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We present an entanglement purification protocol for a mixture of a pure entangled state and a pure product
state, which are orthogonal to each other. The protocol is a combination of bisection method and one-way
hashing protocol. We give recursive formula for the rate of the protocol for different states, i.e., the number of
maximally entangled two-qubit pairs obtained with the protocol per a single copy of the initial state. We also

calculate numerically the rate for some states.
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Entanglement is a resource in quantum information.
Maximally entangled states are a basic ingredient of funda-
mental quantum information protocols such as, e.g., quantum
teleportation [1], dense coding [2], or Ekert’s quantum cryp-
tographic protocol [3]. In these protocols the maximally en-
tangled pair is shared by two parties and used to perform a
certain task. However, in the real world the parties share
noisy entangled pairs. Bennett et al. have shown that many
pairs in mixed entangled states can be distilled to a smaller
number of pairs in nearly maximally entangled states [4,5].
In particular, they presented purification protocols that can be
realized by means of local operations and classical commu-
nication. Let us suppose that the parties share n pairs of
qubits, each of which is in the state p. If in using a particular
protocol the parties can obtain m pairs of qubits, each of
which is in the maximal entangled state, from n pairs of
qubits, each of which is in state p, then the protocol has the
rate ** for the state p. Different protocols have different rates
and moreover one needs different protocols for different
states. The maximal rate for state p, i.e., the rate of the op-
timal protocol for state p, is called distillable entanglement.
Distillable entanglement of mixed states is usually difficult
to calculate, and it is only known for bound entangled states,
maximally correlated states, and some other specific mixed
states [6—11]. For bound entangled states it is equal to zero
[6] while for maximally correlated states it is equal to the
relative entropy of entanglement [11-14] and can be distilled
by the one-way hashing protocol [15,16]. However, for many
states only upper and lower bounds on distillable entangle-
ment are known. Lower bounds are usually given by the
rates of particular protocols. Upper bounds are given by en-
tanglement measures known to be greater or equal to distill-
able entanglement, e.g., the relative entropy of entanglement.

In this Brief Report we present an entanglement purifica-
tion protocol for a mixture of a pure entangled state and a
pure product state that are orthogonal to each other. The very
first protocol for these states was presented in [5]. Our pro-
tocol is a combination of Procrustean method of entangle-
ment concentration [17], bisection method, and one-way
hashing protocol [15,16].
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We assume that Alice and Bob share many copies of the
state

p=ply )|+ (1= p)|00)00], (1)

where

1
[y =—=(]10) +01)) 2)
V2

is the maximal entangled state. State p is a mixture of the
maximal entangled state and a product state. The product
state is orthogonal to the maximal entangled state. Let Alice
and Bob group these states in blocks of n copies, where n is
the power of two. It is convenient to write p®" in the follow-
ing way

p®n =pn|¢+><¢+|®n +pn—l(1 _p)[|¢+><w+|®(n—1)|00><00| +-- ]
+p" 20 = pY LIy Xy * 0 00)(00[ %2 4 -] -+
+ (1= p)"|00)00[*", 3)

@,

where in each square bracket stands for all permuta-
tions of the first term in the square bracket.

Let each party project her/his part of the state on a sub-
space spanned by vectors with the definite number of ones
and definite number of zeros, i.e., Alice and Bob perform
von Neumann measurements given by the sets of projectors

{PZ: ) |x><x|}, @)
[x]=n,|x|=a
and
{z= » |x><x|}, 5)
[x]=n,|x|=b

respectively, where |x| denotes the Hamming weight of the
string x of [x]=n qubits and a,b €{0,1,...,n}. If Alice ob-
tains PZ as a result of her measurement and Bob obtains PZ
as a result of his measurement, then all terms in the expan-
sion of p®" except the term with a+b |¢*)’s and n—a-b
|00>’s are annihilated, i.e., the post measurement state is
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Plna.b) =~ 0|00 0]
+ PPy, 6)
where
n a+b
plmab) = <a+b)< a )2_(a+b)' (7)

The probability of this event is
P(n,a,b) =p**(1 - p)"*"p(n,a,b). (8)

The factor p“(1-p)"=>(1,) is the probability that
Alice and Bob share the state |¢/*){y|®@+?)|00)(00|®" -4
or any permutation of it and ()27
— Tr[PZPZ| ¢+>< ¢+| ®(u+b)|00><00| ®n—a—bPZPZ].

If a+b=n, then Alice and Bob share the maximal en-
tangled state of the rank r(n,a), where

n
r(n,a) = ( ) , ©)
a

i.e., they share log, r(n,a) maximally entangled pairs of qu-
bits. If one of the equalities: a=0, a=n, b=0, or b=n holds,
then Alice and Bob share a separable state.

In the remaining cases Alice and Bob share a mixed en-
tangled state. In order to distill entanglement from it, they
can proceed in two ways. First, if Alice and Bob share a large
number of blocks of qubits in identical post measurement
states, then they can apply the one-way hashing protocol [15]
and distill entanglement at the rates

I.(A>B)=S(B)-S(AB), (10)
if Alice classically communicates to Bob or
1.(B>A)=S(A)-S(AB), (11)

if Bob classically communicates to Alice. S(A) and S(B) are
von Neumann entropies of Alice’s and Bob’s subsystems,
respectively, and S(AB) is von Neumann entropy of the
whole system. They are given by the following formulas:

n
S(A)=10g2(a) (12)

because the state of Alice’s subsystem is an equal mixture of
all sequences of length n with the Hamming weight equal to
a,

S(B) =log2(z> (13)

because the state of Bob’s subsystem is an equal mixture of
all sequences of length n with the Hamming weight equal to
b, and

S(AB) = 10g2<a i b) (14)

because the state of the whole system is an equal mixture of
(41») pure orthogonal states. Hence, the optimal rate of the
one-way hashing protocol is
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Second, Alice and Bob can divide the pairs of qubits into
two blocks of equal length (the first block consists of the first
n/2 pairs and the second block consists of the last /2 pairs)
and repeat the measurements on each block separately. If

Alice obtains PZ?@PZ{? as the result of her measurement

and Bob obtains PZ/,2 ® PZ{,Z as the result of his measurement,

then the post measurement state is
p(n/2,a’,b") ® p(n/2,a",b"), (16)

where a’+a"=a and b'+b"=b. In derivation we used the
identity

(P77 @ PP = (P17 @ PU7) S s (17)

The probability of this event is

p(n/2,a’,b")p(ni2,a",b")
p(n,a,b)

pla’,b";a",b"|n,a,b) = . (18)

Ifa’+b'=n/2 (a"+b"=n/2), then the first (second) block of
pairs is in the maximal entangled state of the rank r(n/2,a")
(r(n/2,a"). If a’+b' #n/2 (a"+b"#n/2), then Alice and
Bob can choose if they want to apply the one-way hashing
protocol or to divide the pairs in the first (second) block into
two blocks and repeat the measurement on each block sepa-
rately. For different choices Alice and Bob obtain different
rates. The rates achievable with the optimal choices are given
by the following recursive formula:

’ ’
a

max max
R(n,a,b) =max) I.(n,a,b), 2 2 pla',b';a—a’,b
a’=a1,11in hr:br,nin

-b'

n,a,b)[R(n/2,a’,b")

+R(n/2,a-a’,b-b")] (, (19)

where the summation limits are

' n
amin =max) 0,a— =1,
2
’ . n
g = MiN| @,
rm=max| 0,a+b-a' - -
min =Max) 0.a+b-a’=—.

’ . n
bmax=m1n{b,5 —a’}. (20)
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FIG. 1. Relation between coherent information (thin solid line),
relative entropy of entanglement (thick solid line), the rate of the
protocol of Bennett et al. (dashed line), and our protocol for n
=64 (dots) for different values of the parameter p.

If we use only the bisection method (without the one-way
hashing protocol), then we obtain the following expression
for the rate of such a protocol for state p:

R(p) =X p@[¥(2) - v(2)], (21)
=1

where n=2" and

Yo = 3 (;i)log2<x>. (22)

X252 k

In Fig. 1 we present the rates of the protocol based on the
bisection method and the one-way hashing protocol for dif-
ferent initial states p of Eq. (1) that depend on the parameter
p. The first measurement was performed on a block of 64
pairs of qubits. For comparison, we also present the rates of
the protocol from [5] and the one-way hashing protocol as
well as an upper bound for distillable entanglement given by
the relative entropy of entanglement. One can see that our
protocol performs better than the other two protocols.

In Table I we present the rates of the protocol for different
sizes of blocks of pairs of qubits on which the first measure-
ment was performed. For comparison, we present also the
rates of the protocol based only on the bisection method
(without the one-way hashing protocol). One can see that the
one-way hashing protocol causes an increase in the rate.

TABLE I. Results for p=§. n is the size of the block of pairs of
qubits on which the first measurement is performed. R is the rate of
the protocol based on bisection method and one-way hashing pro-
tocol. R’ is the rate of the protocol based only on bisection method.

n R R’

2 0.111111 0.111111
0.158981 0.158981

8 0.173419 0.16638

16 0.175076 0.166574

32 0.175129 0.166575

64 0.175129 0.166575
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Let us also point out that our protocol applies to a mixture
of an arbitrary pure entangled state and a pure product state
orthogonal to it, i.e.,

p=plP)( + (1 = p)[00)(00

. (23)
where
|4 = a|10) + Bl01). (24)

One can see it by noting that the first measurement
projects n copies of the initial state on a state given in Eq. (6)
with probability

n a+b
P'(n,a,b) = p*(1 —p)"'“"’(d N b)( . )Ialz“lﬂlz”.

(25)

Because the states given in Eq. (23) can be obtained by
sending half of the state

[¥/)= a'[10) + B'|01)) (26)

through the amplitude damping channel N, p, given by Kraus
operators

Ey=0)0] + V1 - 11

)

E, = ?’|O><1

, (27)

we can obtain the lower bound on quantum capacity of the
amplitude damping channel assisted by two-way classical
communication Q,. In such a case, the best lower bound on
0, is given by the following expression

Rppax = max R(NAD(IW))- (28)
lp/

Our protocol requires collective measurements on large
blocks of pairs of qubits while the protocol presented in [5]
requires only measurements on two pairs of qubits. We will
show how one can improve the two-copy protocol. Let Alice
and Bob perform von Neumann measurements given by pro-
jectors

Py =100)00] + |11){11],

P, =01)01] +[10)(10

, (29)

on the state p®2. If both obtain one as the results of their
measurements, then the post measurement state is equivalent
to the maximal entangled state |/*). The probability of this
event is equal to %2 If both obtain zero as the results of their
measurements, then the post measurement state is equivalent
to

p"=p' [y + (1 -p")00)00], (30)

v pz—ﬂ’ﬁ. The probability of this event is equal to
& +(1-p)* Two such states can be used in another measure-
ment and hence there is a chance to obtain from them the
maximal entangled state. In particular, if p=2/3 then p’
=2/3 and the rate is equal to 2/15 for improved protocol
instead of 1/9 for the original protocol.

In conclusion, we presented the entanglement purification

where p'=
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protocol for a mixture of a pure entangled state and a pure
product state, orthogonal to each other. We also discussed
how one can obtain the lower bound on quantum capacity of
the amplitude damping channel assisted by two-way classical
communication.
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