
Derivation of the density matrix of a single photon produced in parametric down-conversion

Piotr Kolenderski1,* and Wojciech Wasilewski2,3

1Institute of Physics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Toruń, Poland
2Institute of Experimental Physics, Warsaw University, Hoża 69, 00-681 Warsaw, Poland

3Danish Research Foundation Center for Quantum Optics (QUANTOP), Niels Bohr Institute, Blegdamsvej 17,
DK-2100 Copenhagen, Denmark

�Received 12 May 2009; published 27 July 2009�

We discuss an effective numerical method of density matrix determination of fiber coupled single photon
generated in process of spontaneous parametric down conversion in type I noncollinear configuration. The
presented theory has been successfully applied in case of source utilized to demonstrate the experimental
characterization of spectral state of single photon, what was reported in Wasilewski, Kolenderski, and
Frankowski �Phys. Rev. Lett. 99, 123601 �2007��.
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I. INTRODUCTION

The source of single photons is a prerequisite for imple-
mentation of linear optical quantum information processing
schemes �1–4�, quantum teleportation �5�, and quantum
cryptography protocols �6�. Although deterministic single
photon sources have been recently developed �7–10�, most of
the fundamental experiments still utilize the process of spon-
taneous parametric down conversion �SPDC�. In these phe-
nomena pairs of daughter photons are produced in a pumped
nonlinear crystal and are typically coupled into single mode
fibers �SMFs�. SPDC provides unique ease of shaping spec-
tral and spatial properties of generated nonclassical light. De-
tection of one photon, conventionally called signal, heralds
the presence of the other, called idler �11�. Its statistical prop-
erties are satisfactory for postselection type experiments as
long as the pump power is low enough to make multiple pair
generation events negligible �12�. However, the idler photon
is typically prepared in a mixed state �13� with respect to the
temporal degree of freedom. Only by careful spectral filter-
ing or precise adjustment of collecting setup one can produce
pure wave packets �14–17�. Furthermore, coupling into
SMFs decreases significantly the total number of useful her-
alded photons. In a typical experimental scenario coupling
only one photon out of the pair is significantly more probable
than coupling both photons. This comes at an expense of
loosing sub-Poissonian statistics of the counts but is benefi-
cial for a certain test experiments �18� or measuring vital
characteristics of the source.

We report here an effective numerical method of determi-
nation of the state of single photon generated in process of
type I SPDC in configuration in which idler photon is
coupled into SMF and the signal is disregarded. This scheme
has been previously used to demonstrate the method of char-
acterization of a single photon state in Ref. �18�. The theo-
retical method, adapted form the results of Ref. �17�, is based
on an observation that optical fiber define a relatively narrow
range of directions that need to be included in the calcula-
tions. This justifies the paraxial approximation, which makes
a substantial portion of the problem tractable analytically. In

consequence we are able to derive the expression for the
spectral density matrix of idler photon �i��i ,�i�� propagating
in SMF. Finally we present numerical simulations of
�i��i ,�i�� for typical experimental settings. The developed
efficient method of calculating spectral density matrix
�i��i ,�i�� can provide a valuable insight in a future experi-
ments with single photons obtained from SPDC.

II. THEORETICAL MODEL

Below we will develop a set of effective approximations
for calculating the reduced density matrix �i��i ,�i�� in an
idler arm of typical fiber coupled single-pass parametric
down-conversion source. We start by writing down the full
biphoton wave function in the perturbative approximation.
We describe the coupling of idler photon into a SMF and we
trace over the degrees of freedom of the signal photon. This
way we obtain an involved, multidimensional integral for the
reduced density matrix �i��i ,�i��. At this stage we point out
that by applying a paraxial approximation and judicious re-
ordering of the integrals this expression can be largely
simplified.

Let us begin by describing the typical source depicted in
Fig. 1. It comprises the nonlinear crystal of length L, pumped
by a beam of ultrashort pulses centered around frequency
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FIG. 1. �Color online� The setup is comprised of ��2� nonlinear
crystal of length L, pumped by a Gaussian beam of wp comprised of
pulses described by a spectral envelope function Asp. The idler pho-
ton is collected to a single mode fiber SMF, provided it is emitted
into a spatial mode of characteristic width wf at the crystal.
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2�0. The elementary process taking place in nonlinear crys-
tal is a decay of a pump photon into signal and idler photons.
We chose to parameterize the interacting waves by their fre-
quencies �p, �s, �i and transverse components of their wave
vectors kp�, ks�, ki�. The energy conservation principle is
expressed in this parametrization by an equation �p=�s
+�i, while the momentum conservation requires that the
transverse components of wave vectors match kp�=ks�

+ki�. Note that for each of the waves once k� and � are
given kz is fixed. Therefore an ideal match of the longitudinal
wave vectors kpz, ksz, and kiz is in general impossible. We
choose a perfect matching for pump photon of frequency
�p=2�0 propagating along the z axis �kp�=0� and signal
and idler photons of equal frequencies �s=�i=�0 propagat-
ing symmetrically at the angle � with respect to z axis. The
propagation directions of both generated photons correspond
to a transverse wave vectors �ks0��= �ki0��=�0 /c sin � point-
ing in opposite directions. Thus a phase matching, which we
consider here, corresponds to fulfilling the following
criterion:

�kz�ks0�,�0;ki0�,�0� = kpz�ks0� + ki0�,2�0� − ksz�ks0�,�0�

− kiz�ki0�,�0� = 0. �1�

Let us write down an expression for the probability am-
plitude of generation of two photons of frequencies �s, �i
and transverse wave vectors ks�, ki� �17,19�,

��ks�,�s;ki�,�i� = N�
−L/2

L/2

dzAp�ks� + ki�,�s + �i�

�ei�kz�ks�,�s;ki�,�i�z, �2�

where N is normalization constant. The above formula ex-
presses a fact that the probability amplitude of generating
pair of photons characterized by ks� ,�s, and ki� ,�i is pro-
portional to the pump amplitude Ap�ks�+ki� ,�s+�i�. In
turn the integration sums the contributions form the slices of
the crystal perpendicular to z axis with exponential term rep-
resenting propagation phases. Indeed, �kz�ks� ,�s ;ki� ,�i�z
is the phase acquired by the pump while propagating to the
slice of interaction and by the photon pair while propagating
toward the end of the crystal.

Now we must take a certain spatial shape of the pump and
the fiber spatial mode, preferably leading to analytically in-
tegrable expressions. We assume there is no spatiotemporal
correlation in the pump pulse and its amplitude is a product
of spectral Asp��� and spatial up�k�� parts,

Ap��,k�� = Asp���up�k�� . �3�

We impose a spatial profile to be Gaussian, corresponding to
a beam of waist wp,

up�k�� =
wp

��
exp�−

wp
2

2
k�

2 	 .

However, we still provide freedom of choice of the pump
spectral amplitude Asp���.

Next we find the wave function with respect to the fiber
for an idler photon and with respect to the free space for
the signal photon. This can be done by projecting

	�ks� ,�s ;ki� ,�i� on the fiber mode profile. We approximate
the spatial mode coupled in SMF ui�ks�� by a Gaussian
function centered around the phase matching direction ki0�

corresponding to a beam of width wf �20�,

ui�ki�,�i� =
wf

��
exp�−

wf
2

2
�ki� − ki0��2	 . �4�

Without loss of generality we assume the collecting optics
and the fibers are in the xz plane. Therefore the transverse
wave vector of the idler photon as a function of its frequency
�i and the angle of observation � is given by ki0�

=−�i sin���x̂ /c. Here x̂ is a unit vector in the direction of x
axis. Thus the biphoton wave function of idler photon inside
SMF and signal propagating in free space �i�ks� ,�s ,�i� is a
partial overlap of the free space wave function
��ks� ,�s ;ki� ,�i� and the fiber mode profile ui�ks��,

�i�ks�,�s,�i� = NAsp��s + �i��
−L/2

L/2

dz� d2ki�ui
��ki�,�i�

�up�ks� + ki��ei�kz�ks�,�s;ki�,�i�z. �5�

In the next step let us write an expression for the density
matrix of the idler photon in the fiber �i��i ,�i��. It is ob-
tained by taking a trace of the photon pair density matrix
���ks� ,�s ;ki� ,�i���ks�� ,�s� ;ki�� ,�i�� over the degrees of
freedom of the signal photon �s and ks�,

�i��i,�i�� =� d�sdks��i
��ks�,�s,�i��i�ks�,�s,�i�� .

�6�

Hence a general structure of the expression for spectral den-
sity matrix �i��i ,�i�� after substitution of Eq. �5� into Eq. �6�
is given by

�i��i,�i�� 
� dzdz�d�sAsp��s + �i�Asp��s + �i��

�� dks�dki�dki�� up
�up�ui

�ui�

�exp�i�kz�z� − i�kzz� , �7�

where the functions up, ui, and �kz are taken for ks�, ki�, �s,
�i, and up�, ui� and �kz� refer to the respective quantities taken
at ks�, ki�� , �s, �i�. A classical approach to evaluate this
integrals would be first to integrate analytically over the
length of the crystal z and z� and then evaluate remaining
seven integrals numerically. However this would require tre-
mendous computational effort. Therefore we adopted another
approach in order to alleviate the numerical cost. First, we
will apply the paraxial approximation to the phase mismatch
exponent i�kz�z�− i�kzz. Then the integrals in second line of
Eq. �7� can be evaluated analytically. Finally we will end up
with the integrals over z, z�, and �s for numerically compu-
tation.

Let us first justify our approach. The paraxial approxima-
tion of the phase mismatch exponent i�kz�z�− i�kzz is accu-
rate as long as waists of the beam involved are much bigger
than a wavelength. Mathematically this is equivalent to ob-
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serving that in the integral Eq. �7� the range of ki� is in fact
restricted by the aperture of the collection optics described
by ui�ks�� to ki�
ki0��1 /wf, as seen in Eq. �4�. Then the
range of perpendicular component of the signal wave vector
ks� is also restricted because of the finite wave vector spread
of the pump. Direct calculation reveals the range of approxi-
mately �21�: ks�
ks0���1 /wf

2+1 /wp
2, where ks0�

=�s sin���x̂ /c. Those two facts enable us to approximate the
phase mismatch �kz�ks� ,�s ;ki� ,�i� around the center of
both ranges up to second order in ks� and ki�,

�kz�ks�,�s;ki�,�i� ª kpz�ks� + ki�,�s + �i� − ksz�ks�,�s�

− kiz�ki�,�i�

� �kz�ks0�,�s;ki0�,�i� + D1
T��s,�i��

+ �TD2��s,�i�� , �8�

where for sake of brevity we introduced �= �ks�−ks0� ,ki�
−ki0��T to denote the four component vector of deviations
form the directions of phase matching. Furthermore
�kz�ks0� ,�s ;ki0� ,�i� is spatially constant term while

D1��s,�i� = �ds��s,�i�
di��s,�i�

	 �9�

and

D2��s,�i� =
1

2
�dss��s,�i� , dsi��s,�i�

dsi��s,�i� , dii��s,�i�
	 , �10�

where we denote the blocks as

d���s,�i� = � ��kz

�k�x
,
��kz

�k�y
	 , �11�

and

d���s,�i� =�
�2�kz

�k�x � kx
,

�2�kz

�k�x � ky

�2�kz

�k�y � kx
,

�2�kz

�k�y � ky

 , �12�

In the above indices � ,=s , i refers to signal and idler pho-
tons. Note that for each pair of frequencies �s and �i, the
expansion coefficients is different, which is a signature of the
fact that we keep the exact dispersion relations. This is mo-
tivated by the observation that the spectrum of the single
photons can easily span 100 nm or more, which makes the
expansion of the kz component of wave vector as a function
of frequency inaccurate.

With Taylor expansion given by Eq. �8� at hand, we can
perform inner integrals in the expression for density matrix
Eq. �7�. Let us rewrite the integrand of Eq. �7� using a vector
of deviations �̃= �ks�−ks0� ,ki�−ki0� ,ki�� −ki0�� � to shorten
the notation,

up
�up�ui

�ui� exp�i�kz�z� − i�kzz� = exp�− �̃M2�̃ + M1�̃ + M0� ,

�13�

where M0, M1, and M2 depend on �s, �i, �i�, z, z� and are
given by

M2 =
wp

2

2 �
212 12 12

12 �1 +
wf

2

wp
2	12 O2

12 O2 �1 +
wf

2

wp
2	12
 +

−
1

2�iz�dss� − izdss − izdsi iz�dsi�

− izdis − izdii O2

iz�dis� O2 iz�dii�
 , �14�

M1 = �− ��0 + �0��wp
2 − izds + iz�ds�

− �0wp
2 − izdi

− �0�wp
2 + iz�di�

 , �15�

M0 = −
wp

2

2
��0

2 + �0�
2� − iz�kz�ks0�,�s;ki0�,�i�

+ iz��kz�ks0�,�s;ki0�� ,�i�� . �16�

We use 12 and O2 to denote two-dimensional identity and
zero matrices, furthermore �0=ks0�+ki0�, �0�=ks0�+ki0��
and all primed Taylor series coefficients components d�� and
d�� are taken for the primed idler frequency �i�.

Now the integral in Eq. �7� can be partially evaluated and
the density matrix �i��i ,�i�� is found to be

�i��i,�i�� = �N�2� d�sAsp
� ��s + �i�Asp��s + �i��

� �
−L/2

L/2

dz�
−L/2

L/2

dz�
exp M0

�det M2

�exp�−
1

4
M1

TM2
−1M1	 . �17�

III. NUMERICAL RESULTS

In order to proceed we fix the spectral shape of pump
pulse Asp���. We assume it to be a Gaussian of duration �p

Asp��� =
��p

�4 �
exp�−

�p
2

2
�� − 2�0�2	 . �18�

In typical experimental scenario photons are spectrally fil-
tered in order to ameliorate its characteristics or reduce a
noise. We can model spectral filtering effects multiplying the
density matrix by the amplitude transition functions �����,

�i��,��� → ����������i��,��� . �19�

We approximate amplitude transmission of spectral filter by
a Gaussian function defined in the following way:

���� = exp�− 2 ln 2
�� − �0�2

�2 	 . �20�

We have simulated here the spectral density matrix of a
photon generated in a typical experimental scenario, where
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the nonlinear crystal is pumped by a Gaussian pulses Eq.
�18�. Note that for real Gaussian pulses density matrix is real.
Figure 2 shows the spectral density matrices �i��i ,�i�� of
photons generated in L=1 mm long beta barium borate
�BBO� crystal cut for �c=30°, pumped using Gaussian
pulsed beam of wp=100 �m waist and duration �p=100 fs.
The collecting optics and the single mode fiber were set to
couple the Gaussian mode of waist equal wf =200 �m. The
spectral filters of �=20 nm were applied. Panel �a� shows
density matrix when the observation direction coincides with
the phase matching direction �=2.2°. In panel �b� the obser-
vation direction is set to �=3.2°.

Let us point out that in case of collection optics set far
from the direction of perfect phase matching, the spectral
density matrix �i��i ,�i�� often assumes negative off diagonal
values, see for example Fig. 2�b�. In such cases generated
photons acquire complicated temporal mode structure. This
effect is beyond the scope of a Gaussian approximation of
the phase matching function �22,23�.

IV. CONCLUSIONS

We have derived a simple method of predicting the spec-
tral density matrix �i��i ,�i�� of a photon generated in one
arm of pulsed SPDC. The model allows to reduce dramati-
cally the computational effort while retaining the accuracy of
results. Those results, by the virtue of their simplicity, may
become very useful when engineering photon sources to
meet a certain needs for the spectral characteristics.

The presented model has been successfully used to predict
the measurement outcome in Ref. �18�. Note that the model
Eq. �17� may be used to predict the spectral density matrix in
case of any type of spectral pumping.
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FIG. 2. �Color online� The spectral density matrix ��� ,��� of photons transmitted through 20 nm spectral filter. The plots were generated
for L=1 mm long BBO crystal cut for �c=30°, pumped using Gaussian beam of wp=100 �m waist. The pulse duration was set to �p

=100 fs. The collecting optics and the single mode fiber was set to couple the Gaussian mode of wf =100 �m. The observation angle was
set to �a� �=2.2° �direction of perfect phase matching� and �b� �=3.2°.
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