PHYSICAL REVIEW A 80, 014102 (2009)

Conditions on systems of interacting qubits for classical behavior of their macroscopic variables
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It is shown that the conditions for classical behavior, in the sense of zero dispersion of all macroscopic
variables, for systems of qubits with different dynamics, depend on whether the interaction is local or global.
In the case of local interaction, macroscopic coarse-graining is enough. On the other hand, coarse-grained
macroscopic variables of globally interacting large systems of qubits have negligible dispersion only if the
system is exposed to some form of the environmental decoherence.

DOI: 10.1103/PhysRevA.80.014102

The relation between classical behavior of macroscopic
systems and the quantum nature of their microscopic con-
stituents is one of the most important questions of our scien-
tific world view. The problem is as old as the quantum me-
chanics itself and has been studied with different tools and
aims (see for example the reviews in [1,2]). Nevertheless the
problem is far from solved. In fact, it is particularly alive
today [3] because the modern technology enables its experi-
mental study and due to its relevance in realistic quantum
information processing.

Coarse graining of the state space [1,4] of large systems
and the environmental decoherence [5], including continuous
observations [6], are the main mechanisms that induce clas-
sical behavior. The effects of these two mechanisms on the
quantum to classical transition have been studied using for
example phase space densities [7] and methods of the theory
of open quantum systems, such as quantum trajectories
[6,8,9], or stochastic master equations [10-12]. However,
different systems display different aspects of the classical
behavior under different, system dependent, conditions.

In this Brief Report we shall report the results of numeri-
cal investigations of the conditions that are sufficient for dis-
persionless evolution of all macroscopic variables using ex-
amples of systems of interacting qubits. This is enough to
guarantee macrorealism in the sense of [13]. Our main result
is that for systems with qualitatively different but local inter-
action the macroscopic coarse graining is enough to induce
the dispersionless evolution of the macroscopic variables,
while for systems with long-range global interaction some
form of environmental decoherence is also required.

Consider the system of N qubits with the Hamiltonian of
the following form:

N N
Hw, 0,J)= > wzai + wXO'i > yi,jofco{c. (1)

i i i#]
In Eq. (1) o{c,y,z are Pauli sigma matrices of the ith qubit and

w,, 0,7, ;,J are parameters. We shall see that as far as the
classical behavior of macro variables is considered the main
difference is between the following two cases: the case of
local nearest-neighbor interaction v, ;=§;;,; and the case of
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global all to all interaction y;;=1. On the other hand, the
qualitative difference between the local symmetric and inte-
grable H(w,#0,w,=0,J#0) vs local nonsymmetric and
nonintegrable H(w,#0,w,#0,J% 0) [14], which is clearly
manifested in qualitatively different dynamics of entangle-
ment [14-17], is not relevant for the aspect of macroscopic
behavior treated in this Brief Report.
Macroscopic variables for the system (1) are defined as

N
1 .
Myyz= ;,21 a-jc,y,z' (2)
i=

Classical macroscopic systems are always in such a state that

all macroscopic variables have well defined and sharp val-

ues. In other words, the dispersions Am, , =\Varm,,

=[(m§’y’z)—<mx’y’z)2]” 2 should be negligible in all pure states

during the evolution for the system (1) to appear as classical.
With the standard definition of the time average

1 (7
Am, .= lim —f Am, ., dt (3)

x,y,2 X,Y.Z
T—oe 0

we can write the following necessary condition that is ex-
pected of the classical macro system of the form (1):
lim Am,, =0. (4)
frases )

The macroscopic variables satisfy relations
limy_,., [my,m;]=0, k,I=x,y,z, so that it is expected that the
dispersions Am, , . are simultaneously arbitrarily small in the
large-N limit. However, the behavior of Am,, . during the
evolution generated by different Hamiltonians can be radi-
cally different with respect to the large-N limit. Two extreme
situations have been discussed recently in [18], and are rep-
resented by the following Hamiltonians:

H, = gE aJX class ¢ (5)
and
i
H,= E(a'fw— V) class q. (6)

The system of qubits with the Hamiltonian (6) is always in a
superposition of macroscopically distinct states |1, 7,...,71)
and ||, ],...,]). In the class ¢ the variances of all three
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FIG. 1. Figures illustrate dependence of the time averaged variance Var m, on the number of qubits N. Lines in 1b and 1d represent
double exponential functions fitting the data calculated at N=2,6,10,15. In la the data are fitted by an exponential (case ¢, boxes) and a
constant (case g, diamonds). Lines in Ic¢ only connect the data of the same type. In 1b, Ic, and 1d black boxes and black line are for the
quantum nonintegrable and gray boxes and gray line for the integrable local [Fig. 1(b)] and global [Fig. 1(c)] Hamiltonians. Figure 1(d) is
for the open nonsymmetric (black) and symmetric (gray) globally interacting systems with thermal (diamonds with full line) and dephasing

(boxes with dotted line).

variables Azmx,y,z decrease exponentially with N, and in the
class q the amplitude and the time average of Azmx!y,Z remain
constant as N is increased, as is illustrated in Fig. 1(a). The
initial state in Fig. 1(a) and in all other figures is | )®". The
two examples [Egs. (5) and (6)] represent two different typi-
cal situations and we would like to see which of the two
types of behavior appears in the systems with local or global
interactions [Eq. (1)].

Numerical calculations clearly show that the systems with
local or global interactions display quite different depen-
dence on N of the amplitudes and the time averages of the
variances A’m, .. Figure 1(b) illustrates the time averaged
variances A%m, as functions of N for the integrable and non-
integrable local interaction. Figure 1(c) illustrates the results
for the Hamiltonians with global interaction. Similar type of
dependence on N is observed for the other two dispersions.
As is clearly seen, the variances in the case of the Hamilto-
nians with local interaction approach zero as N is increasing.
The dependence is well fitted with the double exponential:
A%m_(N)=A, exp(-B;N)+A, exp(—B,N). On the other hand,
the evolution with the global interaction implies that the vari-
ances A’m, , _ remain large independently of N [Fig. 1(c)].

We can conclude that macroscopic coarse graining is
enough to obtain classical behavior of dispersions of the

macroscopic variables for systems of qubits with, integrable
or not, but local interaction. Of course, sufficiently precise
resolution would show perfectly quantum evolution of the
system’s microstate or its microvariables. It is important to
notice that the qualitative difference of the evolution, al-
though displayed in the properties of the microstate entangle-
ment, has no relevance for the classical properties of the
dispersions of the macrovariables. Thus, as far as the behav-
ior of dispersions is considered, the systems of qubits with
local interaction belong to the class ¢ and the systems with
global interaction to the class q.

In the sequel we shall consider open system with global
interaction and report results that show how the environmen-
tal decoherence produces the classical behavior of the disper-
sions of macrovariables. The most general evolution equa-
tion of an open quantum system that satisfies the Markov
property is of the Linblad form [19],

dp(t) . 1 o

-, == l[H’ P] - _E [Lkp’l‘lt] + [Lk’ ka]’ (7)
dt 2%

where p(7) is the mixed state of the open system, H is the

Hamiltonian and L; are Linblad operators that describe dif-

ferent possible influences of the environment. Typical ex-
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amples, that we shall consider, are the influence of the local
dephasing or thermal environments represented by [19]

N N
- Vi~ - =
Ly, = > YapO; 0  Ly= > j[(” + 1o} —no7], (8)
i=1 i=1
where 7yy,, vy, and 77 are treated here as phenomenological
parameters.
Dispersion of the macroscopic variable in the mixed state
p(1) is given by

Nmy .= Tilp(O)m}, 1= (Trlp()m,, )°, )

and can be represented as a sum of quantum and classical
parts [19], A2mx’y’Z=A‘21mm.yz+Afmx,yyz. Namely, for any ¢
=1, the state p(t,) can be represented, in an infinite number
of ways, as convex mixture of pure states p(ty)=2,p;|i)il.
This suggests the definitions A’A=3p,((i|A%i)—(i|A|i)?) and
AZA=ZpilAli)*~ (Zp{ilAli)*. AZA represent the average
variance in pure states that appear in the resolution of p.
Thus, it is a measure of average intrinsic quantum variance.
On the other hand, A%A is the variance of the c-number
(iJAli) and represent statistical fluctuation of this classical
quantity. In order to illustrate the influence of decoherence
we shall use the quantum dispersion A m, . as well as the
total dispersion Am, .

In order to calculate A m, , (1) at different times we need
an evolution equation for the open system in terms of pure
states that is equivalent to the Limblad master equation (7).
There are many such pure state evolution equations that ap-
pear in different contexts [12,19-21]. We shall use the sto-
chastic Schrodinger equation equivalent to Eq. (7) that ap-
pears in the theory of quantum state diffusion (QSD) [22].
This equation is singled out among other types of pure state
unravelings of the density evolution by its unique relation to
the Limblad equation (7). The QSD stochastic Schrodinger
equation for the Limblad equation with Limblad operators L,
is unique and reads

|dy) = — iH|pdr + | 2 2LDL,— LiL— (LIEL ||yde))dr
k

+ 2 (L= (L) [ (0))aw, (10)
k

where () denotes the quantum expectation in the state |¢(t))
and dW, are independent increments of complex Wiener
c-number processes W, (7) satisfying

E[de] = E[deder] = O, E[deder] = 5qurd[. (1 1)
Here E[ -] denotes the expectation with respect to the prob-

ability distribution given by the multidimensional process W,

and W, is the complex conjugate of W,. By definition of an
unraveling the stochastic state A7) satisfies Tr[p(r)A]
=E[(1)|A|y())] for arbitrary observable A. The quantum
and the classical dispersions of A are given in terms of the
stochastic state () as

AZA = E[(0)|A2|gd 1) = (o) |A|(0))] (12)

and
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FIG. 2. Comparison of the time averaged quantum Var, m,
(boxes and full line) and total Var m, (diamonds and dotted line)
variances for the example of thermal environment and nonsymmet-
ric globally interacting system. Lines are as in Fig. 1 double expo-
nential functions numerically fitted to the data calculated at N
=2,6,10,15.

A2A = E[(p(0|Ald0))*] = (EL ) [A[p(0))D?. (13)

Description of the evolution in terms of the stochastic Eq.
(10) for an ensemble of pure states is numerically much less
consuming than the equivalent Linblad master equation.

Our computations using the QSD equation are illustrated
in Figs. 1(d) and 2. Relation between the quantum and the
total variances is illustrated in Fig. 2 using the example
Hamiltonian H(w.=1.4, w,=1.4, J=1) with global interac-
tion and the thermal environment. Quantum variance (12) is
illustrated in Fig. 1(d) for both types of Hamiltonians H(w,
=14, w=14, J=1) and H(w,=0, w,=1.4, J=1) with
the global interaction and both types of the environments.
Similar results are obtained for other two macrovariable m, ,.
The coupling parameter for the case of dephasing is set to
Yap=1 so that the Linblad and the Hamiltonian part in the
master equation are of the same order. The average number
of excitations 7 in the thermal environment is proportional to
the temperature. We considered the case when 7> 1 and the
coupling is such that y,n=1. Results presented in Fig. 1(d)
clearly show that the quantum dispersions decrease to zero as
N is increased. The curves can be fitted with double expo-
nentials like in the case of isolated locally interacting sys-
tems (with different parameters). We can conclude that the
decoherence by either the thermal or the dephasing environ-
ment plus macroscopic coarse graining are enough to guar-
antee dispersionless evolution of all macrovariables m,,
even for the systems of qubits with the global interaction.

In summary, we have shown that isolated system of qubits
with local interaction of an integrable or nonintegrable type
display classical behavior of macroscopic coarse-grained
variables. On the other hand, if the qubits are interacting
globally the macroscopic variables have nonvanishing dis-
persions. In this case the environmental decoherence by ei-
ther thermal or dephasing environments is needed for the
classical behavior of the quantum dispersions of macrovari-
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ables. Simultaneous annihilation of quantum dispersions for
all macrovariables is only a necessary condition for the clas-
sical behavior of a quantum system. There are other indepen-
dent properties of classical systems which need not appear
under the same conditions as those related to the dispersion-
less evolution of the macrovariables.
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