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We propose a continuous time quantum search algorithm using a generalization of the Jaynes-Cummings
model. In this model the states of the atom are the elements among which the algorithm realizes the search,
exciting resonances between the initial and the searched states. This algorithm behaves like Grover’s algo-
rithm; the optimal search time is proportional to the square root of the size of the search set and the probability
to find the searched state oscillates periodically in time. In this frame, it is possible to reinterpret the usual
Jaynes-Cummings model as a trivial case of the quantum search algorithm.
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I. INTRODUCTION

One of the most simple and interesting quantum models
that studies the interaction between radiation and matter is
the Jaynes-Cummings model �JCM� �1�. The model consid-
ers the interaction between a single two-level atom with a
single mode of the electromagnetic field. The coupling be-
tween the atom and the field is characterized by a Rabi fre-
quency, and a loss of excitation in the atom appears as a gain
in excitation of the field oscillator. The collapse and the
eventual revival of the Rabi oscillation, described by the ana-
lytical solution of the JCM, shows a direct evidence of the
quantum nature of radiation. The use of JCM has permitted
to elucidate basic properties of quantum entanglement as
well as some aspects of the relationship between classical
and quantum physics. Since it was proposed, the pattern has
been of permanent interest in the quantum theory of interac-
tions. In the decade of the eighties it was discovered that the
model exhibited highly nonclassical behavior, and the possi-
bility of experimental realization appeared. The relative sim-
plicity of the JCM and its extensions has drawn much atten-
tion in the physics community and recently in the field of the
quantum computing �2,3�. In this work we use a generaliza-
tion of the JCM to an N state atom interacting with a single
field mode �4�.

In 1994, Shor �5� described a quantum algorithm to de-
compose a number in its prime factors more efficiently than
any classical algorithm. It was exponentially faster than the
best known classical counterpart. In 2001 the experimental
development of this algorithm has had a very interesting ad-
vance: Vandersypen et al. �6� using a seven-qubit molecule
manipulated with nuclear magnetic resonance techniques has
reported the factorization of the number 15 into its prime
factors 3 and 5. This algorithm illustrates a part of the theo-
retical challenge of quantum computation, i.e., to learn how
to work with quantum properties to obtain more efficient
algorithms. Tools such as quantum parallelism, unitary trans-
formations, amplification techniques, interference phenom-
ena, quantum measurements, resonances, etc., must be used
by the new computation science. Grover, in 1997, devised an
algorithm �7� which can locate a marked item from an un-
sorted list of N items, in a number of steps proportional to

�N, that is quadratically faster than any classical algorithm
�8�. Continuous time search algorithms have been investi-
gated by a number of researchers �9–11�. The essential con-
tent of these proposals is to built a Hamiltonian �or alterna-
tively a unitary operator� with the aim to change the initial
average state ���=�m��m� /�N into another state ��s� that
also belongs to the same set 	��m�
 of N vector in the base of
the Hilbert space �2�. This last state is recognized by an
unitary operator called oracle that is part of the global uni-
tary evolution exp�−iHt�, where the Hamiltonian is ex-
pressed as

H = ������ + ��s���s� . �1�

The probability to obtain the searched state is
���s�exp�−iHt�����2, and it equals 1 after a time ��N /2. In
this frame, the search algorithm is seen as a rotation in the
Bloch sphere from the initial average state to the searched
state. Recently an alternative search algorithm was devel-
oped �12–15� that uses a Hamiltonian to produce a resonance
between the initial and the searched states, having the same
efficiency than the Grover algorithm. It can be implemented
by using any Hamiltonian with a discrete energy spectrum,
and it was shown to be robust �12� when the energy of the
searched state has some uncertainty. The responses of this
algorithm to an external monochromatic field and to the de-
coherences introduced through measurement processes was
also analyzed in �13�. However we do not know of any ex-
perimental implementation, not even for a small search set.
In this paper we present a resonant quantum search algorithm
implemented with a generalization of the two-level JCM.

The paper is organized as follows. In Sec. II we consider
a generalization of the JCM, in Sec. III we develop the
search model. In Sec. IV we present numerical results for our
model. Finally in Sec. V we draw some conclusions.

II. GENERALIZED JAYNES-CUMMINGS MODEL

We shall consider the generalization of the JCM to an N
state atom interacting with a single field mode with fre-
quency � synthesized by the following Hamiltonian �4�:

H = ��a†a + �
k=1

N

�kSkk +
�

2
�0�

k=1

N

�a†Sjk + Skja� . �2�

The photon creation and annihilation operators a† and a act
on the photon number state �n� verifying*alejo@fing.edu.uy
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�a,a†� = 1, �3�
a†a�n� = n�n� , �4�

a†�n� = �n + 1�n + 1� , �5�

a�n� = �n�n − 1� . �6�

�k is the energy of atomic state ��k�, �0 is the atom-field
coupling constant and it is fixed by physical considerations
such as the cavity volume and the atomic dipole moment, Sjk
is a transition operator acting on atomic states defined by

Slk��m� = 	km��l� , �7�

where 	km is the Kronecker delta. In what follows the subin-
dex j shall indicate the initial state of the atom �� j�. This
state will be the starting state for the search algorithm and it
can be chosen as the ground state for experimental purposes.

Let us call ��s� the unknown searched state whose energy
�s is known. This knowledge is equivalent to “mark” the
searched state in the Grover algorithm �9–11�. Our task is to
find the eigenvector ��s� with transition energy �sj = �� j
−�s� /� from the given initial state �� j�. Then it is necessary
to tune the frequency of the photon field with the frequency
of the transition �� j�→ ��s�. This means that the frequency of
the cavity mode is selected as ���sj. The transition be-
tween the atomic states is governed by the interaction term
of the Hamiltonian �2�,

W =
�0

2 �
k=1

N

�a†Sjk + Skja� . �8�

The transition probability to pass from the initial atomic state
�� j� with m photons to any final state ��i� with n photons is
proportional to ��n�i�W�m� j��2. After some steps we get

��n�i�W�m� j��2 = ��0
2/4�	�m + 1�	nm+1 + m	nm−1	ij
 . �9�

To calculate this transition probability independently of the
initial and final numbers of photons the statistical weight of
the photons must be incorporated,

Pji =
1


2�
n

�
m

p�n�p�m���n�i�W�m� j��2, �10�

where p�n� is the normalized photon number distribution and

 is an unknown constant. Using Eq. �9� in Eq. �10� we
obtain the dependence of Pji with the average number of
photons and the parameter �0,

Pji = �1/
2���0
2/4�	�n� + 1 + 	ij�n�
 , �11�

where �n�=�nnp�n�. Taking into account the normalization
condition �i=1

N Pji=1, the dependence �0 with the number of
atom levels is obtained,

�0 = 2
/��n��N + 1� + N 
 2
/��n�N , �12�

The last step is valid for large N and �n�. Note that �0 de-
pends on the photon distribution function only through the
mean value of n.

III. RESONANCES

In the previous section we have determined the depen-
dence of the atom-field coupling constant �0 with the num-

ber of atomic states N and the mean number of photons �n�.
Now we want to study how this coupling constant deter-
mines the characteristic period of the dynamics and subse-
quently the waiting time for the search algorithm.

The dynamics of the system is given by the Schrödinger
equation for the wave function ���t��,

i�� ���t��/�t = H���t�� , �13�

where H is given by Eq. �2�. The global Hilbert space of the
system is built as the tensor product of the spaces for the
photons and the atom. Therefore atom-field wave function
���t�� is expressed as a linear combination of the basis
	��m��n�
,

���t�� = �
m

�
n

bmn exp�− i��m + �n�t/����m��n� , �14�

where 	�n�
 is the basis for the photons and 	��m�
 is the
eigenvector basis for the atomic Hamiltonian without elec-
tromagnetic field. The phase factor is introduced to simplify
the final differential equations. Substituting Eq. �14� into Eq.
�13� and projecting on the state ��l��k� the following set of
differential equations for the time depended amplitudes blk�t�
are obtained:

2i

�0

dblk

dt
= �k exp�− i��lj − �sj�t/��bjk−1

+ 	lj
�k + 1�

m=1

N

bmk+1 exp�− i��lm + �sj�t/�� . �15�

This set of equations shall be solved numerically in the next
section. Here we proceed to study their qualitative behavior.
These equations have two time scales involved, a fast scale
associated to the Bohr frequencies �lk, and a slow scale as-
sociated to the amplitudes blk�t�. If we are interested in the
slow scale all terms that have fast phase in the previous
equations can be ignored; the most important terms are the
ones with zero phase. In this approximation the previous set
of equations Eq. �15� becomes

�2i/�0��dbsk/dt� = �kbjk−1, �16�

�2i/�0��dbjk/dt� � �k + 1bsk+1. �17�

These equations represent two oscillators that are coupled so
that their population probabilities alternate in time. As we
notice the coupling is established between the initial and the
searched for states. To uncouple the previous equations we
combine them to obtain

d2bjk/dt2 � − �k + 1���0
2/4�bjk, �18�

d2bsk/dt2 � − k��0
2/4�bsk. �19�

Solving these equations, for a given number k of photons and
with the initial conditions bjk�0�=1 and bsk�0�=0, the fol-
lowing results for the amplitudes are obtained:

bjk�t� � cos���0/2��k + 1t� , �20�
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bsk+1�t� � − i sin���0/2��k + 1t� . �21�

Therefore the probabilities to obtain the initial and the
searched states, independently of the initial number of pho-
tons, should be calculated as Pj�t�=�kp�k��bjk�t��2, Ps�t�
=�kp�k��bsk�t��2, which satisfy the conditions Pj�0�=1,
Ps�0�=0. Averaging over the number of photons and using
Eq. �12� these probabilities are

Pj�t� � cos2��t� , �22�

Ps�t� � sin2��t� , �23�

where the new angular frequency is

� = 
/�N . �24�

Then we see that the probabilities of the initial state Pj�t� and
the searched state Ps�t� oscillate harmonically with a fre-
quency � and period T= 2�



�N, while the probability of the

other elements of the search set are neglected. If we let the
system evolve during a time

� � T/4 = ��/2
��N , �25�

and at this precise moment we make a measurement, we
have probability 1 to obtain the searched state. It is important
to indicate that this approach is valid only in the adiabatic
approximation �16�, this means that all the frequencies �nm
are much larger than �0. Therefore the efficiency of our
search algorithm is the same as that of the Grover algorithm
and additionally it is independent of the number of photons.

In the next section, we implement numerically Eq. �15�
and we show that this agrees with the above theoretical de-
velopments of the system in resonance.

IV. NUMERICAL RESULTS

The JCM has been used to understand the behavior of
circular Rydberg atoms, where the valence electron is
confined near the classical Bohr orbit �17�. This suggests
to choose for our purpose an atomic model with an attractive
potential whose quantum energy eigenvalues are �n=−�0 /
n2, where n is the principal quantum number and �0 is a
parameter. In this frame the Bohr transition frequency can be
expressed as function of the parameter �0 as �nm=�0�1 /n2

−1 /m2�.
We shall choose the numerical values of the parameters

taking into account some previous experimental data. In
Refs. �17,18�, the Rabi oscillation of circular Rydberg atoms
was observed. The frequency of the single electromagnetic
mode was tuned with the transition between adjacent circular
Rydberg states with principal quantum numbers 51 and 50,
where the fast scale associated to this Bohr frequency was
�50,51
100� GHz, that is very large compared with the
fundamental Rabi frequency �0
50� kHz. In the micro-
maser configuration of Ref. �19� the field frequency of 21
GHz produced the Rydberg transitions used in this experi-
ment, where the principal quantum number was about 63 and
the Rabi frequency 10 kHz. From the above we conclude that
the ratio between the Bohr transition energy and the vacuum
Rabi frequency 	��0 /�0 to be used in our search algorithm
should be taken as 
106.

We have integrated numerically Eq. �15� varying the pa-
rameter 	 in a range between 5
103 and 106. The initial
conditions are �i� a uniform distribution for the photons and
�ii� bjk�0� is chosen in such a way that Pj�0�=1. The calcu-
lations were performed using a standard fourth order Runge-
Kutta algorithm. The procedure consisted in choosing at ran-
dom the energy of the searched state and then to follow the
dynamics of the set and of the initial state. We verified for
several values of 	 that the most important coupling is be-
tween the initial and the searched states; the other couplings
may be totally neglected.

In Fig. 1 we show the probabilities for all levels at five
different fractions of the time �. We see that the dispersion
among the states neighboring the searched state is relatively
small for 	=40 000. For higher values of 	 the dispersion is
even smaller, this confirms that our theoretical approxima-
tion of two coupled modes is correct. Furthermore we con-
clude that the flux transfer process is essentially an inter-
change between the initial and the searched states and that
the optimal time to measure the searched state is �. At other
times we have less chance of perform a measurement of the
searched state.

Figure 2 shows the oscillation of the probability flux be-
tween the initial and the searched states as a function of time
for three values of 	. The time is normalized for the theoret-
ical characteristic time �. The evolution shows for the lower

FIG. 1. Probability distribution for all atomic levels at five dif-
ferent times. The search set 	l
, with l=1,2 , . . . ,N, has N=50 ele-
ments �levels�, 	=40000 and � is the optimal search time propor-
tional to �N. The initial state was taken to be j=10 and the searched
state s=32. Note that the distribution probability is essentially
shared between the initial and the searched states.
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values of 	 an almost periodic behavior, however for the
highest value 	=106, the behavior is completely harmonic.
In this last case there is clearly a characteristic time when the

probability of the searched state is maximum and very near 1
and the initial state probability is near 0. The optimal time
agrees with our theoretical prediction �. This periodic behav-
ior and the proportionality between � and �N are also found
in the Grover algorithm �2�.

V. CONCLUSIONS

In this work we show how a generalized JCM to an N
state atom interacting with a single field mode can be
thought of as a quantum search algorithm that behaves like
the Grover algorithm; in particular the optimal search time is
proportional to the square root of the size of the search set
and the probability to find the searched state oscillates peri-
odically in time.

In the past, the biggest difficulty to build a JCM has been
to obtain a single electromagnetic mode that interacts with
the atomic transition. This difficulty has been overcome in
the last decades thanks to the experimental advances in the
handling of Rydberg atoms and to the building of microcav-
ity for microwaves �17–22�. In the frame of this work we can
interpret these devices as experimental realizations of the
“analog” �9� Grover algorithm in the trivial case of the
search of a marked item in an unsorted list of 2 elements.
However this new way of looking at the problem is different
from the usual point of view and opens new possibilities for
the JCM. In summary, in this paper we reinterpret the JCM
as the first step to build a more generic search algorithm with
a large number of elements
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