�

TA�ky�exp	i�kx�x − a� + kyy�
dky , �3�

with the transmitted coefficient T=exp�i	� / f is given by*xchen@shu.edu.cn
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f exp�i	� = cosh 
a +
i

2
� kx



−




kx
�sinh 
a , �4�

where 
= �ky
2−k2�1/2.

First, we look at the GH shift in the first-order approxi-
mation of the transmission coefficient. Expanding the expo-
nent in Taylor series at ky0 and retaining up to the first-order
term, then we will obtain

T�ky� = exp�ln T�ky�� � T0 exp� 1

T0

dT

dky0
�ky − ky0�
 , �5�

where T0=T�ky0� and d /dky0 denotes the derivative with re-
spect to ky evaluated at ky =ky0. Introduce two real param-
eters Lt� and Lt� defined as

L = Lt� + iLt� =
i

T0

dT

dky0
, �6�

then, in terms of the phase and magnitude of T, we will have

Lt� = −
d	

dky0
and Lt� =

d

dky0
ln�T�ky�� .

Substituting Eq. �5� into Eq. �3� and employing the paraxial
approximation condition,

kx � kx0 − �ky − ky0�tan �0 −
�ky − ky0�2

2k cos2 �0
, �7�

we obtain the transmitted beam at x=a,

�t�a,y� � T0 exp�−
�y − Lt��

2

2wy
2 
exp�i�ky0 +

Lt�

wy
2�y
 , �8�

where Lt�=−d	 /dky0 is exactly the GH shift obtained by the
stationary phase method �3� and is thus given by

st
p =

sc

2f0
2�� 
0

kx0
−

kx0


0
� + � kx0


0
+


0

kx0
��1 +


0
2

kx0
2 � sinh 2
0a

2
0a

 ,

�9�

with sc=aky0 /
0. When the width of air gap is large enough,
that is, a�1 /
, the GH shift tends to a constant,

sasymp
p � lim


0a→�
st

p =
2ky0


0kx0
. �10�

With increasing the air gap, the GH shift reaches a
asymptotic constant, which is in agreement with the experi-
mental results �19,22� and is also closely related to the coun-
terintuitive Hartman effect of the tunneling delay time in the
limit of an opaque barrier �22,24�.

More interestingly, what we emphasize here is that the
GH shift approaches the saturation value in two different
ways depending on the angle of incidence. The GH shift �Eq.
�9�� can be expressed by the following form:

st
p =

g0

1 + g0
2��1 +


0
2

kx0
2 ��1 +

kx0
2


0
2 � ky0

kx0
2 − 
0

2 −
2aky0


0 sinh 2
0a

 ,

�11�

where g0= �kx0
2 −
0

2�tanh 
0a /2kx0
0. Keeping the next term
to leading term for large a shows the approach to asymptotic
value by

st
p � sasymp

p + 8a� ky0

kx0
�� kx0

2 �
0
2 − kx0

2 �
�
0

2 + kx0
2 �2 
e−2
0a. �12�

It is clearly evident from the above expression that for 
0
2

−kx0
2 �0 the GH shift increases monotonically to reach the

saturation value, while for 
0
2−kx0

2 
0 it reaches the satura-
tion value from above, that is, there is a hump before it
attains saturation. Therefore, when the necessary condition
for incident angle,

�0 
 �p � sin−1�1 + n2

2n2 , �13�

is satisfied, the GH shift can approach the saturation limit
with negative slope and can be larger than the saturation
value for the intermediate values of the air gap. The position
of the maximum of the hump �a0� is given by

a0 =
1

2
0


0
4 + 3kx0

2 
0
2

�kx0
2 + 
0

2�2 . �14�

Figure 2 shows that for the large a the GH shift st
p is inde-

pendent of the width a of the air gap hence it saturates a
asymptotic constant, where �=32.8 mm and n=1.605 �cor-
responding to critical angle �c=38.5° for total reflection and
�p=56.4°� �19�. Furthermore, the GH shift approaches the
asymptotic limit from above for �0
�p and from below for
�0��p. This phenomenon does result from the interference
between the incident and reflected beams and is not due to
the interference time �27�. Of course, it can also been seen
from the relationship between the GH shift and group delay
time discussed in Ref. �29� that the group delay time in FTIR
also saturates to a constant from above for �0
�p �30� in the

FIG. 1. Schematic diagram of the GH shift st in FTIR, where the
width of air gap is a.
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same way as that in the quantum tunneling for E�V0 /2
�31,32� since the self-interference delay time that comes
from the overlap of incident and reflected waves in front of
barrier is of great importance �33�.

Next, in what follows we will show the influence of the
beam waist width on the GH shift. To this end, we consider
the exponent of the transmission coefficient is approximated
to the second-order term,

T�ky� � T0 exp� 1

T0

dT

dky0
�ky − ky0�

+
1

2

d

dky0
� 1

T

dT

dky
��ky − ky0�2
 . �15�

Introducing two new real parameters Ft� and Ft� defined as

Ft = Ft� + iFt� = − i
d

dky0
� 1

T

dT

dky
� , �16�

then, with the phase and magnitude of T�ky�, we have

Ft� =
d2	

dky0
2

and

Ft� = −
d2

dky0
2 ln�T� .

Substituting expression �15� into Eq. �3� using paraxial con-
dition �7� and neglecting some unimportant factors, we fi-
nally obtain the following field of the transmitted beam at
x=a,

�t�a,y� � T0 exp�−
1

2wtf
2 �y − Lt� +

�tFt�

wty
�2


�exp�i�ky0 +
�t

wty
�y
 , �17�

where �t=Lt� /wty, wtf = �wty
2 − iFt��

1/2, and wty
2 =wy

2+Ft� corre-
spond to the angular deflection, focal shift, and waist-width
modification, respectively �13�. The GH shift in this case can
be expressed by

st = Lt� −
�tFt�

wty
. �18�

Obviously, the second term on the right-handed side of Eq.
�18� is a second-order correction, which leads to the depen-
dence of the GH shift on the beamwidth. In addition, it also
results in its dependence on the width of air gap in the
opaque barrier limit.

Figure 3 demonstrates that the GH shift in the second-
order approximation depends on the beamwidth, where �a�
�0=45°, �b� �0=75°, and other parameters are the same as in
Fig. 2. Compared with Fig. 2 discussed above, the GH shift
becomes dependent on the width a in the limit of an opaque
barrier due to the second correction. When the beamwidth is
large, that is, the divergence angle becomes small, the cor-
rection to GH shift can be neglected, thus for a well-
collimated beam the GH shift is in agreement with that given
by the stationary phase method. More importantly, Fig. 3
shows that the GH shift increases by decreasing the beam-
width at �0=45°, while the GH shift for �0=75° shows a
strong decrease by decreasing the beamwidth. As shown in
Fig. 3�a�, the GH shift becomes dependent linearly on the
width of air gap because the Fourier components of the in-
cident beam above the critical angle are strongly depressed
so that the plane-wave components just below the critical
angle start to dominate. That is to say, when the incidence
angle is larger than but close to the critical angle, the wave
vector filter is more pronounced for a larger beamwidth, the
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FIG. 2. �Color online� Dependence of the GH shifts st
p�in unit of

�� on the air gap width a in FTIR, where �=32.8 mm and n
=1.605.
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FIG. 3. �Color online� Depen-
dence of GH shift st �in unit of ��
on width of air gap, where �a� �0

=45°, �b� �0=75°, and other pa-
rameters are the same as in Fig. 2.
The solid corresponds to GH shift
in the first-order approximation,
the dashed and dotted curves cor-
respond to the GH shifts in the
second-order approximation.
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transmission is essentially not tunneling at all, thus the GH
shift increases with increasing the width a, as one expects
classically. This also implies the violation of Hartman effect
for the quantum tunneling in time domain �34�.

Finally, we have a brief look at the microwave experiment
on GH shifts �19�. The experimental results show that the
beamwidth is an important parameter for the GH shift in
FTIR. Martinez et al. �27� once explained the influence of
beamwidth on GH shift by the factor � due to the curvature
effect. However, they cannot explain further that the GH
shifts do not saturate to constant when the beamwidth is very
small. To explain further the results of Figs. 4 and 5 in Ref.
�19�, we plot Fig. 3 to demonstrate that the GH shift in-
creases by deceasing beam dimension corresponding to the
beam waist width, while it has the strong decreases in GH
shift when the incidence angle is far away from the critical
angle. As a matter of fact, the modified GH shift given by
Martinez et al. is quite different from the modified GH shift
discussed here. Obviously, the former modification is related
to the radius of curvature of the wave fronts comprising the
incident beam. Otherwise, the latter one does result from
second-order correction of transmission coefficient during
the wave-packet propagation. It is worthwhile to point out
that the beam waist of the incident beam indicated by Eq. �2�
is assumed to be at the interface of x=0 so that the curvature
effect of the wave fronts can be neglected. In a word, the
formula of GH shift for an actual incident beam, whose beam
waist is not located at the interface x=0 as measured in the
microwave experiment �19�, can be further modified by the

curvature effect and second-order correction presented here
simultaneously, especially when the beamwidth is small.

To summary, we have investigated the GH shifts in FTIR
by wave-packet propagation. It is found that the GH shift in
the first-order approximation of the transmission coefficient,
which is exactly the expression of the GH shift obtained by
stationary phase method, approaches the saturation value in
two different ways depending on the angle of incidence. The
explicit expression of the GH shift in the second-order ap-
proximation shows the strong dependence on the beamwidth.
It is further shown that the GH shift with the second-order
correction increases by decreasing the beamwidth at the
small incident angles, while for the large incident angles the
GH shift reveals a decrease by decreasing the beamwidth. In
this case, the GH shift does not trend to a constant with
increasing the air gap. All these phenomena can be appli-
cable to give better understanding of the GH shift and tun-
neling delay time in FTIR.
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