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We propose and study an approach to realize quantum switch for single-photon transport in a coupled
superconducting transmission-line-resonator (TLR) array with one controllable hopping interaction. We find
that the single photon with arbitrary wave vector can transport in a controllable way in this system. We also
study how to realize controllable hopping interaction between two TLRs via a Cooper-pair box (CPB). When
the frequency of the CPB is largely detuned from those of the two TLRs, the variables of the CPB can be
adiabatically eliminated and thus a controllable interaction between two TLRs can be obtained.
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Coupled cavity arrays (CCAs) [1] have recently attracted
considerable attentions of both theorists and experimental-
ists. The CCAs have been proposed to implement quantum
simulators for many-body physics, such as discovering new
matter phases of photons [2—4] and providing a new platform
to study spin systems [5,6]. The CCAs are also suggested to
manipulate photons for optical quantum information process-
ing [7-9]. Moreover, photon transport in the CCAs has been
investigated [ 10—14]. There are several possible ways to con-
struct the CCAs, for example: (i) coupled defect cavities in
photonic crystals [15]; (ii) coupled toroidal microresonators
[16]; and (iii) coupled superconducting transmission-line
resonators (TLRs) [11,12].

In CCAs, there have been many proposals to realize quan-
tum switch [17,18], which is used to control single-photon
transport [11,19-21]. For example, the reflection and trans-
mission of photons in a coupled resonator waveguide can be
controlled by a tunable two-level quantum system [11,18],
acting as a controller.

Here, we study another approach to control the single-
photon transport in a CCA, which consists of a chain of
TLRs [22,23]. In our proposal, the controllable transport is
realized by a tunable coupling. As we know, how to control
coupling between two solid devices is a major challenge in
scalable quantum computing circuits [24-30]. To obtain a
tunable coupling, we propose that a Cooper-pair box (CPB)
acts as a coupler. When the frequency of the coupler is
largely detuned from those of the two resonators, the vari-
ables of the coupler can be adiabatically eliminated and thus
a controllable interaction can be induced. Compared with
previous approach [11], this approach has following advan-
tage: dynamical variables of the coupler are adiabatically
eliminated, therefore the coupler is a passive controlling el-
ement, which makes robust to prevent from the environment
of the coupler.

As shown in Fig. 1, one-dimensional CCA is a chain of N
cavities, each is only coupled to its nearest-neighbor ones,
Figs. 1(a) and 1(b) are the site lattice model and the sche-
matic of coupled TLR array, respectively. The TLRs are as-
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sumed to have the same frequency. We also assume that the
coupling strength between two nearest-neighbor TLRs is the
same, except one between the /th and (/+1)th TLRs. The
Hamiltonian of the system is

H=w ala,— 1> (ala,, +al, a,) - \ala,, +a,,a),

(1)

hereafter we take #=1. Here, we assume that all TLRs have
the same frequency w. a:: and a,, are the creation and anni-
hilation operators of the nth TLR; ¢ is the coupling strength
between the nth (n#1) and (n+1)th TLRs; N=(¢t'-1)/t is
introduced to denote the relation between ¢ and ¢', where ¢’ is
the coupling strength between the /th and ({+ 1)th TLRs. Ob-
viously, —1 <\ <0 corresponds to 0 <<¢' <t, while A =0 im-
plies ' =¢. Below we will first study how to control the
single-photon transport by changing coupling strength ¢’, and
then answer question how to realize controllable coupling #'.

In the case of ' =¢, the Hamiltonian in Eq. (1) is reduced
to the usual bosonic tight-binding model Hblb=w2najla,,
~13,(ala,, +a’,,a,) as shown in Ref. [31], which describes
an N-site lattice model with nearest-neighbor coupling. It is

w t @ t' w t 2
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FIG. 1. (Color online) Schematic configuration for controllable
transport of single photon: (a) one-dimensional site lattice model
for the coupled cavity array; (b) schematic of coupled supercon-
ducting transmission-line-resonator array.
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well known that, under the periodic boundary condition, the
bosonic tight-binding Hamiltonian can be diagonalized as
HbtbzﬁkﬂkaZak by using the Fourier transformation a;
=3, exp(ikndy)a,/ N, where d, is the site distance. Below,
dy is taken as unit. We choose the wave vectors k=2mm/N
within the first Brillouin zone, i.e., —N/2<<m=N/2. The
corresponding dispersion relation is (.= w—2f cos k, which
is an energy-band structure. For >0, the wave vectors k
==*/2 correspond to the energy-band center, while the
wave vectors k=0 and k= = 7 correspond to the bottom and
top of the energy band, respectively.

Let us now define a total excitation number operator N
=Enajlan. It is straightforward to show that N commutes with
the model Hamiltonian (1), i.e., [K’ ,H]=0, which implies
that the total excitation number N is a conserved observable.
We now restrict our discussion to the single excitation sub-
space since we only consider the single-photon transport. In
this case, a general state can be written as, [Q)=3,4,[1,),
where we have introduced the basis state |1,)=[0)® -
®|1),® -+ ®|0), which represents the state that the nth TLR
has one photon while other TLRs have no photon. A, is the
probability amplitude of the state |1,). Using the discrete
scattering method proposed in Ref. [11] and according to the
eigenequation H|Q)=Q|Q), we have

- t(An+1 +An—1) = (Q - w)Am n+ {l’l + 1}’ (23)
—t'Ap = tAL = (Q - 0)A, (2b)
—App—t'A=(Q - w)AL,. (2¢)

For the coherent transport of a single-photon with the energy
Q=w-21cos k, we can assume the following forms for the
probability amplitudes:

A, =y e (n=1), (3a)

A,=se* (n=1+1). (3b)

Here r and s are the reflection and transmission amplitudes,
respectively. Obviously, Egs. (3a) and (3b) are the solutions
of Eq. (2a). Substituting Egs. (3a) and (3b) into Egs. (2b) and
(2¢), we can obtain the transmission coefficient
4(N + 1)%sin” k
NN+2)2+4(N+ 1)%sin’ &k’

T(\ k) = 4)
and the reflection coefficient R(\,k)=|s|>=1-T(\,k). Equa-
tion (4) shows that the reflection and transmission coeffi-
cients R(\,k) and T(\,k) are function of the parameter A and
the wave vector k of the incident photon, and they are inde-
pendent of other variables, e.g., the site position parameter /,
the cavity frequency w, and the coupling constant .
Equation (4) shows two symmetry relations T(\,k)
=T(\,—k) and T(N\,w/2—k)=T(\,7/2+k). Therefore we
need only to analyze the transmission coefficient within the
region 0=k=/2. In this region, there are four special
cases: (1) T(N#0,0)=0, when the wave vector k=0, for \
#0, the input single photon is reflected completely; (2)
T(A=-1,k)=0, when A\=-1, the coupling between the /th
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FIG. 2. (Color online) The transmission coefficient T versus the
parameter \ for different wave vectors k=0.01, 7/8, 7/4, and m/2
is plotted.

and (I+1)th cavities is switched off, so for any value of the
wave vector k, the transmission coefficient is zero; (3) T(\
— o0, k)=0, when A — ©, namely, ¢’ >1, the transmission co-
efficient is zero for any k. Physically, when ¢’ > ¢, the Hamil-
tonian (1) is approximated to H(t' >1)~~t'(aja,,, +aj,,a)).
The input photon will stay in the I/th and (I+1)th cavities
once it arrives the I/th cavity; (4) T(A\=0,k)=1, A=0 implies
t'=t, the present model reduces to the usual bosonic tight-
binding model, so the photon with any wave vector can be
perfectly transported.

To observe the effect on the transmission coefficient 7" for
general wave vector k and parameter A, in Fig. 2, the trans-
mission coefficient 7 is plotted as a function of the parameter
N\ for wave vectors k=0.01, 7/8, m/4, and m/2. Figure 2
indicates that there are two regions, -1 =A=0 and 0=, in
which controllable transport of single photon can be
achieved. The transmission coefficient 7' can be tuned from 0
to 1 by changing the coupling strength ¢', namely, \. When
t' =0, the transmission coefficient 7=0. With the increase of
the coupling strength ¢’ —1, the transmission coefficient T
gradually approaches to 1. For ¢’ =¢, the transmission coef-
ficient T approaches to O with the increase of the coupling
t' —oo. In this region, the larger wave vector k corresponds
to the larger parameter range of \. In both regions, the con-
trollable transport of single-photon with arbitrary wave vec-
tor k can be realized. Therefore, our approach for single-
photon transport can cover complete bandwidth.

Let us now focus the problem on how to realize control-
lable coupling between two TLRs [18,27]. The system we
considered is shown in Fig. 3. Two TLRs are coupled to a
CPB through capacitors C; and C,, respectively. We assume
that the two TLRs are identical, that is, they have the same
length d and capacitance C, (inductance L) per unit length.
We consider only single-modes of the two TLRs in near
resonant with the CPB. The free Hamiltonian of the two
TLRs is

HTLR= (A)Cl}‘a['i' (I)ajar, (5)

where alT (af) and q; (a,) are the creation and annihilation
operators of the resonant modes with frequency w for the left
(right) TLR, respectively.
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FIG. 3. (Color online) Schematic for two TLRs (the left and the
right ones), which are coupled to a CPB through two capacitors C;
and C,, respectively. The CPB is biased by a magnetic flux ®,

The CPB is a superconducting loop interrupted by two
identical Josephson junctions with the capacitance C; and the
Josephson energy ESO). To obtain a tunable Josephson cou-
pling energy, an external magnetic flux ®, is applied through
the superconducting loop. The Hamiltonian of the CPB is

Hipg = Ecn2 — E;(®,)cos ¢, (6)

where n is the number operator of Cooper-pair charges on
the island connected to the CPB, and ¢ is the superconduct-
ing phase difference across the Josephson junction. The
charging energy E. and effective Josephson energy E,(®,)
of the CPB are E =2¢?/(C;+C,+2C;) and E,(®,)
:2E§0) cos(d, /D), respectively. Here, we assume that the
charging energy and the effective Josephson energy satisfy
the condition E;(®,)>E,. Under this condition, the spec-
trum of the lowest energy levels of the CPB can be described
approximately by a harmonic oscillator [29]. That is, we ex-
pand E (®,)cos ¢ around ¢=0 up to O(¢?), and then Eq. (6)
becomes

Hepp = wpb'b, 0, = 2ECE/(®,). (7)

The annihilation and creation operators b and b' in Eq. (7)
are defined in terms of @={E./(2E,(®,))(b+b") and n
=—i{E/(®,)/(8EC)(b-b").

We assume that the linear dimension of the CPB is much
smaller than wavelengths of the TLRs, and choose the posi-
tion of the CPB at the origin of the axis. Then the quantized
voltages at the left and right TLRs are

vj(0)=—i\/dico(aj—a;), j=lr. 8)

According to circuit theory, we know that the voltage at the
island is ®,¢/(27). Therefore, the Coulomb interaction in-
duced by the two capacitors C; and C, is

v G .\’
HI—E;(V,-(O)— 2774») : (9)

In fact, capacitors C; and C, induce a direct Coulomb inter-
action between the two TLRs with the strength «C,C,. How-
ever, this direct interaction is much smaller than the interac-
tion between the two TLRs and the CPB given by Eq. (9)
with strengths «Cy,C, and *Cs,C; under the condition
{Cs;, Cs,}>{C;,C.}, where Cy;=C¢d/2+C; and Cs,
=Cyd/2+C, are the sum capacitors connected to the left and
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right TLRs, respectively [32]. For instance, using current ex-
perimental parameters [33] Cyd/2~1.6 pF and C,=C,
=6 fF, we find that the interaction between the TLRs and the
CPB is larger than the direct interaction between two TLRs
by three orders of magnitude.

Using Egs. (5)—(9), the total Hamiltonian of the system
described in Fig. 3 is

H=wgaa+wa'a,+wob'b+glab +ba))
+g,(a,b" +ba)), (10)

where we have introduced the renormalized frequencies

C.
wj=a)<1+d—CL0>, j=1Lr, (11a)
) (I)o 2 EC 1/2
w,=w,+ (C;+ Cr)a)i(%) <m , (11b)

and the coupling strengths

=-C %\/i< Ec )M i=Lr. (12)
8= 5% e Nac, \2e @) TN

It should be noted that we have made the rotation wave ap-
proximation when Eq. (10) is derived.

Equation (10) describes that two TLRs are coupled to the
CPB, which serves as a coupler. To obtain controllable cou-
pling between the two TLRs, we restrict the system in the
large detuning regime, where the frequency differences be-
tween the two TLRs and the CPB are much larger than their
coupling constants, i.e., A;>g; and A,>g,. Here, Aj:w,;
—wj for j=I, r are the detuning between the frequencies of
the TLRs and that of the CPB. By adiabatically eliminating
the degree of freedom of the CPB, we obtain an effective
interaction between the two TLRs. That is, we perform
a unitary transform  U=exp[g/ab’—ba))/A+g(a,b’
—baj)/ A,] for the Hamiltonian in Eq. (10) and use the Haus-
dorff expansion up to the first order in the small parameter
g j/A j with j=/, r, then we obtain an effective Hamiltonian

He= wjaja)+ w)a]

a,+g(a,a) +aa), (13)

where we have defined the Stark-shifted frequencies wjf
=w;+ gjz-/ A; for j=1, r, and the effective coupling strength

_ 218 (A +A,)
2A,A,

Note that the effective Hamiltonian of the CPB Hcpg
=w)b'h with w)=w,—g7/A~g?/A, has been neglected in
Eq. (13). It is obvious that the Hamiltonian (13) describes an
effective interaction between the two TLRs. According to
Egs. (7) and (11b), the frequency of the CPB can be tuned by
the external magnetic flux ®,. Correspondingly, the detun-
ings A; and A, between the TLRs and the CPB can be tuned,
thus the coupling constant g can be tuned. When the detun-
ings are very larger than the coupling constants between the
TLRs and the CPB, the effective coupling constant g be-
tween the two TLRs is negligibly small, and then the inter-
action between the two TLRs is switched off. For example, if
we assume that the two transmission-line resonators are iden-

(14)
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tical, i.e., A;=A,=A and g,=g,=¢’, and we take the param-
eters [33]: w=27X3 GHz, C,=C,=6 {F, Cyd=1.6 pF, E,
=27X%0.35 GHz, E§0)~ 103E., then we calculate g~1.1
~23 MHz corresponding to cos(7®,/®y)~0.02~1. In
this region, the conditions E;(®,)>E- and A>g' are satis-
fied.

In conclusion, we have studied a quantum switch for
single-photon transport in a coupled TLR array with one
controllable hopping interaction. We have found that the con-
trollable single-photon transport, for an arbitrary wave vector
of photons, in the coupled TLR array can be realized by
tuning one of the coupling constants. How to realize the
controllable coupling between two TLRs is also studied. We
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have proposed that a CPB serves as a coupler to connect the
two TLRs. In the regime of E;(®,)> E, the CPB is approxi-
mately described as a harmonic oscillator. Under the large
detuning condition, we have obtained an effective interaction
between the TLRs by adiabatically eliminating the variables
of the CPB. This induced effective coupling can be con-
trolled by the external magnetic flux ®, through the CPB.
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